用户名: 密码: 验证码:
太阳能热风采暖系统与村镇建筑一体化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能热利用技术是太阳能利用的一个重要途径,它的合理应用可以有效地解决能源紧张问题。太阳能热风采暖系统以其优越的特色,可以弥补热水系统在投资、冷冻、泄漏、启动速度等方面的缺憾,更易于实现与建筑的一体化,宜在村镇建筑中得到广泛应用。在此前提下,本文对太阳能热风采暖系统与村镇建筑一体化进行了研究,重点在于优化热风采暖系统的结构参数和进口参数。
     第一,在加拿大Conserval公司设计的Solar Wall基础上进行改进,研制开发了一种无盖板冲缝型空气集热器,建立了数学模型,并进行了实验验证,进而模拟分析了外界参数对集热器热效率的影响。
     第二,针对无盖板冲缝型集热器的缺点,进一步提出了盖板式冲缝型空气集热器,并分别对普通玻璃和真空玻璃盖板式集热器进行了理论和实验研究,提出了以有效效率作为评价指标,并结合热效率和空气进出口温升,找到了结构参数和进口参数的优化范围,回归得到了局部阻力系数的经验关系式,证明了这种集热器的优越性;对比两者的性能,发现真空玻璃盖板式集热器的应用效果更好。
     第三,综合考虑工作介质和村镇建筑的特点,确定了以卵石作为蓄热材料。以平均蓄热功率和流动阻力为评价指标,研究了不同结构参数和进口参数对蓄热器性能的影响。
     第四,总结了太阳能建筑对应用场所和建筑构型的要求,分析了窗户开启形式和开启角度对建筑节能和自然通风的影响;研究了遮阳设施对于保证太阳能建筑夏季正常使用的重要性,开发了独立可执行程序,为不同地区、不同建筑尺寸的挑檐构型优化提供了方便、实用的操作工具。
     第五,利用频域回归法计算反应系数,建立了房间内部的动态热平衡方程组,并进行了模型验证;选择一个虚拟太阳能建筑作为模拟对象,研究了集热器面积、蓄热器体积和集热器的吸热板发射率对太阳能保证率的影响。结果表明,在经济条件允许的情况下,应尽量增大集热器面积;在集热器面积一定时,存在合适的蓄热器体积;选择性涂层对系统性能影响很大,应着力开发研究。总体而言,若设计合理,热风采暖系统的太阳能保证率是很高的,可以在初投资较小的情况下,实现提高村镇人民生活水平的目的,同时对村镇建筑的节能减排工作起到良好的促进作用。
Solar thermal technology is an important way to use solar energy and its rational use could effectively solve the prolem of energy shortage. Solar hot air heating system with its superior features, could make up shortcomings of solar hot water system, such as investment, freezing, leakage, slow startup, etc, and should be widely used. For this, this paper studied integeration of solar hot air heating sysem with villages building, mainly to optimize structural and import parameters of system.
     Firstly, on the basis of Solar Wall designed by Conserval Corporation, the paper proposed a new type of collector - unglazed transpired air collector with slit-like perforations. Through mathematical model built, external parameters on its thermal efficiency were analyzed.
     Secondly, in view of shortcomings of unglazed transpired air collector with slit-like perforations, the paper further proposed a glazed transpired collector with slit-like perforation, and studied performance of collectors respectively with ordinary and vacuum glass cover theoretically and experimentally. Here, effective efficiency was raised and combined with thermal efficiency and temperature difference of air inlet and outlet as evaluation indexes, to find out optimized values of structural and import parameters. Using experimental results, empirical relationship of local resistance coefficient was regressed, which proved the collector’s superiority. Compared ordinary glass cover collector to vacuum-type, the performance of latter was found to be better.
     Thirdly, considering characteristics of system working medium and villages, the paper determined pebbles as heat storage material. Taking average heat storage power and pressure loss as evaluation indexes, structural and import parameters on the regenerator performance were studied.
     Fourthly, requirements of solar building on site and building configuration were summarized, and impact of window opening form and angle on building energy-saving and natural ventilation were analyzed. In view of vital importance of shading on summer heat-resistant, the paper developed an executable programming for visualization design of roof overhang, providing a convenient, practical operational tool for different building structure and size.
     Finally, using frequency domain regression method to calculate response coefficients, the paper established dynamic heat balance equations of building, which was verified by experimental results. On the basis of study on air collector and regenerator, the paper took a building with rational configuration as simulation object, and analyzed effects of collector area, regenerator volume and absorber plate emissivity on solar fraction. The results showed that on the promise of economic conditions permit, collector area should be increased, and with constant collector area, there existed proper regenerator volume. Besides, selectively coating should be mainly studied, which was very important for system performance. Overall, if designed reasonally, solar fraction of hot air heating system was very high, and in view of its economic, it should be popularized in village buildings, which could accelerate the work of energy saving and emission reduction in villages.
引文
[1]尤占平.生物质炭催化重整热解焦油技术研究[D]. [博士学位论文],天津:天津大学, 2010.
    [2]王奉钦.太阳能集热器辅助提高日光温室地温的应用研究[D]. [硕士学位论文],北京:中国农业大学, 2004.
    [3]张波,陈晨,刘明利,等.中国能源安全现状及其可持续发展[J].地质技术经济管理, 2004, 26 (1): 56~58.
    [4]苑文乾.北方地区部分小城镇建筑节能状况与节能策略的研究[D]. [硕士学位论文],天津:天津大学, 2006.
    [5]王效华,冯祯民.中国农村生物质能能源消费及其对环境的影响[J].南京农业大学学报, 2004, 27 (1): 108~110.
    [6]张蓓.寒冷地区农居新型太阳能采暖技术设计研究[D]. [硕士学位论文],山东:山东建筑大学, 2007.
    [7]徐华东,赵云.太阳能建筑及其主要影响因素[J].能源工程, 2003, 6: 6~9.
    [8]科学技术部中国农村技术开发中心,太阳能利用技术[M].北京:中国农业科学技术出版社, 2006.
    [9]由世俊,娄承芝,华君,等.建筑物用光伏集成系统在中国应用的前景[J].太阳能学报, 2000, 21 (4): 434~438.
    [10] You Shi-jun, Hua Jun, Tu Guang-bei, et al. Power Generation Potential of BIPV Application in China[J]. Transactions of Tianjin University, 2001, 7 (1): 17~20.
    [11] Katz, Jane Sarah, Olgyay, et al. Your solar house thirty-five years later[C]. American Solar Energy Soc Inc, 1983.
    [12] Karsten Voss. Solar energy in building renovation-results and experience of international demonstration buildings[J]. Energy and Buildings, 2000, 32 (3): 291~302.
    [13] Stoteris A, Kalogriou, Geroge F, et al. Energy analysis of building employing thermal mass in Cyprus[J]. Renewable Energy, 2002, 27 (3): 353~368.
    [14] Letan R, Dubovsky V, Ziskind G. Passive ventilation and heating by natural convection in a multi-storey building[J]. Building and Environment, 2003, 38(2): 197~208.
    [15]张红梅.被动式太阳房室内热环境分析[D]. [硕士学位论文],西安:西安建筑科技大学, 2005.
    [16]郄昭昭.太阳能建筑一体化设计[D]. [硕士学位论文],河北:河北工业大学, 2007.
    [17] Kalogirou S A, Tripanagnostopoulos Y. Industrial Application of PV/T Solar Energy Systems[J] .Applied Thermal Engineering, 2007, 27(8~9): 1259~1270.
    [18] Robert D W. Smart Energy Houses of the Future– Self-supporting in Energy and Zero Emission[J]. Future Energy, 2008, 5 (12): 333~346.
    [19]郝改红.太阳房及其组件的热性能研究[D]. [硕士学位论文],太原:太原理工大学, 2002.
    [20]苑金生.利用太阳能采暖的技术发展[J].房材与应用, 2002, 30 (2): 47~48.
    [21]谢治国,胡化凯.建国以来我国可再生能源政策的发展[J].中国软科学, 2005, 9: 50~57.
    [22]王德芳.被动式太阳能采暖房数学模型及模拟计算程序[J].甘肃科学学报, 1989, 1(1): 1~8.
    [23]张立志,王玲.被动式太阳房动态模型的研究[J].能源研究与利用, 1998, 3 (2): 12~14.
    [24]叶宏,葛新石.几种集热贮热墙式太阳房的动态模拟及热性能比较[J].太阳能学报, 2000, 21 (4): 349~457.
    [25]钟珂,杨柳,王妇欢,等.被动式太阳能建筑室内热环境评价指标的分析[J].西安建筑科技大学学报(自然科学版), 2003, 35 (1): 14~16.
    [26]刘成林.对低温热水地板辐射采暖系统的节能性分析及系统的优化设计[D]. [硕士学位论文],湖南:湖南大学, 2003.
    [27]陈威,刘伟,华贲.被动式太阳能温室-采暖房中对流传热的数值分析[J].太阳能学报, 2003, 24 (6): 789~793.
    [28]周兴红.低温地板辐射采暖数值模拟及其性能分析[D]. [硕士学位论文],南京:南京理工大学, 2004.
    [29]孟长再,巴马.被动式太阳房集热部件优化选型及集热面积简易计算方法探讨[J].节能技术, 2003, 25(2): 133~138.
    [30]孙鹏,陈刘.新建被动式太阳房冬季热性能的实验研究[J].建筑热能通风空调, 2005, 24(1): 22~27.
    [31]陈会娟,陈滨,庄智,等.特朗贝墙体冬季集热性能的计算及预测[J].建筑热能通风空调, 2006, 25(2): 1~7.
    [32]陈滨,孟世荣,陈会娟,等.被动式太阳能集热蓄热墙对室内湿度调节作用的研究[J].暖通空调, 2006, 36 (3): 42~47.
    [33]张红,张立平,戴剑侠.太阳墙式空气集热器的供暖试验研究[J].煤气与热力, 2007, 27(8): 84~86.
    [34]杨文秀,陈滨.温控下被动式太阳房辅助热源量的动态分析[J].可再生能源, 2007, 28(3): 12~15.
    [35] H M Yeh, C D Ho. Collector efficiency of double-flow solar air heaters with fins attached[J]. Energy, 2002, 27(8): 715~727.
    [36] Cengiz Yildiz, I T Togrul. Thermal efficiency of an air solar collector with extended absorption surface and increased convection[J]. Heat Mass Transfer, 2002, 29 (6): 831~840.
    [37]高文峰,林文贤,吕恩荣.太阳能空气集热器研究进展[J].新能源, 1995, 17 (12): 1~8.
    [38]毛润治.太阳能空气集热器热性能与空气流量率关系的实验研究[J].太阳能学报, 1989, 10 (3): 273~281.
    [39]林金清.太阳能空气集热器(I型)的数学模型研究[J].太阳能学报, 1999, 20 (1): 38~43.
    [40]林金清,苏亚欣.太阳能空气集热II型的数学模拟和数值计算[J].太阳能学报, 2000, 14 (1): 31~36.
    [41]夏国泉,魏棋. I型太阳能空气集热器传热性能分析[J].江苏大学学报(自然科学版), 2003, 24 (4): 41~44.
    [42] Matrawy K K. Theoretical analysis for an air heater with a box-type absorber[J]. Solar Energy, 1998, 63 (3): 191~198.
    [43] J L Bhagoria. Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate[J]. Renewable Energy, 2002, 25(3): 341~369.
    [44] Dursun Pehlvan. The performance of a solar air heater with conical concentrator under forced convection[J]. Thermal Sciences, 2003, 42 (6): 571~581.
    [45] H D Ammari. A mathematical model of thermal performance of solar air heater with slats[J]. Renewable Energy, 2003, 28 (10): 1597~1615.
    [46]吕坤.圆柱阵列太阳能空气集热器的实验研究[D]. [硕士学位论文],青岛:青岛建筑工程学院, 2004.
    [47]王崇琦.四种回流式空气集热器性能分析及结构的研究[C].中国太阳能学会太阳能干燥学术会议资料, 1985.
    [48]王恩堂.双流程空气集热器的性能分析及流道尺寸的优化[J].深圳大学学报, 1986, 2: 94~102.
    [49] Duff W S. Development of a day-by-day simulation of solar system[C]. Solar engineering Proceedings of the Third Annual Conference on Systems Simulation, Economic Analysis/Solar Heating and Cooling Operational Results, Reno, NV, April 27-May 1, 1981.
    [50] Choudury C, Garg H P. Evaluation of a jet plane solar air heat[J]. Solar Energy, 1991, 46 (4): 199~209.
    [51]罗棣庵,李为工.射流-抽吸式空气集热器的研究[J].太阳能学报, 1987, 8 (4): 327~332.
    [52] GAMA R M S. Analysis of a V-groove solar collector with a selective glass cover[J]. Solar Energy, 1986, 36 (6): 509~519.
    [53]赵锡伟,李宗楠. V形波纹板与平板间空气夹层自然对流换热的数值分析计算与实验研究[C].中国太阳能学会1991年年会议文集, 1991.
    [54]张珂理. V形波纹多孔体太阳能空气集热器研究[J].太阳能学报, 1990, 11 (3): 293~302.
    [55] Yinghu Piao. Natural forced and mixed convection in a vertical cross-corrugated channel[R]. The University of British Columbia, 1992.
    [56] Gao W, Lin W, Lu E. Numerical study on natural convection inside the channel between the flat-plate cover and sine-wave absorber of a cross-corrugated solar air heater[J]. Energy Conversion and Management, 2000, 41(2): 145~151.
    [57] Fath, Hassan E S. Thermal performance of a simple design solar air heater with built-in thermal energy storage system[J]. Renewable Energy, 1995, 6 (8): 1033~1039.
    [58] S O Enibe. Thermal analysis of a natural circulation solar air heater with phase change material storage[J]. Renewable Energy, 2003, 28 (14): 2269~2299.
    [59]张诗针.蜂窝结构太阳能集热器的理论集实验研究[J].太阳能学报, 1982, 3 (3): 252~260.
    [60]叶宏,葛新石.带透明蜂窝太阳能空气集热的实验研究[J].太阳能学报, 2003, 24 (1): 27~31.
    [61]张立平.蜂窝平板式太阳能空气集热器及太阳墙的研究[D]. [硕士学位论文],镇江:江苏大学, 2007.
    [62]张志强,左然,李平,等.采用玻璃管蜂窝盖板的太阳能空气集热器的性能研究[J].中国科学, 2008, 38(5): 781~789.
    [63] Viorel Badescu, Mihail Dan Staicovici. Renewable energy for passive house heating: Model of the active solar heating system[J]. Energy and Buildings, 2006, 2: 129~141.
    [64] G O G Lof. Performance of Solar Energy Collectors of Overlapped-Glass-Plate Type[C]. Proc. of Solar Heating Symposium Open Space Heating with Solar Energy, MIT University, 1950.
    [65]赵春江,王恒龙.新型平板式集热器的设计和性能[J].上海交通大学学报, 2004, 38(10): 1656~1659.
    [66]赵启秋.空气平板式太阳能集热器的计算机动态模拟[J].新能源, 1992, 14 (9): 1~7.
    [67]陈颉,施锋.带金属纱网的增强型太阳能红外空气集热器[J].新能源, 1995, 17 (3): 44~45.
    [68]戴天红,张铸.平板型太阳能空气集热器有效透过率与吸收率乘积的计算[J].太阳能学报,1996, 17 (4): 303~307.
    [69]王瑞平.平板型太阳能集热器效率分析[J].西安科技学院学报, 2002, 22(3): 362~363.
    [70] Tang R, Wu T. Optimal tilt-angles for solar collectors used in China[J]. Applied Energy, 2004, 79 (3): 239~248.
    [71]薛静.新型变色幕墙太阳能空气集热器的热性能研究[D]. [硕士学位论文],大连:大连理工大学, 2006.
    [72] Chantawong P, Hirunlabh J, Zeghmati B et al. Investigation on thermal performance of glazed solar chimney walls[J]. Solar Energy, 2006, 80(3): 288~297.
    [73]韩延民,代彦军,王如竹.基于trnsys的太阳能集热系统能量转化分析与优化[J].工程热物理学报, 2006, 27(S1): 57~60.
    [74] Kalogirou S A. Prediction of flat-plate collector performance parameters using artificial neural networks[J]. Solar Energy, 2006, 80(3): 248~259.
    [75] Karim M A, Hawlader M N A. Performance evaluation of a v-groove solar air collector for drying applications[J]. Applied Thermal Engineering, 2006, 26(1): 121~130.
    [76] Karim M A, Hawlader M N A. Performance investigation of flat plate, v-corrugated and finned air collectors[J]. Energy, 2006, 31(4): 452~470.
    [77]陈星.带内置卷帘特朗贝墙的热性能研究[D]. [硕士学位论文],大连:大连理工大学, 2006.
    [78]陈佳.太阳能空气集热建筑模块热输运控制方法的研究[D]. [硕士学位论文],大连:大连理工大学, 2009.
    [79]崔海亭,杨锋.蓄热技术及其应用[M].北京:化工工业出版社, 2004.
    [80] D J Close. Rock pile thermal storage for comfort air conditioning[J]. Mech. Chem. Engng Trans. I.E, 1965, 1: 11~22.
    [81] P J Hughes, S A Klein, D J Close. Packed bed thermal storage models for solar air heating and cooling systems[J]. Trans. ASME, J. Heat Transfer, 1976, 98: 336~338.
    [82] T E W Schumann. Heat transfer: A liquid flowing through a porous prism[J]. J. Franklin Inst., 1929, 208(3): 405~416.
    [83] C P Jeffreson. Prediction of breakthrough curves in packed beds[J]. Am. Inst. Chem. Engrs, 1972, 18(2): 409~416.
    [84] S Ergun. Fluid flow through packed columns[J]. Chem. Eng. Progress, 1952, 48: 89~94.
    [85] P Chandra, D H Willits. Pressure drop and heat transfer characteristics of air-rock bed thermal storage systems[J]. Solar Energy, 1981, 27(6): 547~553.
    [86] J P Coutier, E A Farber. Two applications of a numerical approach of heat transfer process within rock beds[J]. Solar Energy, 1982, 29(6): 451~462.
    [87] Zarty O, El Juddaimi A. Computational models of a rock-bed thermal storage unit[J]. Solar & Wind Technology, 1987, 4 (2): 215~218.
    [88] Sagara K, Nakahara N. Thermal performance and pressure drop of rock beds with large storage materials[J]. Solar Energy, 1991, 47 (3): 157~163.
    [89] ztürk H H, Basetinelik A. Energy and Exergy Efficiency of a Packed-bed Heat Storage Unit for Greenhouse Heating[J]. Biosystems Engineering, 2003, 86 (2): 231~245.
    [90] Singh R, Saini RP, Saini JS. Performance analysis of packed bed solar energy storage system having large size material of different shapes[C]. Solar World Congress, Orlando, FL, USA, 2005.
    [91] R. Singh, R.P. Saini, J.S. Saini. Nusselt number and friction factor correlations for packed bed solar energy storage system having large sized elements of different shapes[J]. Solar Energy, 2006, 80: 760~771.
    [92] N. Nallusamy, S. Sampath, R. Velraj. Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat source[J]. Renew Energy, 2007, 32(7): 1206–1227.
    [93] Harmeet Singha, R.P. Sainia, J.S. Sainib. A review on packed bed solar energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 1059~1069.
    [94]陈威,刘伟,黄素逸.温室及其蓄热层中传热与流动的研究[J].工程热物理学报, 2003, 24 (3): 508~510.
    [95]陈威,刘伟,许国良.温室中岩床蓄热性的分析[J].工程热物理学报, 2004, 25 (4): 679~681.
    [96]张峰,张林华,刘文波,等.带地下卵石床蓄热装置的日光温室增温实验研究[J].可再生能源, 2009, 27 (6): 7~9.
    [97]周剑敏,张东,吴科如.建筑节能新技术-相变储能建筑材料[J].新型建材, 2003, 31(4): 10~12.
    [98]赵丰冬.相变储能建筑材料的应用与展望[J].新型建材与施工技术, 2005, 14(4): 17~20.
    [99] S B Marks. An investigation of the thermal energy storage capacity of Glaubers’salt with respect to thermal cycling[J]. Solar Energy, 1980, 25(3): 255~258.
    [100]S B Marks. Glauber’s salt heat storage composition, crystal habit modifiers[P]. US Patent 4349446, 1982.
    [101]Sharma Atul, V.V. Tyagi, C.R. Chen et al. Review on thermal energy storage with phase change materials and applications[J]. Renew Sust Energy Rev, 2009, 13 (2): 318–345.
    [102]廉变峰.建筑节能相变材料制备与应用分析[D]. [硕士学位论文],天津:天津大学, 2008.
    [103]苏文佳.太阳能集热和储热系统研究[D]. [硕士学位论文],江苏:江苏大学, 2008.
    [104]K. Darkwa, J.S. Kim. Dynamics of energy storage in phase change drywall systems[J]. International Journal of Energy Research, 2005, 29(4): 335–343.
    [105]Darkwa K, O'Callaghan P W. Simulation of phase change drywalls in a passive solar building[J]. Applied Thermal Engineering, 2006, 26(8~9): 853~858.
    [106]Huang M J, Eames P C, Hewitt N J. The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building[J]. Solar Energy Materials and Solar Cells, 2006, 90(13): 1951~1960.
    [107]Agyenim F, Hewitt N, Eames P et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615~628.
    [108]方银贵,李辉.空调蓄冷材料研究现状及其新进展[J].低温与超导, 2003, 31 (3): 64~67.
    [109]林坤平,张寅平.电加热相变材料蓄热地板采暖的热性能模拟[J].太阳能学报, 2003, 24(5): 633~636.
    [110]叶宏,程丹鹏,葛新石,等.定型相变储能式地板辐射采暖系统数值模拟的实验验证及参数分析[J].太阳能学报, 2004, 25 (2): 189~193.
    [111]吕石磊,冯国会,付英会,等.脂酸类相变材料墙板在北方寒冷地区应用的DSC分析[J].节能, 2004, 3: 36~38.
    [112]闫全英,王威.低温定性相变材料在相变墙体中应用的可行性研究[J].保温材料与建筑节能, 2005,2: 58~59.
    [113]冯国会,吕石磊,陈旭东,等.冬季工况下相变墙对室内环境影响的试验[J].沈阳建筑大学学报, 2005, 21(6): 701~704.
    [114]冯国会,陈旭东,梁若冰,等.基于空调蓄冷相变墙房间的热性能实验[J].沈阳建筑大学学报(自然科学版), 2006 (5): 778~781.
    [115]乐海林.相变墙体在北京地区的应用研究[D]. [硕士学位论文],北京:北京工业大学, 2006.
    [116]闫全英,梁辰,周然.用于相变墙体中的石蜡和多元醇相变材料的研究[J].建筑节能, 2007, 35(5): 37~39.
    [117]樊建新.相变墙体传热过程有限元模拟分析研究[J].山西建筑, 2008, 34(26): 231~233.
    [118]陈超,刘宇宁,果海凤,等.复合相变墙体应用于被动式太阳房的初步研究[J].建筑材料学报, 2008, 11(6): 684~689.
    [119]果海凤.相变蓄热技术应用于温室大棚中的传热和节能特性研究[D]. [硕士学位论文],北京:北京工业大学, 2008.
    [120]李百战,庄春龙,邓安仲,等.相变墙体与夜间通风改善轻质建筑室内热环境[J].土木建筑与环境工程, 2009, 31(3): 109~113.
    [121]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. GB50495-2009太阳能供热采暖工程技术规范[S].北京:中国建筑工业出版社, 2009.
    [122]何梓年.太阳能热利用[M].合肥:中国科学技术大学出版社, 2009, 108~108.
    [123]Kutscher C F, Christensen C, Barker G. Unglazed transpired solar collectors: heat loss theory[J]. ASME Journal of Solar Engineering, 1993, 115 (3): 182~188.
    [124]Kutscher C F. Heat exchanger effectiveness and pressure drop for air flow through perforated plates, with and without crosswind[J]. ASME Journal of Heat Transfer, 1994, 116 (2): 391~399.
    [125]Arulanandam S J, Hollands K G T, Brundrett E A. CFD heat transfer analysis of the transpired solar collector under no-wind conditions [J]. Solar Energy, 1999, 67 (1~3): 93~100.
    [126]Van Decker G W E, Hollands K G T, Brunger A P. Heat exchange relations for unglazed transpired solar collectors with circular holes on a square or triangular pitch [J]. Solar Energy, 2001, 71 (1): 33~45.
    [127]M Augustus Leon, S Kumar. Mathematical modelling and thermal performance analysis of unglazed transpired solar collectors [J]. Solar Energy, 2007, 81 (1): 62~75.
    [128]冯其明.一种新型太阳能空气集热器[D]. [硕士学位论文],天津:天津大学, 2010.
    [129]Kutscher C F. An investigation of heat transfer for air flow through low porosity perforated plates[D]. [Ph D thesis], Universtivy of Colorado at Boulder, 1992.
    [130]Ong K S, Chow C C. Performance of a solar chimney[J]. Solar Energy, 2003, 74 (1): 1~17.
    [131]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 4271-2007太阳能集热器热性能试验方法[S].北京:中国标准出版社, 2007.
    [132]CAO S, HOLLANDS K G T, BRUNDRETT E. Heat exchange effectiveness of unglazed transpired plate solar collector in 2D flow[C]. Proceedings of ISES Solar World Congress, Budapest, 1993.
    [133]GOLNESHAN A A, HOLLANDS K G T. Experiments on forced convection heat transfer from slotted transpired plates[C]. Proceedings of CSME Forum, Toronto, 1998.
    [134]Xianli Li, Shijun You, Zhang Huan. Thermal Performance Research on the Solar Air Collector with Slit-like Perforations[J]. Journal of Central South University of Technology, 2009, 16(S1): 145~149.
    [135]Gupta M K, Kaushik S C. Exergetic performance evaluation and parametric studies of solar air heater[J]. Energy, 2008, 33(11): 1691~1702.
    [136]Gupta M K, Kaushik S C. Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies[J]. Renewable Energy, 2009, 34 (3): 465~476.
    [137]Huges P J. The Design and Predicted Performance of Arlington House[D]. [Master thesis] University of Wisconsin-Madison, 1975.
    [138]Mumma S D, W C Marvin. A Method of Simulating the Performance of a Pebble Bed Thermal Energy Storage and Recovery System[C]. Heat Transfer Conference, St. Louis, 1976.
    [139]Coutier J P, Farber E A. Two applications of numerical approach of heat transfer process within rock beds[J]. Solar Energy, 1982, 29(6): 451~462 .
    [140]Sabri Ergun, A A Orning. Fluid Flow through Randomly Packed Columns and Fluidized Beds[J]. Ind. En. Chem., 1949, 41 (6), 1179~1184.
    [141]P Chandra, L D Albright, G E Wilson. Pressure drop of unidirectional air flow through rockbeds[J]. Transactions of the ASABE, 1981, 24 (4): 1010~1013.
    [142]K A Antonopoulos, E Koronaki. Apparent and effective thermal capacitance of buildings[J]. Energy, 1998, 23 (23): 183~192.
    [143]K A Antonopoulos, E Koronaki. Envelope and indoor thermal capacitance of buildings[J]. Applied Thermal Engineering, 2000, 19 (7): 743~756.
    [144]戴巧利.主动式太阳能空气集热—土壤蓄热温室增温系统的研究[D]. [硕士学位论文],江苏:江苏大学, 2009.
    [145]吴皓俊.寒冷地区农村太阳能住宅研究[D]. [硕士学位论文],西安:西安科技大学, 2009.
    [146]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 15405-2006被动式太阳房热工技术条件和测试方法[S].北京:中国标准出版社, 2003
    [147]中国人民共和国住房和城乡建设部. JGJ26-2010严寒和寒冷地区居住建筑节能设计标准[S].北京:中国建筑工业出版社, 2010.
    [148]中华人民共和国建设部. GB350096-1999住宅建筑设计规范[S].北京:中国建筑工业出版社, 1999.
    [149]Xianli Li, Shijun You, Ying Xia. Effect of Window Characteristics on Indoor Air Quality in Residential Housing[C]. 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, 2009.
    [150]建设部工程质量安全监督与行业发展司,中国建筑标准设计研究院编.全国民用建筑工程设计技术措施节能专篇—暖通空调﹒动力[M].北京:中国计划出版社, 2007.
    [151]印金国. Matlab可视化界面设计与控件使用[J].电脑编程技巧与维护, 2007(1): 30~35.
    [152]陈友明.建筑围护结构非稳定传热分析新方法[M].北京:科学出版社, 2004.
    [153]刘静君.被动式太阳能建筑动态室温预测及能耗分析[D]. [硕士学位论文],大连:大连理工大学, 2007.
    [154]彦启森.建筑热过程[M].北京:中国建筑工业出版社, 1986.
    [155]陈翠英.墙体的蓄放热特性对室内热环境调节作用的研究[D]. [硕士学位论文],大连:大连理工大学, 2006.
    [156]周恩泽,董华,贾颖,等.太阳能-热泵热源地板辐射供暖系统房间热力过程数学模型的研究[J].流体机械, 2006, 34(7): 84~89.
    [157]章熙民,任泽霈,梅飞鸣,等.传热学[M].北京:中国建筑工业出版社, 2001.
    [158]余乐顺,廉乐明.寒区太阳能—土壤源热泵系统太阳能保证率的确定[J].热能动力工程, 2002, 17(4): 393~395.
    [159]中国气象局气象信息中心气象资料室.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700