用户名: 密码: 验证码:
基于逾渗网络模型和升尺度方法的储层岩石电性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决复杂储层测井精细解释与评价中遇到的潜在困难,必须开展有针对性的岩石物理基础研究。电阻率参数在储层识别、饱和度定量评价等中具有极其重要的作用,但目前对储层岩石电性影响因素及规律的认识还不完善。为此,本文首先建立了能够反映储层微观孔隙结构、流体性质、孔隙—流体之间相互作用等特征的逾渗网络模型,通过数值模拟研究了岩石电性的微观影响因素及规律,然后创新性地将升尺度方法用于储层宏观特性对岩石电性影响规律的研究之中,最后通过理论分析获得了具有物理意义及通用性的MESPG导电模型。
     在建立逾渗网络模型时充分考虑了孔隙尺寸大小、均匀性、相关性、孔隙之间的连通性、润湿性、矿化度以及分散泥质等储层特征。通过微观模拟,讨论了上述微观因素对岩石电性的影响及规律。通过最优化拟合,定量研究了几个重要的储层孔隙结构特征对电性影响的相对强度。根据实际资料,考察了低孔低渗储层、高孔高渗储层、低阻储层电性的微观影响规律。在升尺度处理时根据不同的宏观特性,采用了不同的升尺度方法:基于混合理论的结构泥质升尺度处理;基于DBU方法的层状泥质升尺度处理;物性渐变储层的基于毛细管压力的升尺度处理;裂缝的体积平均升尺度处理方法。
     模拟研究发现,孔隙度同饱和度指数之间并非通常文献所述的简单线性关系,而与润湿性、孔喉比等特性有关。相对于孔隙尺寸大小而言,孔隙尺寸的空间分布对岩石电性的影响更为显著。定量拟合研究表明,孔隙连通性、微孔隙对岩石电性的影响非常显著,且易产生非阿尔奇特性,而孔隙尺寸和形状的影响较弱。相对于高孔高渗储层而言,地层水电阻率、泥质含量等对低孔低渗储层电性具有显著的影响。理论和模拟研究均表明在水湿储层中I ? Sw曲线可呈现“凹型”、“凸型”非阿尔奇特性,具体形状同连通状况、均质性等有关。首次通过微观模拟证实了泥质的多重作用,并获得了泥质从减阻作用转化为增阻作用的临界矿化度同孔隙度、渗透率等储层特性之间的定性关系。除泥质自身特性外,泥质分布形式对岩石电性具有显著的影响,不同泥质应采用不同的升尺度方法。在不同影响因素下, I ? Sw曲线可呈现不同的形状,但均可归结于三种典型的形状。实例分析表明MESPG导电模型具有通用性、物理意义明显且满足理论边界。
In order to resolve the problems facing in the well log fine interpretation and the evaluation of the complex reservoir, it is important to take the corresponding basic petrophysical researches. The rock resistivity is one of the important parameters in reservoir identification, saturation evaluation et al., but it is not perfection in the understanding of the influencing factors and laws of rock resistivity. Therefore, in this thesis the percolation network model that can describe the microcosmic pore structure of the reservoir rock, fluid properties and interaction between fluids and pores, is firstly built. Then the microcosmic influencing factors and laws of rock resistivity are discussed through numerical modeling. Upscaling methods are innovatively used to study the macroscopical influencing factors and laws of rock resistivity. At last, based on theoretical analysis, the MESPG conductivity model is built, which has physical meaning and is universal.
     The reservoirs rock microcosmic characteristics, such as pore size, uniformity, correlation, connectivity of the pores, wettability, fluid salinity, dispersed shale and so on, are considered in building percolation network model. Through microcosmic modeling, the effects of the characteristics mentioned above on rock resistivity are discussed in detail. Through optimal fitting, the influencing magnitude of several pore structure parameters on rock reisitivity is studied. Based on actual oilfield data, the influencing laws of the rock microcosmic characteristics on resisitivity in low porosity and permeability reservoir, high porosity and permeability reservoir and in low resistivity reservoir are discussed. During upscaling, the different methods are adopted for different macroscopical reservoir characteristics: the upscaling method based on mixture theory for the structure shale, the upscaling method based on the DBU for laminated shale, the upscaling method based on the capillary pressure for the reservoir with property gradual changing, the upscaling method based on the volume average for fractured reservoir.
     The modeling results indicate that there is not simple linear relation between saturation exponent and porosity described in some literatures. The relation between saturation exponent and porosity also depends on the wettability, pore-throat ratio and so on. The distribution of the pores has greater effect on rock resisitivity than the pore size. The fitting results show that pore connectivity and the micropores have great effect on rock resistivity and these factors easily lead to non-Archie phenomenon. However, the pore size and the pore shape have little effect. The formation water salinity and the shale have greater effect on rock resistivity in low porosity and low permeability reservoir than that in high porosity and high permeability reservoir. Both theoretical and modeling results show that the I-Sw curve in water wetting reservoir can represent convexity or concave shapes. The actual shape of the I-Sw curve depends on the pore connectivity, uniformity and so on. Throughing microcosmic modeling, we confirm the multi-role of the shale and gain the qualitative relation between the critical salinity in which shale pole changes from reducing resistivity to increasing resistivity role, and the reservoir characteristics such as porosity, permeability. Besides itself properties of the shale, the shale content and shale distribution form have great effect on rock resistivity. Different upscaling methods should been used for different shale distribution forms. For different reservoir rocks, the different I-Sw curve shapes can be appeared, but all shapes can be reduced to three representative types. The analysis results of experimental data show that the MESPG conductivity model is universal, has physical meaning and satisfies theoretical boundary.
引文
[1] 瞿辉,赵文智,胡素云.我国油气资源潜力及勘探领域[J].中国石油勘探,2006,11(4):1-5.
    [2] 翟光明.中国油气工业可持续发展的思路[J].当代石油石化,2004,12 (9): 1-6.
    [3] 何雨丹,肖立志,毛志强等.测井评价三低油气藏面临的挑战和发展方向[J].地球物理学进展,2005,20(2):282-288.
    [4] 李舟波.复杂油气层地球物理测井评价方法综述[M].见:地球物理测井学术论文集.北京:石油工业出版社,2003:1-7.
    [5] 金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005,12 (3):15-22.
    [6] 谢然红,肖立志,张建民等.低渗透储层特征与测井评价方法[J].石油大学学报(自然科学版),2006,30(1):47-55.
    [7] Ramakrishnan T S, Ramamoorthy R, Fordham E et al.. A model-based interpretation methodology for evaluating carbonate reservoirs[R].SPE Annual Technical Conference and Exhibition, 2001:3379-3393.
    [8] 刘振武,方朝亮,乔立.21世纪初中国油气应用基础研究展望[M].北京:石油工业出版社,2003.
    [9] Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics[R]. Trans. Am. Inst. Mech. Eng.,1942(146):54-61.
    [10] Archie G E.李宁译.用电阻率测井曲线确定若干储层特征参数[J].地球物理测井,1991,15(5):297-304.
    [11] 谭廷栋.浅谈“阿尔奇公式”[J]. 国外测井技术,1992,7(2):105-111.
    [12] 岳文正,陶果,朱克勤.二维格子气自动机模拟孔隙介质的电传输特性[J].地球物理学报,2005,48(1):189-195.
    [13] 徐朝晖,焦翠华,王绪松等.碳酸盐岩地层中双孔隙结构对电阻率及胶结指数的影响[J].测井技术,2005,29(2):115-117.
    [14] 李秋实,周荣安,张金功等.阿尔奇公式与储层孔隙结构的关系[J].石油与天然气地质,2002,23(4):364-367.
    [15] Grattoni C A, Dawe R A. Pore structure influence on the electrical resistivity of saturated porous media[R]. Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, 1994:1247-1255.
    [16] Suman R J, Knight R J. Effect of pore structure and wettability on the electrical resistivity of partially saturated rock—a network study[J]. Geophysics, 1997, 62(4):1151-1162.
    [17] Sharma M M, Garrouch A, Dunlop H F. Effects of wettability, pore geometry and stress on electrical conduction in fluid saturated rocks[J]. The Log Analyst, 1991, 32: 511-526.
    [18] Kuntz M, Mareschal J C, Lavallee P. Numerical estimation of electrical conductivity in saturated porous media with a 2-D lattice gas[J]. Geophysics, 2000, 65(3):766-772.
    [19] Owen J E. The resistivity of a fluid-filled porous body[J]. Trans. AIME, 1952, 195:169-174.
    [20] Fatt I.The network model of porous media III [J].Trans. AIME, 1956, 207: 144- 181.
    [21] Herbert H Y. The Influence parameters of pore coordination on petrophysics[R]. SPE10074,1981.
    [22] Dicker A I M, Bemelans W A. Models for simulating the electrical resistance in porous media[R]. 25th SPWLA Ann. Logg. Symp., New Orleans,1984.
    [23] Wang Y, Sharma M M, A network model for the resistivity behavior of partially saturated rocks[R]. 29th SPWLA Ann. Logg. Symp., San Antonio, Texas, 1988.
    [24] Grattoni C A, Dawe R A. Pore structure influence on the electrical resistivity of saturated porous media[R]. Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, 1994:1247-1255.
    [25] Taylor S B, Barker R. Modelling the DC electrical response of fully and partially saturated Permo-Triassic sandstone[J]. Geophysical Prospecting, 2006, 54(3): 351-367.
    [26] Man H N, Jing X D. Pore network modelling of electrical resistivity and capillary pressure characteristics[J]. Transport in Porous Media, 2000, 41:263-286.
    [27] 毛志强,高楚桥.孔隙结构与含油岩石电阻率性质理论模拟研究.渤海湾地区低电阻油气层测井技术与解释方法[M].北京:石油工业出版社,2000.
    [28] 毛志强,高楚桥.孔隙结构与含油岩石电阻率性质理论模拟研究[J].石油勘探与开发,2000,27(2):87-90.
    [29] 岳文正,陶果,朱克勤.饱和多相流体岩石电性的格子气模拟[J].地球物理学报,2004,47(5):905-910.
    [30] 毛志强.油藏条件下饱和度测井解释基础实验、理论和应用研究[博士论文].北京:中国石油勘探开发研究院,1995.
    [31] 周荣安.阿尔奇公式在碎屑岩储集层中的应用[J].石油勘探与开发,1998, 25(5):80-82.
    [32] Worthington P F. Improved Quantification of Fit-for-Purpose Saturation Exponents with a Maturing Core Database[R]. SPE Annual Technical Conference and Exhibition, 2002:2539-2550.
    [33] 李宁.测井基础研究论文集[M].北京:石油工业出版社,2005.
    [34] 张明禄,石玉江.复杂孔隙结构砂岩储层岩电参数研究[J].测井技术,2005, 29(5):446-448.
    [35] 王勇,章成广,李进福等.岩电参数影响因素研究[J].石油天然气学报,2006, 28(4):75-77.
    [36] 毛灵涛,薛茹,安里千.MATLAB在微观结构SEM图像定量分析中的应用[J]. 电子显微学报,2004,23(5):579-583.
    [37] 周灿灿,刘堂晏,马在田等.应用球管模型评价岩石孔隙结构[J].石油学报,2006,27(1):92-96.
    [38] 童茂松,李莉,王伟男等.岩石激发极化弛豫时间谱与孔隙结构、渗透率的关系[J].地球物理学报,2005,48(3):710-716.
    [39] Keller G V. Effect of wettability on the electrical resistivity of sand [J]. J. Oil and Gas, 1953, 51(34): 62-65.
    [40] Sweeney S A, Jennings H V.The electrical resistivity of preferentially water-wet and preferentially oil-wet carbonate rocks[J].Producers Monthly, 1960, 24(7): 29-32.
    [41] Donaldson E C, Siddiqui T K. Relation between Archie saturation exponent and wettability[R]. SPE, Formation evaluation,1987:359-362.
    [42] Lewis M G. The effects of stress and wettability on electrical properties of rocks [MS. Thesis], University of Texas at Austin,1988.
    [43] Wei J Z, Lile B O. Influence of wettability on two and four-electrode resistivity measurements on Berea sandstone plugs[R]. SPE Formation Evaluation,1991: 470-476.
    [44] Sharma M M, Garrouch A, Dunlop H F. Effects of wettability, pore geometry and stress on electrical conduction in fluid saturated rocks[J]. The Log Analyst, 1991, 32:511-526.
    [45] Jing X D, Elashahab B M, Archer J S. Experimental investigation of the effect of wettability, saturation history and overburden pressure on resistivity index[R]. SPWLA 15th European Formation Evaluation Symposium, Stavanger, Norway. ,1993.
    [46] Moss A K, Jing X D, Archer J S. Laboratory investigation of wettability and hysteresis effects on resistivity index and capillary pressure characteristics[J]. Journal of Petroleum Science and Engineering,1999,24(2): 231-242.
    [47] 黄隆基.润湿性对岩石电阻率影响的模型估算[J].地球物理学报,1995,38(3): 405-410.
    [48] 高楚桥,章广成,毛志强.润湿性对岩石电性的影响[J].地球物理学进展, 1998,13(1):60-72.
    [49] 刘正锋,刘堂晏.高温高压泥质含量、润湿性及实验方法对阿尔奇公式的影响分析[J].测井技术,1998,22(4):231-236.
    [50] 刘堂宴,傅容珊,王绍民等.考虑岩石润湿性的新导电模型研究[J].测井技术 2003,27(2):99-103.
    [51] Longeron D G, Argaud M J, Bouvier L. Resistivity index and capillary pressure measurements under reservoir conditions using crude oil[R]. SPE Annual Technical Conference and Exhibition. San Antonio, Texas, (1989a).
    [52] Longeron D G, Argaud M J, Feraud J P. Effect of overburden pressure, nature and microscopic distribution of fluids on electrical properties of rock samples[R]. SPE Formation Evaluation, June,1989b.
    [53] Longeron D G. Laboratory measurements of capillary pressure and electrical properties of rock samples at reservoir conditions effect of some parameters[R]. 4th SC Annu. Techn. Confer., Dallas, TX, 1990:1-23.
    [54] Morgan W B, Pirson S J. The effect of fractional wettability on the Archie saturation exponent[R].Trans. 5th Ann. Symp. Soc. Prof. Well Log. Analysts, Section B., 1964:1-13.
    [55] 韩学辉,匡立春,何亿成等.岩石电学性质实验研究方向展望[J].地球物理学进展,2005,20(2):384-356.
    [56] Swanson B F. Rationalizing the influence of crude wetting on reservoir fluid flow with electrical resistivity behavior[J]. JPT, 1980,32:1459-1464.
    [57] 李剑浩.混合物电导率公式及其在测井解释中的应用[J].地球物理学报,1993,36(5):674-681.
    [58] Hill H J, Millburn J J. Effect of clay and water salinity on electrochemical behaviour of reservoir rock[R] .Trans. AIME, 1956,207:65-72.
    [59] Waxman M H, Smits L J M. Ionic double-layer conductivity in oil-bearing shaly sands[C].SPE1683,1968.
    [60] Waxman M H, Thomas E C. Electrical conductivity in shaly sands—I. The relation between hydrocarbon saturation and resistivity index;Ⅱ.Temperature Coefficient of Electrical Conductivity[C]. SPE 4049,1974.
    [61] Clavier C,Coates G, Dumanoir J, Theory and experimental basis for the dual-water model for interpretation of shaly sands[C]. SPE6859,1977.
    [62] De Waal J A. Influence of clay distribution on shaly sand conductivity. Society of Petroleum Engineers of AIME, 1987:421-429.
    [63] Argaud M, Giouse H, Straley C et al.. Salinity and saturation effects on shaly sandstone conductivity. Society of Petroleum Engineers of AIME, 1989:49-60.
    [64] Jing X D. Improved hydrocarbon-in-place determinations of shaly rocks from laboratory electrical resistivity measurements at reservoir conditions[J]. Offshore Eur 91 Proc, 1991:67-78.
    [65] 毛志强.高矿化度地层水低电阻油气层的粘土附加导电成因实验研究.见:渤海湾地区低电阻油气层测井技术与解释方法,北京:石油工业出版社,2000.
    [66] 谢然红,冯启宁,高杰等.低电阻率油气层物理参数变化机理研究[J].地球物理学报,2002,45(1):139-146.
    [67] 邓少贵,谢关宝,范宜仁等.多浓度下泥质砂岩电学性质实验研究[J].石油地球物理勘探,2003,38(5):543-546.
    [68] 范宜仁,邓少贵,周灿灿.低矿化度条件下的泥质砂岩阿尔奇参数研究[J].测井技术,1997,21(3):200-204.
    [69] 曾文冲.油气储集层测井评价技术[M].北京:石油工业出版社,1991.
    [70] Diederix K M. Anamalous relationships between resistivity index and water saturation in the rotligend sandstone[C]. SPWLA 23rd Annual Logging Symp. Paper X,1982.
    [71] Swanson B F. Microporosity in reservoir rocks:Its measurement and influence on electrical resistivity[J]. The Log Analyst, 1985,26(6):42-52.
    [72] Crane S D. Impacts of microporosity, rough pore surfaces and conductive minerals on saturation calculations from electric measurements--an extended Archie's law[C]. SPWLA Analysts Logging Symposium, 31st, 1990: AA1-AA21.
    [73] Longeron D G, Argaud M J, Feraud J P. Effect of overburden pressure,nature,and microscopic distribution of the fluids on electrical properties of rock samples[C]. SPE15383, 1986.
    [74] Mahmood S M, Maerefat N L, Chang M M. Laboratory measurements of electrical resistivity at reservoir conditions[J]. SPE Formation Evaluation, 1991, 6(3):291-300.
    [75] Sen P N, Goode, P A. Influence of temperature on electrical conductivity on shaly sands[J]. Geophysics, 1992, 57(1):89-96.
    [76] 毛志强,章广成.油藏条件下孔隙岩样毛管和电学性质研究[J].地球物理学进展,1995,10(1):76-89.
    [77] 邓少贵,边瑞雪,范宜仁等.储层温度对阿尔奇公式参数的影响[J].测井技术, 2000,24(2):88-91.
    [78] 肖承文,夏宏泉,祁新中等.阿尔奇公式中 m,n 参数与地层水矿化度、围压和温度的实验关系研究[J].国外测井技术,2002,17(5):51-54.
    [79] 李艳华,史謌.模拟地层条件下岩芯电阻率与温度关系的实验研究[J].北京大学学报(自然科学版),2002,38(6):796-800.
    [80] Maute R E, Lyle W D.Improved data analysis method of determining archie parameters m and n from core data. Society of Petroleum Engineers of AIME, SPE, 1989.
    [81] Aldoleimi A M, Berta D. New technique for deriving the resistivity parameters of Archie's equation from combination of logs and core measurements. Proc 6th Middle Oil Show, 1989:133-142.
    [82] Watfa M.Using electrical logs to obtain the saturation exponent (n) in the article equation. Proceedings of the Middle East Oil Show, 1991: 679-688.
    [83] El-khatib N. Fast and accurate method for parameter estimation of Archie saturation equation. Proceedings of the Middle East Oil Show,1997:541-553.
    [84] 陈新,匡立春,孙中春等.利用饱和度分析资料确定阿尔奇参数[J].石油学报, 2002,23(5):69-72.
    [85] 孙建孟,吴金龙,于代国等.阿尔奇参数实验影响因素分析[J].大庆石油地质与开发,2006,25(2):39-41.
    [86] Herrick D C. Conductivity models, pore geometry, and conduction mechanisms [C]. SPWLA 29th Ann. Logg. Symp. Trans.,1988, Paper D, D1–24.
    [87] Herrick D C, Kennedy W D. Electrical efficiency: a pore geometric theory for interpreting the electrical properties of reservoir rocks[J]. Geophysics,1994,59: 918–927.
    [89] 原海涵.毛管理论在测井解释中的应用[M].北京:石油工业出版社,1994.
    [90] 荆万学,陈永吉.浅探阿尔奇公式的物理学原型[J].测井技术,1997,21(4): 289-291.
    [91] 关继腾,房文静,王玉斗.油藏储渗特性对阿尔奇饱和度指数的影响[J].测井技术,1999,23(6):419-423.
    [92] Wyllie M R J, Southwick P F. An experimental investigation of the S.P. and resistivity phenomena in dirty sands[J]. J. Petr. Tech.,1954, 6:44-57.
    [93] Patnode H W, Wyllie M R J. The presence of conductivity solids in reservoir rock as a factor in electric log interpretation[J]. Trans. AIME,1950,189: 47-52.
    [94] Dewitte L, Relation between resisitivities and fluid contentd of porous rock[J]. J. Oil and Gas,1950, 49(8):120-132.
    [95] Dewitte L, A study of electric log interpretation methods in shaly formation[J]. Trans. AIME, 1955, 204:103-332.
    [96] Alger R P, Raymer L L.Formation density log application in liquidfilled holes[J], JPT,1963,15(4):321-332.
    [97] Poupon A, Loy M E,Tixer M P. A contribution to electric log interpretation in shaly sands[J].Trans. AI ME,1954, 201:138-145.
    [98] Simandoux P. Dielectric measurements of porous media: application to measurement of water saturations, study of the behavior of argillaceous formations: Revue de L'Institut Fran?ais du Petrole 1B, 1963, Supplementary Issue:193-215.
    [99] 潘和平,樊政军.新疆塔北地区低电阻油气层测井评价技术.北京:中国地质大学出版社, 2000.
    [100] 莫修文.低阻储层导电模型的建立和测井方法研究.[博士论文],长春科技大学,1998.
    [101] Silva P L. Bsaaiouni, Statistical evaluation of the S-B conductivity model for water-bearing shaly formation[J]. The log analyst,1986:9-19.
    [102] 李宁.电阻率-孔隙度、电阻率-含油(气)饱和度关系的一般形式及其最佳逼近函数类型的确定(I)[J].地球物理学报, 1989, 32(5):580-591
    [103] 李宁.电阻率-孔隙度、电阻率-含油(气)饱和度关系的一般形式及其最佳逼近函数类型的确定(II),SEG 北京国际地球物理研讨会论文详细摘要,1993:239-242.
    [104] Bussian A E. Electrical conductance in a porous medium. Geophysics,1983,48: 1258-1268.
    [105] Charles R B.Effective-medium resistivity models for calculation water saturation in porous rock[J]. The log analyst,1996,37(3):16-28.
    [106] Hard J P, Pomesu Y, de Pazzis O. Time evolution of a two-dimensional model system [J], J. Math Phy., 1973,14:1746-1759.
    [107] Frish U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-stokes equation[J]. Phys Rev Lett., 1986, 56:1505-1508.
    [108] Küntz M, Mareschal J C, Lavall?e P. Numerical estimation of electrical conductivity in saturated porous media with a 2-D Lattice-gas[J]. Geophysics, 2000, 65(3): 766-772.
    [109] DULLIEN.现代渗流物理学.范玉平等译,北京: 石油工业出版社,2001.
    [110] 辛峰.用渗流网络模型研究多孔介质中的孔隙结构和气体扩散.[博士学位论文],天津大学,1996
    [111] Ahmadi A, Aigueperse A, Quintard M. Upscaling of nonwetting phase residual transport in porous media: a network approach[J]. Transport in Porous Media, 2001, 43:309~353.
    [112] Frykman P, Deutsch C V. Practical application of geostatistical scaling laws for data integration[J]. Petrophysics, 2002, 43(3):153-171.
    [113] Gautier Y, Noetinger B. Geostatistical parameters estimation using well test data[J]. Oil and Gas Science and Technology, 2004, 59(2):167-183.
    [114] 郑忠,高小强,石万元.多孔介质中流体流动的格子气自动机模拟[J]. 化工学报,2001,Vol.52(5).
    [115] 李剑浩.混合物电导率公式改进双水模型的公式[J].测井技术,2007,31(1): 1-3.
    [116] Sahimi M. Applications of Percolation Theory [M]. Bristol: Taylor and Francis, PA, 1994.
    [117] 刘柏谦等.逾渗理论应用导论[M].科学出版社,1997.
    [118] Grimmet G. Percolation, Springer-Verlag,1989.
    [119] Wilkinson D, Willemsen J F. Invasion percolation: a new form of percolation theory[J]. J. Phys. A, 1983, 16:3365-3375.
    [120] Chatzis I, Dullien F A L, The modelling of mercury porosimetry and relative. permeability of mercury in sandstones using percolation theory[J]. Int. Chem. Eng.,1985,1(25):47–66.
    [121] Larson R G., Scriven L E, Davis H T. Percolation theory of residual phases in porous Media[J].Nature ,1977,268: 409–413.
    [122] Heiba A A, Sahimi M, Scriven L E.Percolation Theory of Two-Phase Relative Permeability[J]. SPE11015,1983.
    [123] Cook-Polek A M. Flow of Decane through a Natural Fracture in Siltstone: Deviations from Predicted Behavior[MS. thises],1990.
    [124] Kanuparthi S, Zhang X, Subbarayan G, et al. Random network percolation models for particulate thermal interface materials. ITHERM The Tenth Intersociety Conference, 2006.
    [125] 王金勋,刘庆杰,杨普华等.应用逾渗理论计算非稳态法油水相渗曲线[J]. 石油勘探与开发,2001,28(2):79-82.
    [126] 王克文,孙建孟,关继腾.复杂储层岩石电性特征的逾渗网络模型研究.中国石油学会第十四届测井年会论文集,北京:石油工业出版社, 2005, 227-232.
    [127] 王克文,孙建孟,关继腾等.储层岩石电性特征的逾渗网络模型研究[J].石油学报,2007,28(1):101-106.
    [128] 王才经.现代应用数学[M].东营:石油大学出版社,2004.
    [129] 陈峰,安金珍,廖椿庭.原始电阻率各向异性岩石电阻率变化的方向性[J]. 地球物理学报,2003,46(2):271-280.
    [130] 沈金松.用边有限元法计算三维各向异性介质的电磁响应[J].测井技术, 2004,28(1):11-15.
    [131] 何又雄,姚姚.各向异性分形介质模拟[J].江汉石油学院学报,2004,26 (4): 67-69.
    [132] 王克文,孙建孟,耿生成.不同矿化度下泥质对岩石电性影响的逾渗网络研究[J].地球物理学报,2006,49(6):1867-1872.
    [133] 何更生.油层物理[M].北京:石油工业出版社,1993.
    [134] 方少仙,侯方浩.石油天然气储层地质学[M].东营:中国石油大学出版社,2006.
    [135] 周灿灿,刘忠华.核磁共振定量表征储层孔隙结构的方法研究[C].见:测井基础研究论文集(李宁编),北京:石油工业出版社,2005.
    [136] Fertl W H. Log-derived evaluation of shaly clastic reservoirs[J].JPT,1987,39(2): 175-194.
    [137] 雍世和,洪有密.测井资料综合解释与数字处理[M].北京:石油工业出版社,1982.
    [138] Kennedy W D, Herrick D C, Yao T. 电性各向异性介质中含水饱和度的计算[J].测井技术,2001,25(4):250-260.
    [139] Stalheim S O, Eidesmo T, Rueslatten H. Influence of wettability on water saturation modeling[J]. Journal of Petroleum Science and Engineering, 1999, 24: 243–253.
    [140] Zhou D, Arbabi S, Stenby E H. A percolation study of wettability effect on the electrical properties of reservoir Rocks[J].Transport in Porous Media, 1997,29:85-98.
    [141] 李刚,吴秀田,刘明等.泥质和粘土在二连油田测井解释中的作用研究[J].测井技术, 2004, 28(5):417-418.
    [142] Ara T S, Talabani S, Atlas B, et al. In-Depth Investigation of the Validity of the Archie Equation in Carbonate Rocks[J]. SPE Production Operations Symposium, 2001:177-183.
    [143] 王黎,孙宝佃,万金彬.低孔低渗砂岩岩电实验研究及应用. 测井重点实验室第三届学术会议论文集,北京:石油工业出版社,2005.
    [144] Renard P H, Marsily G D. Calculating equivalent permeability: a review [J]. Advances in Water Resources, 1997, 20(5/6):253-278.
    [145] Tenchov. Evaluation of electrical conductivity of shaly sands using the theory of mixtures[J]. Journal of Petroleum Science and Engineering,1998,21:263-271.
    [146] Knudby C, Carrera J, Bumgardner J D et al.Binary upscaling—the role of connectivity and a new formula[J].Advances in Water Resources,2006, 29: 590–604.
    [147] 宋延杰,王秀明,卢双舫.骨架导电的混合泥质砂岩通用孔隙结合电阻率模型研究[J].地球物理学进展,2005,20(3):747-756.
    [148] 谭廷栋. 裂缝性油气藏测井解释模型与评价方法[M].北京:石油工业出版社,1987.
    [149] Mungan N, Moore E J.Certain weattability effects on electrical resistivity in porous media[J]. J. C. Pet. Tech,1968,7(1):20-25.
    [150] 于宝,宋延杰,韩有信等.混合泥质砂岩人造岩样的实验测量[J].大庆石油学院学报,2006,30(4):91-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700