用户名: 密码: 验证码:
羟基马桑毒素结构改造及其对昆虫的毒杀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马桑内酯是马桑植物中的倍半萜内酯类活性物质,具有独特的苦毒素骨架,具有显著的神经毒性,被认为是昆虫行为的干扰剂、拒食剂和胃毒剂。羟基马桑毒素是马桑内酯类化合物的主要代表和活性最强的化合物,分析其构效关系、致毒机理,并对其进行结构改造是马桑内酯研究的热点。粘虫具有很强的迁飞性,是一种世界性分布的重要农业害虫。本研究优化了羟基马桑毒素的提取方法,并对羟基马桑毒素及其结构类似物进行了化学结构改造,通过活性测定筛选出了最优结构化合物。并以粘虫幼虫为试虫,初步分析了羟基马桑毒素引起粘虫麻痹和生长阻断的毒性机理。最后还分析了天敌昆虫花绒寄甲围心细胞的扫描电镜超微结构以及羟基马桑毒素对围心细胞形态的影响。主要研究结果如下:
     1、优化了羟基马桑毒素的提取分离技术。本研究首次以乙醇为溶剂采用超声波辅助提取技术从12.45Kg干燥马桑种籽中提取到6.60g羟基马桑毒素,提取率达到0.53‰。正交分析结果表明,其最佳提取工艺条件为料液比1︰15,提取时间120min,提取温度50°C,其中提取温度是用超声波萃取法提取羟基马桑毒素工艺的关键影响因素。
     2、对羟基马桑毒素进行了结构改造研究。采用酰化加成反应以羟基马桑毒素羟基为母体合成了7个2位羟基酰化衍生物,经过SicFinder Scholar查新可知所得7个化合物均为新物质。采用非限制性叶碟法测定了所得酰化产物及羟基马桑毒素对3龄粘虫的拒食和杀虫活性。结果表明2,4-二氯苯甲酰化羟基马桑毒素(2-(2,4-dichlorobenzoyloxy)-tutin,T7)的杀虫活性最强,是本研究中的最优化合物。构效分析表明,不同基团对羟基马桑毒素杀虫活性的影响不同,其中二氯苯甲酰基>氯烟酰基>甲氧苯甲酰基>氯苯甲酰基>对硝基苯甲酰基>磺酰基>二硝基苯甲酰基。
     3、对羟基马桑毒素结构类似物进行了结构改造。采用脱氧、加成和酰化等反应制备了23个具有羟基马桑毒素类似内酯环结构的衍生物。其中有9个穿心莲内酯衍生物、7个7-羟基香豆素衍生物和7个高丝氨酸内酯衍生物,经过SicFinder Scholar查新可知所得化合物中有9个新物质,另有5个化合物仅有CAS登录号,未见文献报道。活性分析结果表明15-氟代苯亚甲基-14-脱氧-11,12-烯穿心莲内酯衍生物(15-fluorobenzylidene-14-Deoxy-11,12-didehydroandrographolide,A4d)和15-溴代苯亚甲基-14-脱氧-11,12-烯穿心莲内酯衍生物(15-Bromoacylbenzylidene-14-deoxy-11,12-didehydroandrographolide,A4e)是穿心莲内酯衍生物中的最优化合物;7-甲烷磺酰基-香豆素和4-三甲基乙酰-香豆素(7-methane-sulfonyloxy-coumarine,C4)是香豆素衍生物中的最优化合物; N-4-硝基甲苯-高丝氨酸内酯(N-(4-nitrobenzoyl)-homoserinelactone,H1)是高丝氨酸内酯衍生物中的最优化合物。
     4、对羟基马桑毒素对粘虫的生长阻断活性、麻痹活性和拒食、毒杀活性进行了分析和致毒机理初探。结果表明,羟基马桑毒素对粘虫具有显著的拒食、麻痹和毒杀活性,并能降低试虫生长量,其生长阻断活性与毒素浓度呈正相关。羟基马桑毒素在体外培养过程中也能够显著影响浆细胞的伸展活性,诱导试虫产生细胞免疫响应。试虫GBP蛋白表达量增高可能是试虫产生麻痹活性和细胞免疫响应的原因之一。
     5、采用场发射扫描电镜观察了马桑内酯化合物对粘虫围食膜结构的影响。结果表明,在亚致死浓度下羟基马桑毒素及其结构类似物对粘虫围食膜均有不同程度的破坏作用。不同化合物对围食膜的破坏具有显著差异。SDS-PAGE法分析试虫围食膜的蛋白组成结果表明,羟基马桑毒素进入试虫肠道约12h就能导致44.3kD以上的围食膜蛋白被完全降解,而T7和A4d进入试虫肠道后均不同程度引起了一些特异性蛋白条带的增加,与几丁质竞争结合释放围食膜蛋白。通过ABI4800串联质谱(MALDI-TOF-TOF-MS)对所得差异蛋白进行质谱鉴定分析,结果成功鉴定出6个蛋白条带,分别为1个羧肽酶前体,1个肌钙蛋白,2个原肌球蛋白和2个肌动蛋白。
     6、采用场发射扫描电镜分析了不同虫态花绒寄甲围心细胞的形态。结果显示,花绒寄甲的背血管属于直管型,没有明显的膨大部分和分枝,并在胚胎期就完成了所有的分化和发育,具备了完整的功能。
Coriaria lactone is a kind of sesquiterpene lactones extracted from plant Coriaria sinica.It has a unique picrotoxin scaffold and significant neurotoxicity. It is known as insectbehavior disruptor, antifeedant and stomach poison. Tutin is the main representative and mostactivated compound in coriaria lactone. The structure-activity relationships analyze of tutin,its toxic mechanism and structural modification have been areas of intense investigation ofcoriaria lactone. Mythimna separata is a world-wide agricultural pests with highly migratory.In this study, tutin extraction method was optimized, the derivatives of tutin and its analogueswere synthesized, and the optimal compounds were screened through the determination oftheir bioactivity. The mechanism of paralysis and growth blocking of tutin against Mythimnaseparata larva were preliminary analyzed. The SEM ultrastructure and the effect of tutinagainst Dastarcus helophoroides pericardial cells morphological analysis were carried out.The main results are as follows:
     1. The extraction method of tutin was optimized. This is the first time to use ultrasonicassisted extraction technology to extract tutin with ethanol as solvent from12.45Kg dryCoriaria seeds, the extraction ratio is0.53‰. The results of quadrature analysis showed that,the the optimum extraction condition is solid-liquid ratio as1︰15, in120min and50°C.The extraction temperature is the key factors to influencing the tutin ultrasonic extractionmethod.
     2. Structural modificationof tutin. Seven novel tutin acylation derivatives weresynthesized through addition reaction on the hydroxy at C-2of tutin. The result checkedthrought SicFinder Scholar showed that the seven derivatives are all new substances. Theantifeedant and insecticidal activity of tutin and their derivatives against M. separata weredetermined through non-chice leafdisc assay. T7,2-(2,4-dichlorobenzoyloxy)-tutin showedthe best activity among all the new compounds. The structure-activity relationship analysisshowed that, different moiety add in parent compound have different influence to theirbioactivity, and in which dichlorobenzoyl> chloronicotinoyl> methoxybenzoyl>chlorobenzoyl> nitrobenzoyl> sulfonyloxy> dinitrobenzoyl.
     3. Structural modification of tutin analogues. Twenty three derivatives with the lactonemoiety similar as tutin were synthesized through dehydration, addition and acylation reaction, in which contain9andrographis lactone derivatives, seven7-hydroxyl coumarin derivativesand7homoserine lactone derivatives. Novelty search through SicFinder Scholar showed thatthere are9new substances in them, while five compounds only have a CAS registry number,but have yet to be published. The activity analysis showed that15-fluorobenzylidene-14-Deoxy-11,12-didehydroandrographolide (A4d) and15-Bromoacylbenzylidene-14-deoxy-11,12-didehydroandrographolide (A4e) are the optimalcompounds of andrographolide derivatives;7-methane-sulfonyloxy-coumarine (C4) is theoptimal compound of7-hydroxycoumarin derivatives; N-(4-nitrobenzoyl)-homoserinelactone(H1) is the optimal compound of homoserine lactone derivatives.
     4. The growth blocking, paralysis and antifeedant activity of tutin against M. separatawere studied. The results showed that, tutin exhibited conspicuous antifeedant, paralysis andpoison activity to M. separate, and reduced the growth of larva. The growth blocking activitywas positively correlated with the toxin concentration. In vitro test, tutin significantlyaffected stretching activity of the plasma cell, and induced the immune response to testinsects. The increase of GBP gene expression may be respond for the tutin’s paralysis activityand immune response to test insects.
     5. The effect of tutin on the peritrophic membrane morphological features of M.separata was invealed by field emission scanning electron microscope. The results show that,tutin and its structural analogues have different levels of damaging on peritrophic membraneof M. separate in sublethal concentrations. Different compounds exhibited significantdifferences damage on peritrophic membrane. SDS-PAGE analysis showed that, tutin totallydegraded the peritrophic matrix proteins upper44.3kD in12h, while T7and A4d abundancethe proteins bands in different level. The ALDI-TOF-MS study identified6proteins thatexpressed differentially among tutin effect in12h. they are1Carboxypeptidase precursor,1troponin,2tropomyosins and2actins.
     6. Morphological features of pericardial cells of the different instars Dastarcushelophoroides revealed by field emission scanning electron microscopy analysis. The resultsshowed that, the dorsal vessel belongs to the straight tube, no obvious enlargement of parts andbranches, and embryonic differentiation and development, with the full functionality.
引文
陈海珊,赵肃清,刘演,等.2003.八种植物提取物对蔬菜害虫的室内毒力研究.广西植物,23(5):457-460.
    陈跃庆.2000.急性马桑果中毒35例.贵阳医学院学报,25(2):180-181.
    崔俊,李孟楼.2012.羟基马桑毒素及其3种衍生物对粘虫的拒食活性与生理指标的影响.林业科学,48(3):95-99.
    崔俊,张雁冰,朱献民,等.2008.秦岭马桑籽化学成分研究.西北林学院学报,23(3):176-178.
    邓塔,蔡秀玉.1992.烟青虫感染核型多角体病毒后围食膜的病变.昆虫学报,35(1):123-124.
    邓文龙,刘家玉,聂仁吉.1980.脱水穿心莲内酯琥珀酸半酯的药理作用研究Ⅰ.抗炎作用.药学学报,10:590.
    董社英,李辉,李靖.2009.香豆素衍生物合成研究进展.化学世界,8:494-497.
    杜薇薇,李孟楼.2011.羟基马桑毒素及其衍生物对粘虫体内GAD和GABA-T活性的影响.西北林学院学报,26(5):149-152.
    高艳利,杨思文,樊凯奇,等.2007. SDS-PAGE电泳技术分析蛋白质的研究.辽宁化工,36(7):460-463.
    龚国玑,王荫长,尤子平.灭幼脲对小地老虎、粘虫及黄粉甲幼虫内部器官和组织的作用及毒理.昆虫学报,1988,31(4):358-364.
    郭新荣,李亚峰,李孟楼.2009.马桑倍半萜内酯的生物活性研究.西北林学院学报,24(6):133-135.
    郭新荣,张雅林,李孟楼.2007a.马桑内酯对粘虫体内蛋白质和消化酶的影响.西北植物学报,27(12):2456-2460.
    郭新荣,张雅林,李孟楼.2007b.马桑内酯对粘虫幼虫体内3种酶活性的影响.西北植物学报,27(8):1656-1660.
    韩光,杜钢军,许启泰.2008.穿心莲二萜内酯类化合物的合成及抗肿瘤构效关系研究.中国药学杂志,43(10):790-794.
    贾放,余泽华.2003.杆状病毒几丁质酶基因结构与功能的研究进展.微生物学通报,30(2):74-77.
    姜永青,徐美丽,陈新民.1990.家兔孤束核区微量注射经基马桑毒素对隔神经放电的影响.生理学报,42(3):295-301.
    雷琼,陈建锋,黄娜,等.2005.花绒寄甲成虫人工饲料的筛选研究.中国农学通报,21(3):259-261,271.
    李斌,李淑文,李长友,等.2007.害虫生防新靶标—昆虫中肠围食膜的研究进展.东北农业大学学报,38(1):130-135.
    李家明.2005.从构效关系角度探讨中药雷公藤的药效和毒性的关系.中国中药杂志,30(20):1638-1640.
    李孟楼,郭新荣,唐光辉,等.1998.马桑毒素杀虫机理研究进展.西北农业学报,7(5):30-32.
    李孟楼,郭新荣,唐光辉.2000a.侧柏毒蛾幼虫酯酶对马桑毒素及4种杀虫剂的应激性反应.西北农业学报,9(3):23-27.
    李孟楼,郭新荣,谢恩魁,等.1996.马桑毒素提取物对几种蚜虫的毒力实验.西北林学院学报,11(4):55-59.
    李孟楼,郭新荣,庄世宏,等.2000c.马桑毒素致毒后试虫酯酶同工酶变化的时序分析.西北林学院学报,15(4):57-61.
    李孟楼,郭新荣,宗娜.2000b.马桑毒素B对试虫体内GABA及Glu含量的影响.走向21世纪的中国昆虫学—中国昆虫学会2000年学术年会论文集,415-416.
    李孟楼,李有忠,雷琼,等.2009.释放花绒寄甲卵对光肩星天牛幼虫的防治效果.林业科学,45(4):78-82.
    李孟楼,热孜万古丽,郭新荣.1997.马桑毒素对家蚕幼虫拒食作用的研究.昆虫学研究进展.北京:中国林业出版社:105-109.
    李孟楼,王培新,马峰,等.2007.花绒坚甲对光肩星天牛的寄生效果研究.西北农林科技大学学报(自然科学版),35(6):152-156,162.
    李孟楼,庄世宏,宗娜.2003.马桑毒素B对粘虫几种生理生化指标的影响.西北农林科技大学学报,31(6):54-58.
    李怡萍.2012.棉铃虫围食膜中的与Bt抗性相关蛋白的分离、鉴定及表达量研究.[博士学位论文].杨凌:西北农林科技大学.
    李蕴玉.1965.马桑的利用和造林.林业实用技术,15:4-5.
    梁勤,张立卿,范如君,等.1994.蜜蜂中肠酪素酶与孢子虫病的关系.中国蜂业,1:9-10.
    刘改芝,徐海伟,孙凯,等.2008.穿心莲内酯衍生物的合成研究进展.有机化学,28(2):201-209.
    刘琴,马谈斌,祁建杭,等.2011.苏云金芽胞杆菌毒素蛋白和粘虫颗粒体病毒对甜菜夜蛾中肠围食膜的破坏作用.中国生物防治学报,27(2):182-187.
    卢继荣.2004.马桑籽中杀虫活性成分的初步研究.[硕士学位论文].杨凌:西北农林科技大学.
    罗登林,丘泰球,卢群.2006.超声波技术及应用(III)-超声波在分离技术方面的应用.日用化学工业,36(1):46-49.
    马希汉,郭新荣,李孟楼.1995.马桑籽提取物对黑肩毛胸榆叶甲取食及生殖的影响.西北林学院学报,10(1):64-67.
    马亚琴,叶兴乾,吴厚玖,等.2010.超声波辅助提取植物活性成分的研究进展.食品科学,31(21):459-463.
    马志卿,张兴.2000.植物源杀虫物质的作用特点.植物保护,26(2):37-39.
    彭辉银,李星,张双民,等.1998.中国棉铃虫核型多角体病毒几丁质酶基因的定位与克隆.中国病毒学,13(2):139-143.
    彭宇,王荫长.2002.昆虫几丁质酶作为生防措施促进因子的应用前景.世界农药,24(1):27-30.
    彭跃峰.2004.10种植物乙醇提取物对小菜蛾和菜粉蝶幼虫拒食活性的研究.湖北农学院学报,24(2):90-93.
    任再金.1989.蜜蜂的血液循环.中国养蜂,01:38-39.
    尚尔才.2009.天然产物是农药新型活性结构的重要先导库.世界农药,31(2):1-2.
    尚尔才.2011.香豆素及其衍生物的合成与用途.现代农药,10(5):1-3,11.
    尚梅,苏宝锋,李孟楼.2009.花绒寄甲幼虫人工饲料的研究.西北林学院学报,24(1):136-139.
    四川医学院马桑寄生、马桑研究组.1980.马桑寄生治疗精神分裂症的临床与药物研究.四川医学院学报,04:358.
    四川医学院神经精神病学教研组.1976.马桑寄生混合晶体治疗精神分裂症临床观察.四川医学院学报,01:37-39.
    四川医学院药学系中草药教研组、药物研究室.1977a.马桑寄生有效成分的提取.中草药通讯,5:5-6.四川医学院药学系药物研究室、中草药教研室、中国医学科学院药物研究所合成室.1977b.马桑寄生的化学研究,中草药通讯,6:6-17.四川医学院药学系药物研究室、中草药教研组、中国医学科学院药物研究所合成室.1977c.马桑寄生的化学研究(续).中草药通讯,7:11-15.四川医学院药学系中草药教研组、中草药车间.1977d.马桑内酯注射液生产工艺,中草药通讯,8:25-27.
    宋传奎,肖斌,王艳丽,等.2011.超声波辅助提取茶多酚工艺条件的优化.西北农林科技大学学报(自然科学版),39(5):133-139,146.
    孙月明,徐美丽.1991.羟基马桑毒素及兴奋性氨基酸对大鼠离体脑干脑片孤束核神经元自发放点的效应.四川生理科学杂志,13(1):13.
    唐振华.2002.新烟碱类杀虫剂的结构与活性及其药效基团.现代农药,1:1-6.
    滕海鹏,仲山民,吴峰华.2009.超声波辅助提取菊米中的总黄酮.中南林业科技大学学报,29(3):146-149.
    田辉凯,时凤霞,刘婷,等.2009.含香豆素基团的二氯丙烯类衍生物的合成及杀虫活性.农药学学报,11(4):421-426.
    田双起,秦广雍,李宗伟,等.2008.质谱技术及其在后基因组时代中的应用.生物技术通报,3:50-53.
    王建,徐美丽,陈宗伟,等.1991.家兔旁臂内侧核区微量注射羟基马桑毒素所致呼吸效应.四川生理科学杂志,13(1):13.
    王建,徐美丽,陈宗伟,等.1993.家兔臂旁内侧核区微最注射经基马桑毒素所致呼吸效应.华西医大学报,24(2):152-155.
    王健,徐美丽,李光荣,等.2002.臂旁内侧核区微量注射羟基马桑毒素二小时的神经组织学研究.华西医大学报,33(1):54-57.
    王问学,廖飞勇,莫建初.2000.芫花乙醇粗提物对菜粉蝶幼虫消化酶系的影响.林业科学,36(5):69-72.
    王小蕊,宋晓平,周乐,等.2010.7-羟基-4-甲基香豆素的绿色合成.西北农业学报,19(7):35-38.
    王荫长.2001.昆虫生物化学.北京:中国农业出版社.
    王荫长.2004.昆虫生理学.北京:中国农业出版社.
    王瑜.2012.东北华北多地三代粘虫严重暴发.农业市场信息,22:48.
    韦宏,曾凡键,陆敏仪,等.1998.马桑根的化学成分研究.药学学报.33(9):688-692.
    尉芹,马希汉,苏印泉.1995.亟待开发的马桑资源.陕西林业科技,4:36-38.
    魏建荣,杨忠岐,马建海,唐桦.2007.花绒寄甲研究进展.中国森林病虫,26(3):23-25.
    伍朝筼,章观德.1984.马桑寄生及马桑子中内酯成分分析方法的研究.药学学报,(01):56-62
    相静波.2004.昆虫围食膜结构、组分及与苦皮藤素Ⅴ选择毒性关系的研究.[硕士学位论文].杨凌:西北农林科技大学.
    谢文闻.2012.蜂蜜中羟基马桑毒素污染.中国蜂业,63:57.
    谢宗万,余有岑.1996.全国中药名鉴.北京:人民卫生出版社.
    徐美丽,姜永青,孙明月,等.1991.羟基马桑毒素神经生物学效应的研究.四川生理科学杂志,13:46-47.
    杨海涛,刘军海.2010.马桑生物碱的提取工艺及室内毒力测定.贵州农业科学,38(11):231-233.
    杨忠.1993.马桑的结瘤、固氮特性.山地研究,11(2):125-128.
    余斌,方园,段迎超,等.2011.微生物群体感应调节信号分子N-酰化高丝氨酸内酯研究进展.国际药学研究杂志,38(4):254-262.
    张霞.2008.昆虫中肠围食膜靶标蛋白分离鉴定的研究.[博士学位论文].保定:河北农业大学.
    张小霞,乔冠华,梁振普.2009.昆虫中肠围食膜蛋白研究进展.昆虫学报,52(12):1366-1372.
    张兴,赵善欢.1991.川楠素对菜青虫中肠组织的影响.昆虫学报,34(4):501-502.
    张雅林,周越,张志勇.2003.斑蝥素对粘虫和小菜蛾幼虫中肠组织的影响.昆虫学报,46(3):272-276.
    张严峻,谭军,林玉清.2000.低温和几丁质酶处理对棉铃虫围食膜的影响.中国生物防治,16(4):152-155.
    张雁冰,艾国民,王克让,等.2006.马桑叶提取物的杀虫杀菌活性初步研究.河南农业科学,1:60-63.
    张雁冰,朱献明,艾国民,等.2007.马桑籽中马桑内酯类化合物的提取分离及其活性.中草药,38(5):678-680.
    赵爱华,魏均娴.1995.倍半萜类化合物生理活性研究进展.天然产物研究与开发,7(4):65-71.
    赵千,杨春清.2007.植物源杀虫剂研究进展.中国植保导刊,27(7):9-12.
    赵耀,赵福,朱芬.2010.类花生酸在昆虫细胞免疫中的作用研究进展.昆虫知识,47(3):446-450.
    周洪福,孟阳春.1992.谈谈昆虫免疫(上).昆虫知识,5:297-301.
    周洪旭,谭秀梅,李长友,等.2009.华北大黑鳃金龟两种围食膜蛋白cDNA基因的分子克隆与序列分析.昆虫学报,52(1):10-16.
    周洪旭.2009.两种鳃金龟围食膜及其结构蛋白的分离鉴定.[博士学位论文].泰安:山东农业大学.
    周华,郑煜,唐玉红.2004.羟基马桑毒素所致的大鼠海马锥体细胞痫样放电活动.理学报生理学报,56(3):341-346.
    周琼,熊正燕,欧晓明.2011.苍耳甾醇物质对菜青虫取食血淋巴和中肠酶活性及中肠组织的影响.昆虫学报,54(9):1034-1041.
    朱蓉,彭建新,洪华珠.2003.光增白剂对甜菜夜蛾围食膜结构的作用与影响.昆虫学报,46(4):424-428.
    朱献民.2007.马桑内酯的提取分离、衍生物合成及活性研究.[硕士学位论文].郑州:郑州大学.
    朱玉,吴茜,高越峰,等.1997.雪花莲外源凝集素基因的克隆、序列分析和植物表达载体的构建.农业生物技术学报,5(4):331-338.
    庄世宏,宗娜,李孟楼.2007.马桑毒素B对试虫马氏管及中肠组织的影响.西北农林科技大学学报(自然科学版),35(7):127-130.
    Abbey C B, Harry T H, Tim F B, et al.1999. Bonning. Peric ardial cell ultrastruct ure in the tobaccohornworm Manduca sexta L.(Lepidoptera: Sphingidae). Int. J. Insect. Morphol.,28:261-271.
    Abedi Z H, Brown A W A.1961. Peritrophic membrane as vehicle for DDT and DDE excretion in Aedesaegypti larvae. Ann. Entomol. Soc. Am.,54:539-42.
    Adang M J, Spence K D.1981. Surface morphology of peritrophic membrane formation in the cabbagelooper, Trichoplusia ni. Cell Tissue Res.,218(1):141-147.
    Adang M J, Spence K D.1983. Permeability of the peritrophic membrane of the Douglas fir tussock moth(Orgyia pseudotsugata). Comp. Biochem. Phys. A,75(2):233-238.
    Aderem A, Underhill D M.1999. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol.,17:593-623.
    Agaisse H, Petersen U M, Bo utros M, et al.2003. Signaling role of hemocytes in DrosophilaJAK/STAT-dependent response to septic injury. Dev. Cell.,5:441-450.
    Aguirre-Galviz L E, Templeton W.1990. Toxic sesquiterpenoid lactones from the leaves of Coriariamicrophylla. Planta Med.,56(2):244-246.
    Ahmad M, Saleem M A, Sayyed A H.2009. Efficacy of insecticide mixtures against pyrethroid-andorganophosphate-resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest. Manag.Sci.,65(3):266-274.
    Aizawa T, Fujitani N, Hayakawa Y, et al.1999. Solution structure of an insect growth factor,growth-blocking peptide. J. Biol. Chem.,274(4):1887-1890.
    Aizawa T, Hayakawa Y, Ohnishi A, et al.2001. Structure and activity of the insect cytokinegrowth-blocking peptide. Essential regions for mitogenic and hemocyte-stimulating activities areseparate. J. Biol. Chem.,276(34):31813-31818.
    Alvarez A D, Shi W, Wilson B A, et al.,2003. pannier and pointedP2act sequentially to regulateDrosophila heart development. Development.,130:3015-3026.
    Anderson j c, Ley s v.1990. Chemistry of insect antifeedants from azadirachta indica.6. Synthesis of anoptically pure acetal intermediate for potential use in the synthesis of azadirachtin and novelantifeedants. Tetrahedron. Lett.,31(3):431-432.
    Andreadis T G, Hall D W.1976. Neoplectana carpocapsae: encapsulation in Aedes aegypti and changes inhost hemocytes and hemolymph proteins. Exp. Parasitol.,39:252-261.
    Anonymous.2010. Possible continuation of tutin limits in honey. Food Aust.,62(12):535.
    Asha H, Nagy I, Kovacs G, et al.2003. Analysis of Ras-induced overproliferation in Drosophila hemocytes.Genetics.,163:203-215.
    Baggerman G, Boonen K, Verleyen P, et al.2005. Peptidomic analysis of the larval Drosophilamelanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupoletime-of-flight mass spectrometry. J. Mass Spectrom.,40(2):250-260.
    Balcke G U, Wegener S, Kiesel B, et al.2008. Kinetics of chlorobenzene biodegradation under reducedoxygen levels. Biodegradation.,19(4):507-518.
    Barbehenn R V, Martin M M.1992. The protect role the peritrophic membrane in thetannin-tolerant larvaeof Orgyia leucostigma (Lepidoptera). J. Insect Physiol.,38:973-980.
    Barbehenn R V, Stannard J.2004. Antioxidant defense of the midgut epithelium by the peritrophicenvelope in caterpillars. J. Insect Physiol.,50:783-790.
    Barbehenn R V.1999. Non-absorption of ingested lipophilic and amphiphilic allelochemicals by generalistgrasshoppers: the role of extractive ultrafiltration by the peritrophic envelope. Arch. Insect Biochem.Physiol.,42:130-137.
    Barbehenn R V.2001. Roles of peritrophic membranes in protecting herbivorous insects from ingestedplant allelochemicals. Arch. Insect Biochem. Physiol.,47:86–99.
    Barbhenn R V, Martin M M.1995. Peritrophic envelope permeability in herbivorous insects. J. InsectPhysiol.,41(4):303-311.
    Barillas-Mury C, Han Y S, Seeley D, Kafatos F C.1999. Anopheles gambiae Ag-STAT, a new insectmember of the STAT family, is activated in response to bacterial infection. Embo. J.,18:959–967.
    Beck M, Strand M R.2003. RNA interference silences Microplitis demolitor bracovirus genes andimplicates glc1.8in blocking adhesion of infected host cells. Virology,314:521-535.
    Becker B1980. Effects of polyxin-D on in vitro synthesis of peritrophic membranes in calliphoraerythrocephala. Insect Biochem.,10:101-106
    Becker B.1978. Determination of the formation rate of peritrophic membranes in some Diptera. J. insectphysiol.,24:529-533.
    Beetz S, Brinkmann M, Trenczek T.2004. Differences between larval and pupal hemocytes of the tobaccohornworm, Manduca sexta, determined by monoclonal antibodies and density centrifugation. J. InsectPhysiol.,50:805-819.
    Bernays E A, Chamberlain D J.1980. A study of tolerance of ingested tannin in Schistocera grearia. J.Insect Physiol.,26:415-420.
    Binnington K C.1988. Ultra structural of the peritrophic membrane-secreting cells in the cardia of theblowfly, Lucilia cuprina. Tissue and cell,20(2):269-281
    Blandin S, Levashina E A.2004. Thioester-containing proteins and insect immunity. Mol. Immunol.,40:903-908.
    Bogdan C, Rollinghoff M, Diefenbach A.2000. Reactive oxygen and reactive nitrogen intermediates ininnate and specific immunity. Curr. Opin. Immunol.,12:64-76.
    Bolognesi R, Ribeiro A F, Terra W R, et al.2001. The peritrophic membrane of spodoptera frugiperda:section of peritrophins and role in immobilization and recycling digestive enzymes. Arch. InsectBiochem Physiol.,47(2):62-75
    Boman H G, Nilsson I, Rasmuson B.1972. Inducible antibacterial defence system in Drosophila. Nature,237:232-235.
    Bowers B.1964. Coated vesicles in the pericardial cells of the aphid (Myzus persicae Sulz). Protoplasma,59:351-367.
    Brandt C R., Adang M J, Spence K D.1978. The peritrophic membrane ultrastructrual analysis andfunction as a mechanical barrier to microbial infection in Orgyia pesudostugata. Invertebr Pathol.,32:12-24.
    Brehelin M, Zachary D.1986. Insect haemocytes, a new classification to rule out controversy. Immunityin Inverte-brates (ed. M. Brehelin):36-38. Springer-Verlag, Berlin.
    Brennecke J, Aravin A A, Stark A, et al.2007. Discrete small RNA-generating loci as master regulators oftransposon activity in Drosophila. Cell,128:1089-1103.
    Brockhouse1A C, Horner H T, Booth T F, et al.1999. Pericardial cell ultrastructure in the tobaccohornworm: Manduca sexta L.(Lepidoptera: Sphingidae). Int. J. Insect. Morphol.,28(4):261-271.
    Brummendorf T, Kenwrick S, Rathjen F G.1998. Neural cell recognition molecule L1: from cell biology tohuman hereditary brain malformations. Curr. Opin. Neurobiol.,8:87-97.
    Bulet P, Hetru C, Diamrco J L, et al.1999. Antimicrobial peptides in insect; structure and function. Dev.Comp. Immunol.,23:329-344.
    Bulet P, Stocklin R, Menin L.2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunol.Rev.,198:169-184.
    Campbell P M, Cao A T, Hines E R, et al.2008. Proteomic analysis of the peritrophic matrix from the gutof the caterpillar, Helicoverpa armigera. Insect Biochem. Mol. Biol.,38(10):950-958.
    Castillo J C, Robertson A E, Strand M R.2006. Characterization of hemocytes from the mosquitoesAnopheles gambiae and Aedes aegypti. Insect Biochem. Molec.,36:891-903.
    Chandler D, Bailey A S, Tatchell G M, et al.2011. The development, regulation and use of biopesticidesfor integrated pest management. Philos. T. Roy. Soc. B.,366(1573):1987-1998.
    Chapman R F.1998. Excretion and salt and water regulation. In: Chapman RF (ed) The insects: structureand function. Cambridge University Press, Cambridge:478–508.
    Charalambidis N D, Zervas C G, Lambropoulou M, et al.1995. Lipopolysaccharide-stimulated exocytosisof nonself recognition protein from insect hemocytes depend on protein tyrosine phosphorylation. Eur.J. Cell. Biol.,67:32-41.
    Chen C L, Lampe D J, Robertson H M, et al.1997. Neuroglian is expressed on cells destined to form theprothoracic glands of Manduca embryos as they segregate from surrounding cells and rearrangeduring morphogenesis. Dev. Biol.,181(1):1-13.
    Cherry S, Silverman N.2006. Host-pathogen interactions in Drosophila, new tricks from an old friend. Nat.Immunol.,7:911-917.
    Clark K D, Garczynski S F, Arora A, et al.2004. Specific residues in plasmatocyte-spreading peptide arerequired for receptor binding and functional antagonism of insect immune cells. J. Biol. Chem.,279(32):33246-33252.
    Copping L G, Duke S O.2007. Natural products that have been used commercially as crop protectionagents. Pest. Manag. Sci.,63(6):524-554.
    Corbella A, Jommi G, Scolastico C.1966. Structural correlation between capenicin and tutin. TetrahedronLetters,7(40):4819-4823.
    Cornelis L, Soderhall K.2004. The prophenoloxidse-activating system in invertebrates. Immunol. Rev.,198:116-126.
    Costa A, Jan E, Sarnow P, et al.2009. The imd pathway is involved in antiviral immune responses inDrosophila. PLoS One.,4(10): e7436.
    Cristofoletti P T, Ribeiro A F, Terra W R.2001. Apocrine secretion of amylase and exocytosis of trypsinalong the midgut of Tenebrio molitor larvae. J. Insect physiol.,47(2):143-155.
    Crossley A C.1972. Ultrastructure and function of pericardial cells and other nephrocytes in an insecteCalliphora erythrocephala. Tissue. Cell.,4:529-560.
    Croteau R, Loomis W D.1972. Biosynthesis of mono-and sesquiterpenes in peppermint frommevalonate-2-14C. Phytochemistry,11(3):1055-1066.
    Cuenot L.1896. Etudes physiologiques sur les orthopteres. Arch. Biol.,14:293-354.
    Cui Y H, Li M L, Nan X N, et al.2011. Effects of tutin and andrographolide derivatives on antioxidantenzymes in the oriental armyworm, Pseudalatia separata (Lep.: Noctuidae). Egypt. J. Biol. Pest Co.,21(1):75-80.
    Danielli A, Kafatos F C, Loukeris T G.2003. Cloning and characterization of four Anopheles gambiaeserpin isoforms, differentially induced in the midgut by Plasmodium berghei invasion. J. Biol. Chem.,278:4184–4193.
    Danielli A, Loukeris T G, Lagueux M, et al.2000. A modular chitin-bining protease associated withhemocytes and hemolymph in the mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA.,97:7136–7141.
    Das D, Aradhya R, Ashoka D, et al.2007. Post-embryonic pericardial cells of Drosophila are required forovercoming toxic stress but not for cardiac function or adult development. Cell. Tissue Res.,331:565-570.
    Das D, Aradhya R, Ashoka D, et al.2007. Post-embryonic pericardial cells of Drosophila are required forovercoming toxic stress but not for cardiac function or adult development. Cell. Tissue. Res.,331:565-570.
    Das D, Aradhya R, Ashoka D, et al.2008. Macromolecular uptake in Drosophila pericardial cells requiresrudhira function. Exp. Cell. Res.,314:1804-1810.
    de Haro L, Pommier P, Tichadou L, et al.2005. Poisoning by Coriaria myrtifolia Linnaeus: a new casereport and review of the literature. Toxicon,46(6):600-603.
    Dean P, Potter U, Richards E H, et al.2004. Hyperphagocytic haemocytes in Manduca sexta. J. InsectPhysiol.,50:1027-1036.
    Deki B R, Radulovi N S, Deki V S, et al.2010. Synthesis and antimicrobial activity of new4-heteroarylamino coumarin derivatives containing nitrogen and sulfur as heteroatoms. Molecules,15:2246-2256.
    Derksen A C, Granados R R.1988. Alteration of a lepidopteran peritrophic membrane by baculovirusesand enhancement of viral infectivity. Viology,167(1):242-250.
    Devenport M, Alvarenga P H, Shao L, et al.2006. Identification of the Aedes aegypti peritrophic matrixprotein AeIMUCI as a heme-binding protein. Biochemistry,45:9540-49.
    Ding S W, Voinnet O.2007. Antiviral immunity directed by small RNAs. Cell,130:413-426.
    Easterfield T H, Aston B C.1901. Tutu, Part I, Tutin and coriamyrtin. J. Chem. Soc.,79:120.
    Eddleston M, Karalliedde L, Buckley N, et al.2002. Pesticide poisoning in the developing world-aminimum pesticides list. Lancet,360(9340):1163-1167.
    Edwards M J, Jacobs-Lorena M.2000. Permeability and disruption of the peritrophic matrix and caecalmembrane from Aedes aegypti and Anopheles gambiae mosquito larvae. J. Insect Physiol.,46:1313-1320.
    Eisemann C H, Donaldson R A, Pearson R D, et al.1994. Larvicidal activity of lectins on lucilia cuprina:Mechanism of action. Entomol Exp. Appl.,72(1):1-10.
    Eisemann C, Wijffels G, Tellam R L.2001. Secretion of thetype2peritrophic matrix protein, peritophin-15from the cardia. Arch. Insect Biochem. Physiol.,47(2):76-85.
    el-Sayed A M, Ghattas A B, el-Wassimy M T, et al.1999. Synthesis of some new biologically activecoumarin derivatives. Farmaco.,54(1-2):56-63.
    Elvin C M, Vuocolo T, Pearson R D, East I J, Riding G A, et al.1996. Characterization of a majorperitrophic membrane protein, Peritrophin-44, from the larvae of Lucilia cuprina. J. Biol. Chem.,271:8925-8935.
    Evans C J, Hartenstein V, Banerjee U.2003. Thicker than blood: conserved mechanisms in Drosophila andvertebrate hematopoiesis. Dev. Cell,5:673-690.
    Faliu L.1985. Poisoning by C. myrtifolia. Point Veeterinaire.17(92):531-532.
    Fauvarque M O, Williams M J.2011. Drosophila cellular immunity: a story of migration and adhesion. J.Cell Sci.,124(9):1373-1382.
    Fearon D T.1997. Seeking wisdom in innate immunity. Nature,388:323-324.
    Ferreira C, Capella A N, Sitnik R, et al.1994. Properties of the digestive enzymes and the permeability ofthe peritrophic membrane of Spodoptera frugiperda (Lepidoptera) larvae. Comp. Biochem. Physiol. A,107:631-640.
    Ferreira C, Terra W R.1989. Spatial organization of digestion, secretory mechanisms and digestiveenzyme properties in Pheropsophus aequinoctialis (Coleoptera: Carabidae). Insect Biochem.,19:383-391.
    Fife H G, Reddy Palli S, Locke M.1987. A function for pericardial cells in an insect. Insect Biochemistry,17:829-840.
    Forstner G G, Forstner J F.1986. Structure and function of the gastrointestinal fluid. In: Desnuelle P,Sjostrom H, Noren O(editors). Molecular and cellular basis of digestion. Amsterdam: Elsevier,125-143.
    Fuentealba J, Guzman L, Manríquez-Navarro P, et al.2007. Inhibitory effects of tutin on glycine receptorsin spinal neurons. Eur J Pharmacol,559:61-64.
    Fuentealba J, Munoz B, Yevenes G, et al.2011. Potentiation and inhibition of glycine receptors by tutin.Neuropharmacology,60:453-459.
    Fujioka M, Wessells R J, Han Z, et al.2005. Embryonic even skipped-dependent muscle and heart cellfates are required for normal adult activity, heart function, and lifespan. Circ. Res.,97:1108-1114.
    Gardiner E M M, Strand M R.1999. Monoclonal antibod-ies bind distinct classes of hemocytes in themoth Pseudoplusia includens. J. Insect Physiol.,45:113-126.
    Genova J L, Fehon R G.2003. Neuroglian, gliotactin, and the Na+/K+ATPase are essential for septatejunction function in Drosophila. J. Cell Biol.,161:979-989.
    Gillespie J P, Kanost M R, Trenczek T.1997. Biological mediators of insect immunity. Annu. Rev.Entomol.,42:611-643.
    Glenn J D, King J G, Hillyer J F.2010. Structural mechanics of the mosquito heart and its function inbidirectional hemolymph transport. J. Exp. Biol.,213:541–550.
    Godoy M S, Carvalho G A, Moraes J C, et al.2004. Selectivity of insecticides used in citrus crops to eggsand larvae of Chrysoperla externa (Hagen)(Neuroptera: Chrysopidae). Neotrop. Entomol.,33(5):639-646.
    Gulbis J M, Mackay M F, Wong M G.1989. Coriamyrtin and tutin. A crystallographic and conformationalstudy. Aust. J. Chem.,42:1881-1896.
    Guo L, Chai H X, Liu X L, et al.1992. Observations of synaptic efficacy and paired-pulse facilitation in area CA1of hippocampal slices from Coriaria Lactone-kindled rats. Brain Res.,572:269-272.
    Gupta A P.1985. Cellular elements in hemolymph. Compre-hensive Insect Physiology, Biochemistry, andPharmacology, Vol.3.(eds. G.A. Kerkut&L.I. Gilbert):401-451. Pergamon Press, Oxford.
    Gustavo F M, Jose M R O, Paulo F P P.2011. Morphological features of the heart of six mosquito speciesas revealed by scanning electron microscopy. International Journal of Tropical Insect Science,31(1):98-102.
    Ha S D, Nagata S, Suzuki A, et al.1999. Isolation and structure determination of a paralytic peptide fromthe hemolymph of the silkworm, Bombyx mori. Peptides.,20(5):561-568.
    Hayakawa T, Ko R, Okano K, et al.1999. Sequence analysis of the Xestia cnigrum granulovirus genome.Virology,262:277-297.
    Hayakawa Y, Ohnishi A, Mizoguchi A, et al.2000. Distribution of growth-blocking peptide in the insectcentral nervous tissue. Cell Tissue Res.,300:459–464.
    Hayakawa Y, Ohnishi A.1998. Cell growth activity of growth-blocking peptide. Biochem. Bioph. Res. Co.,250(2):194-199.
    Hayakawa Y.1991. Structure of a growth-blocking peptide present in parasitized insect hemolymph. J.Biol. Chem.,266(13):7982-7984.
    Hayakawa Y.1992. A putative new juvenile peptide hormone in lepidopteran insects. Biochem. Bioph. Res.Co.,185:1141-1147.
    Hayakawa Y.1995. Growth-blocking peptide: An insect biogenic peptide that prevents the onset ofmetamorphosis. J. Insect Physiol.,41:1-6.
    Hegedus D, Erlandson M, Gillott C, et al.2009. New insights into peritrophic matrix synthesis,architecture and function. Ann. Rev. Entomol.,54:285-302.
    Hernandez-Martinez S, Lanz H, Rodriguez M H, et al.2002. Cellular-mediated reactions to foreignorganisms inoculated into the hemocoel of Anopheles albimanus (Diptera: Culicidae). J. Med.Entomol.,39:61-69.
    Hernández-Martínez S, Lanz-Mendoza H, Martínez-Barnetche J, et al.2012. Antimicrobial properties ofAnopheles albimanus pericardial cells. Cell Tissue Res., Epub ahead of print.
    Hillyer J F, Barreau C, Vernick K D.2007. Efficiency of salivary gland invasion by malaria sporozoites iscontrolled by rapid sporozoite destruction in the mosquito hemocoel. Int. J. Parasitol.,37:673–681.
    Hillyer J F, Christensen B M.2002. Characterization of hemocytes from the yellow fever mosquito, Aedesaegypti. Histochem. Cell Biol.,117:431-440.
    Hillyer J F, Schmidt S L, Christensen B M.2003a. Hemocyte-mediated phagocytosis and melanization inthe mosquito Armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res.,313:117-127.
    Hillyer J F, Schmidt S L, Christensen B M.2003b. Rapid phagocytosis and melanization of bacteria andPlasmodium sporozoites by hemocytes of the mosquito Aedes aegypti. J. Parasitol.,89:62-69.
    Hoffmann J A.1995. Innate immunity of insects. Curr. Opin. Immunol.,7:4-10.
    Hoffmann J A.2003. The immune response of Drosophila. Nature,426:33-38.
    Hollande A C.1922. La cellule perieardiale des insectes: cytologic, histchimie, role physiologique. Archs.Anat. Microsc.,18:85-307.
    Holz A, Bossinger B, Strasser T, et al.2003. The two origins of hemocytes in Drosophila. Development.,130:4955-4962.
    Hopkins T L, Harper M S.2001. Lepidopteran peritrophic membranes and effects of dietary wheat germagglutinin on their formation and structure. Arch. Insect Biochem. Physiol.,47:100-109.
    Horikawa M, Tateda K, Tuzuki E, et al.2006. Synthesis of Pseudomonas quorum-sensing autoinduceranalogs and structural entities required for induction of apoptosis in macrophages. Biorg. Med. Chem.Lett.,16(8):2130-2133.
    Hultmark D, Steiner H, Rasmuson T, et al.1980. Insect immunity. Purification and properties of threeinducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J.Biochem.,106:7-16.
    Ichinose R, Nakamura A, Yamoto T, et al.1992. Uptake of juvenile hormone esterase by pericardial cellsof Manduca sexta. Insect. Biochem. Molec.,22(8):893-904.
    Imler J L, Bulet P.2005. Antimicrobial peptides in Drosophila, structures, activities and gene regulation.Mechanisms of Epithelial Defense (eds. D. Kabelitz&J.M. Schroder), vol.86, pp.1-21. Karger,Basel.
    Ioriatti C, Pasqualini E, Pasquier D, et al.2006. Efficacy baselines of seven insecticides against larvae ofPandemis heparana (Lepidoptera: Tortricidae). J. Pest Sci.,79(3):163-168.
    Irving P, Ubeda J, Doucet D, et al.2005. New insights into Drosophila larval haemocyte functions throughgenome-wide analysis. Cell. Microbiol.,7:335-350.
    Isman, M B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasinglyregulated world. Annu. Rev. Entomol.,2006,51:45-66.
    Jackson R L, Busch S J, Cardin A D.1991. Glycosaminoglycans: molecular properties, protein interactionsand role in physiological processes. Physiol. Rev.,71:481-539.
    Janssens J C A, Metzger K, Daniels R, et al.2007. Synthesis of N-acyl homoserine lactone analoguesreveals strong activators of SdiA, the Salmonella enterica serovar Typhimurium LuxR homologue.Appl. Environ. Microb.,73(2):535-544.
    Jiang H, Wang Y, Ma C et al.1997. Subunit composition of prophenoloxidase from Manduca sexta,molecular cloning of subunit proPO-P1. Insect Biochem. Molec.,27:835-850.
    Jiang X F, Luo L Z, Zhang L, et al.2011. Regulation of migration in Mythimna separata (Walker) in China:a review integrating environmental, physiological, hormonal, genetic, and molecular factors. Environ.Entomol.,40(3):516-533.
    Jiang X, Yu P, Jiang J, et al.2009. Synthesis and evaluation of antibacterial activities of andrographolideanalogues. Eur. J. Med. Chem.,44(7):2936-2943.
    Jimenez D R, Gilliam M.1990. Ultrastructure of ventriculus of the honey bee Apis mellifera (L):cytochemical localization of the acid phosphatase, alkaline phosphatase, and nonspecific esterase.Cell Tissue Res.,261:431-443.
    Johnson A N, Burnett L A, Sellin J, et al.2007. Defective decapentaplegic signaling results in heartovergrowth and reduced cardiac output in Drosophila. Genetics,176:1609-1624.
    Jones J C.1954. The heart and associated tissues of Anopheles quadrimaculatus Say (Diptera Culicidae). J.Morphol.,94:71–124.
    Jones J C.1962. Current concepts concerning insect hemocytes. Am. Zool.,2:209-246.
    Jones J C.1977. The circulatory system of insects. Thomas, Springfield.
    Jordao B P, Capella A N, Terra W R, et al.1999. Nature of the anchors of membrane-boundaminopeptidase, amylase, and trypsin and secretory mechanisms in Spodoptera frugiperda(Lepidoptera) midgut cells. J. Insect Physiol.,45:29-37.
    Josselyn S A, Nguyen P V.2005. CREB, synapses and memory disorders: past progress and futurechallenges. Curr. Drug Targets. CNS Neurol. Disord.,4:481-497.
    Jung S H, Evans C J, Uemura C. et al.2005. The Drosophila lymph gland as a developmental model ofhematopoiesis. Development,132:2521-2533.
    Kaaya G P, Ratcliffe N A.1982. Comparative study of hemocytes and associated cells of some medicallyimportant dipterans. J. Morphol.,173:351-365.
    Keeley L L.1985. Physiology and biochemistry of the fat body. In: Kerkut GA, Gilbert LI (eds),Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford, UK,211-248.
    Kemp C, Imler J L.2009. Antiviral immunity in Drosophila. Curr. Opin. Immunol.,21(1):3-9.
    Kenchington W.1976. The insect integument. In: Hepburn H R (ed.). Amsterdam: Esevier Science,497-513.
    Kessel R G.1962. Light and electron microscope studies on the pericardial cells of nymphal and adultgrasshop-pers, Melanoplus differentialis differentialis Thomas. J. Morph.,110:79-103.
    Kinoshita T, Itaki N, Hikita M, et al.2005. The isolation and structure elucidation of a new sesquiterpenelactone from the poisonous plant Coriaria japonica (Coriariaceae). Chem. Pharm. Bull,53(8):1040-1042.
    Krische M J, Trost B M.1998. Transformations of the picrotoxanes: the synthesis of corianin and structuralanalogues from picrotoxinin. Tetrahedron54:7109-7120.
    Krishnan N, Kodrik D, Turanli F, et al.2007. Stage-specific distribution of oxidative radicals andantioxidant enzymes in the midgut of Leptinotarsa decemlineata. J. Insect Physiol.53:67-74.
    Kudo Y, Niwa H, Tanaka A, et al.1984. Actions of picrotoxinin and relatedcompounds on the frog spinalcord: the role of a hydroxyl-group at the6-position in antagonizing the actions of amino acids andpresynaptic inhibition. Br. J. Pharmacol.,81:373-380.
    Kumar P, Bhatt R P, Singh L, et al.2011. Antimicrobial activities of essential oil and methanol extract ofCoriaria nepalensis. Nat. Prod. Res.,25(11):1074-1081.
    Kuzio J, Pearson M N, Harwood S H, et al.,1999. Sequence and analysis of the genome of a baculoviruspathogenic for Lymantria dispar. Virology,253:17-34.
    Kwon H S, Stanley D W, Miller J S.2007. Bacterial challenge and eicosanoids act in plasmatocytespreading. Entomol. Exp. Appl.,124(3):285-292.
    Lackie A M.1988. Haemocyte behaviour. Adv. Insect Physiol.,21:85-178.
    Lake B G, Cunninghame M E, Price R J.1997. Comparison of the hepatic and renal effects of1,4-dichlorobenzene in the rat and mouse. Fundam. Appl. Toxicol.,39(1):67-75.
    Lameire N H, Lifschitz M D, Stein J H.1977. Heterogeneity of nephron function. Annu. Rev. Physiol.39:159–184.
    Lamprou I, Mamali I, Dallas K, et al.2007. Distinct signalling pathways promote phagocytosis of bacteria,latex beads and lipopolysaccharide in medfly haemocytes. Immunology,121:314-327.
    Lamprou I, Tsakas S, Theodorou GL, et al.2005. Uptake of LPS/E. coli/latex beads via distinct signallingpathways in medfly hemocytes: the role of MAP kinases activation and protein secretion. Biochim.Biophys. Acta,1744:1-10.
    Lanot R, Zachary D, Holder F, et al.2001. Postembryonic hematopoiesis in Drosophila. Dev. Biol.,230:243-257.
    Lavine M D, Strand M R.2001. Surface characteristics of foreign targets that elicit an encapsulationresponse by the moth Pseudoplusia includens. J. Insect Physiol.,47:965-974.
    Lavine M D, Strand M R.2002. Insect hemocytes and their role in cellular immune responses. InsectBiochem. Molecul.,32:1237-1242.
    Lavine M D, Strand M R.2003. Haemocytes from Pseudoplusia includens express multiple alpha and betaintegrin subunits. Insect Mol. Biol.,12:441-452.
    Leewanich P, Tohda M, Matsumoto K, et al.,1997. Inhibitory effects of corymine, an alkaloidalcomponent from the leaves of Hunteria zeylanica, on glycine receptors expressed in Xenopus oocytes.Eur. J. Pharmacol.,332:321-326.
    Lehane M J, Allingham P G, Weglicki P1996. Composition of the peritrophic matrix of the tsetse flyGlossina morsitan morsitans. Cell Tissue Res.,283:375-384.
    Lehane M J.1997. Peritrophic matrix structure and function. Annu. Rev. Entomol.,42(1):525-550.
    Lehmacher C, Abeln B, Paululat A.2012. The ultrastructure of Drosophila heart cells. Arthropod. Struct.Dev.,41(5):459-474.
    Lehmacher C, T gel M, Pass G, et al.2009. The Drosophila wing hearts consist of syncytial muscle cellsthat resemble adult somatic muscles. Arthropod. Struct. Dev.,38:111-123.
    Lemaitre B, Hoffmann J.2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol.,25:697-743.
    Lepore L S Roelvink P R, Granados P R.1996. Enhancin, the granulosis virus protein that facilitatenucleopoly-hedrovirus (NPV) infection is a metalloprotease. J. Invertebr: Pathol.,68:131-140.
    Levashina E A, Moita L F, Blandin S, et al.2001. Conserved role of a complement-like protein inphagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae.Cell.,104:709–718.
    Levin D M, Breuer L N, Zhuang S F, et al.2005. A hemocyte specific integrin requered for hemocyticencapsulation in the tobacco hornworm, Manduca sexta. Insect Biochem. Molec.,35:369-380.
    Li J, Huang W L, Zhang H B, et al.2007. Synthesis of andrographolide derivatives and their TNF-alphaand IL-6expression inhibitory activities. Bioorg. Med. Chem.,17(24):6891-6894.
    Li M L, Cui J, Qin R H, et al.2007. Semisynthesis and antifeedant activity of new acylated derivatives oftutin, a sesquiterpene lactone from coriaria sinica. Heterocycles,71(5):1155-1162.
    Ling E, Yu X Q.2005. Prophenoloxidase binds to the surface of hemocytes and is involved in hemocytemelanization in Manduca sexta. Insect Biochem. Mol. Biol.,35:1356-1366.
    Lowe M D, White E P.1972. Tutin in Coriaria species-identification and estimation. New Zealand J. Sci.,15(3):303-307.
    Lycett G J, Kafatos F C, Loukeris T G.2004. Conditional expression in the malaria mosquito Anophelesstephensi with Tet-On and Tet-Off systems. Genetics.,167:1781-1790.
    Lynch J W.2004. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev.,84:1051-1095.
    Lyonet P.1762. Trait′e Anatomique de la Chenille qui ronge le bois de Saule. La Haye, Holland: Gosseand Pinet.
    Manojkumar P, Ravi T K, Subbuchettiar G.2009. Synthesis of coumarin heterocyclic derivatives withantioxidant activity and in vitro cytotoxic activity against tumour cells. Acta. Pharm. Jun.,59(2):159-170.
    Marmaras V J, Lampropoulou M.2009. Regulators and signalling in insect haemocyte immunity. CellSignal.,21:186-95.
    Marques R M, Caetano F H,2001. Ultramorphology and histology of dorsal vessel gastral portion ofComponotus rufipes. Sociobiology,38(2):551-556.
    Martin M M, Barbehenn R V.1997. Permeability of the Peritrophic Envelopes of Herbivorous Insects toDextran Sulfate: a Test of the Polyanion Exclusion Hypothesis. J. Insect Physiol.,43(3):243-249.
    Martins G F, Ramalho-Ortig o J M, Pimenta P F P.2011. Morphological features of the heart of sixmosquito species as revealed by scanning electron microscopy. Int. J. Trop. Insect Sci.,31:98–102.
    Matsuda S, Matsumura K, Watanabe M, et al.2007. Synthesis of a partially benzylated derivative of theanhydro-D-altro-heptulose found in Coriaria japonica A. Tetrahedron Letters,48:5807-5810.
    Matsuda S, Yamanoi T, Watanabe M.2008. Syntheses of a partially benzylated derivative of theanhydro-D-altro-heptulose found in Coriaria japonica A and of its analogs. Tetrahedron,64:8082-8088.
    Matsumoto Y, Oda Y, Uryu M, et al.2003. Insect cytokine growth-blocking peptide triggers a terminationsystem of cellular immunity by inducing its binding protein. J. Biol. Chem.,278(40):38579-38585.
    Matthiessen J N, Kirkegaard J A.2006. Biofumigation and enhanced biodegradation: Opportunity andchallenge in soilborne pest and disease management. Crit. Rev. Plant. Sci.,25(3):235-265.
    Mavrouli M D, Tsakas S, Theodorou G L, et al.2005. MAP kinases mediate phagocytosis andmelanization via prophenoloxidase activation in medfly hemocytes. Biochim. Biophys. Acta,1744:145-156.
    McNall R J, Adang M J.2003. Identification of novel Bacillus thuringiensis Cry1Ac binding proteins inManduca Sexta midgut through proteomic analysis. Insect Biochem. Mol. Biol.,33(10):999-1010.
    Mead G P, Ratcliffe N A, Renwrantz L R.1986. The separation of insect hemocyte types on Percollgradients; methodology and problems. J. Insect Physiol.,25:795-803.
    Meister M, Lagueux M.2003. Drosophila blood cells. Cell. Microbiol.,5:573-580.
    Mercer E H, Day M F.1952. The fine structure of the peritrophic membranes of certain insects. TheBiological Bulletin,103(3):384
    Miller J S, Howard R W, Rana R L, et al.1999. Eicosanoids mediate nodulation reactions to bacterialinfections in adults of the cricket, Gryllus assimilis. J. Insect Physiol.,45:75-83.
    Mills R P, King R C.1965. The pericardial cells of Drosophila melanogaster. Q. J. Microsc. Sci.,106(3):261-268.
    Mitsuhashi W, Kawakita H, Murakami R, et al.2007. Spindles of an entomopoxvirus facilitate its infectionof the host insect by disrupting the peritrophic membrane. J. Virol.,81:4235-4243.
    Moita L F, Vriend G, Mahairaki V, et al.2006. Integrins of Anopheles gambiae and a putative role of a newbeta integrin, BINT2, in phagocytosis of E. coli. Insect Biochem. Mol. Biol.,36:282-290.
    Moskalyk L A, Oo, M M, Jacobs-Lorena M.1996. Peritrophic Matrix proteins of Anopheles gambiae andAedes aegypti. Insect Mol. Biol.,5:261-268.
    Muller G C, Xue R D, Beier J C.2012. Controlling and sampling adult sand flies with a fumigantcontaining permethrin and deltamethrin. J. Vector. Ecol.,37(1):257-261.
    Muta T, Iwanaga S.1996. Clotting and immune defense in Limulidae. Progress in Molecular andSubcellular Biology, Vol.15, Invertebrate Immunology (eds. B. Rinkevich&W.E. G. Müller), pp.154-189. Springer-Verlag, Berlin.
    Nagaraj K, Hortsch M.2006. Phosphorylation of L1-type cell-adhesion molecules-ankyrins away!Trends. Biochem. Sci.,31:544-546.
    Nakahara Y, Kanamori Y, Kiuchi M, et al.2003. Effects of silkworm paralytic peptide on in vitrohematopoiesis and plasmatocyte spreading. Arch. Insect Biochem. Physiol.,52(4):163-174.
    Nakatogawa S, Oda Y, Kamiya M, et al.2009. A novel peptide mediates aggregation and migration ofhemocytes from an insect. Curr. Biol.,19:779-785.
    Nanduri S, Nyavanandi V K, Thunuguntla S S, et al.2004. Synthesis and structure–activity relationships ofandrographolide analogues as novel cytotoxic agents. Bioorg. Med. Chem. Lett.,14(18):4711-4717.
    Nappi A J, Kohler L, Mastore M.2004. Signaling pathways implicated in the cellular innate immuneresponses of Drosophila. Inv. Surv. J.,1:5-33.
    Nappi A J, Ottaviani E.2000. Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays,22:469-480.
    Nappi A J, Vass E, Frey F, et al.1995. Superoxide anion generation in Drosophila during melanoticencapsulation of parasites. Eur. J. Cell Biol.,68:450-456.
    Nappi A J, Vass E.2001. Cytotoxic reactions associated with insect immunity. Adv. Exp. Med. Biol.,484:329-348.
    Nardi J B, Pilas B, Bee C M, et al.2006. Neuroglian-positive plasmatocytes of Manduca sexta. and theinitiation of haemocyte attachment to foreign surfaces. Dev. Comp. Immunol.,30:447-462.
    Narita M, Iwabuchi K, Hiraoka T.2002. Expression of growth-blocking peptide in Mamestra brassicae(Lepidoptera: Noctuidae) cell lines. Appl. Entomol. Zool.,37(2):291-294.
    Nelson R E, Fessler L I, Takagi Y, et al.1994. Peroxidasin: a novel enzyme-matrix protein of Drosophiladevelopment. EMBO J.,13(15):3438-3447.
    Nisizawa K, Yanaguchi T, Handa N, et al.1963. Chemical nature of a uronic acid-containingpolysaccharide in the peritrophic membrane of the silkworm. J. Biochem.,54:419-426.
    Oginuma K, Nakata M, Suzuki M.1991. Karyomorphology of Coriaria (Coriariaceae): Taxonomicimplications. Journal of Plant Research,104(4):297-308.
    Okuda T, Yoshida T, Chen X M, et al.1987. Corianin from Coriaria japonica A. Gray, and sesquiterpenelactones from Loranthus parasiticus Merr. used for treatent of Shizophrenia. Pharmaceutical Societyof Japen,35:182-184.
    Okuda T, Yoshida T.1965. The absolute configuration of tutin. Tetrahedron letters,26:2137-2142.
    Okuda T, Yoshida T.1967. The correlation of coriamyrtin and tutin, and their absolute configurations.Chem. Pharm. Bull.,15(12):1955-1965.
    Okuda T.1954. Studies on the components of Coriaria japonica A. Gray. XIII. Pharmaceutical Bulletin.Yakugaku Zasshi,2(3):185-190.
    Okuda T.1961. Studies on the components of Coriaria japonica A. Gray. XIV. Two new compoundsisolated from old stem and seed. Pharmaceutical Society of Japan,9(3):178-179.
    Pechan T, Cohen A, Williams W P, et al.2002. Insect feeding mobilizes a unique plant defense proteasethat disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. USA,99(20):13319-13323.
    Peters W, Heitmann S, Haese J D.1979. Formation and fine structure of peritrophic membranes in theearwig, Forficula auricularia (Dermaptera: Forficulidae). Entomol. Gen.,5:241-254.
    Peters W, Kalnins M.1985. Aminopeptidases as immobilized enzymes on the peritrophic membranes ofinsects. Entomol. Gen.,11:25-32.
    Peters W, Latka I.1986. Electron microscopic localisation of chitin using colloidal gold labeled wheatgerm agglutinin. Histochemistry,84:155-160.
    Peters W.1969. Vergleichende untersuchungen der feinstruktur peritrophischer membrane von insekten.Z.Morhpol Okol. Tiere.,64:21-58
    Peters W.1979. The fine structure of peritrophic membranes of mosquito and blackfly larvae of the generaAedes, Anopheles, culex, and Odagmia (Diptera; Culicidae/Simuliidae). Entomol. Gen.,5:286-299.
    Peters W.1992. Peritrophic membranes. New York: Springer,238.
    Pillmoor J B, Wright K, Terry A S.1993. Natural products as a source of agrochemicals and leads forchemical synthesis. Pestie Sei.,39(2):131-140.
    Poiani S B, da Cruz-Landim C.2007. Histology and ultrastructure of pericardial cells of Scaptotrigonapostica Latreille (Hymenoptera, Apidae) in workers and queens of different ages. Micron.,38(7):766-770.
    Prevost N, Woulfe D, Tanaka T, et al.2002. Interactions between eph kinases and ephrins provide amechanism to support platelet aggregation once cell-to-cell contact has occurred. Proc. Natl. Acad.Sci. USA,99:9219-9224.
    Ramasamy M S, Raschid L, Srikrishnaraj K A, Ramasamy R.1996. Antimidgut antibodies inhibitperitrophic membrane formation in the posterior midgut of Anopheles tessellatus (Diptera: Culicidae).J. Med. Entomol.,33:162-164.
    Rappsiber J, Moniatte M, Nielsen M L, et al.2003. Experiences and perspectives of MALDI MS andMS/MS in proteomic research. Int. J. Mass. Spectrom.,226(1):223-237.
    Rayms-Keller A, McGaw M, Oray C, et al.2000. Molecular cloning and characterization of a metalresponsive Aedes aegypti intestinal mucin cDNA. Insect Mol. Biol.,9:419-26.
    Reyes A, Garcia-Quintana H G, Romero M, et al.1998. Tutin and other metabolites obtained formCoriaria ruscifolia L. Bol. Soc. Chil. Quim.,43(1):87-89.
    Riban M.J.1864. Constituents of Coriaria mytifolia. Bull. Soc. Chim. France.,1:87-91.
    Ribeiro C, Brehelin M.2006. Insect haemocytes: what type of cell is that? J. Insect Physiol.,52:417-429.
    Richards A G, Richards P A.1977. The peritrophic membrane of insects. Annu. Rev. Entomol.,22:219-240.
    Rizki T.1978. The circulatory system and associated cells and tissues. In: Ashburner M, Wrigth TRF (eds)The genetics and biology of Drosophila. Academic Press, London:1839–1845.
    Roma G C, Bueno O C, Camargo-Mathias M I.2010. Morpho-physiological analysis of the insect fat body:A review. Micron,41:395-401.
    Rose D M, Alon R, Ginsberg M H.2007. Integrin modulation and signaling in leukocyte adhesion andmigration. Immunol. Rev.,218:126-134.
    Rostagno M A, Villares A, Guillamon E, et al.2009. Sample preparation for the analysis of isoflavonesfrom soybeans and soy foods. J. Chromatogr. A.,1216(1):2-29.
    Rowley A F, Ratcliffe N A.1980. Insect erythrocyte agglutinins. In vitro opsonization experiments withClitumnus extradentatus and Periplaneta americana haemocytes. Immunology,40(3):483-492.
    Rudall K M, Kenchington W.1973. The chitin systern. Biol. R ev.,48:597-636.
    Russo J, Brehelin M, Carton Y.2001. Haemocyte changes in resistant and susceptible strains of D.melanogaster caused by virulent and avirulent strains of the parasitic wasp Leptopilina boulardi. J.Insect Physiol.,47:167-172.
    Russo J, Dupas S, Frey F, et al.1996. Insect immunity: Early events in the encapsulation process ofparasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila.Parasitology,112:135-142.
    Ryerse J S, Purcell J P, Sammons R D.1994. Structure and formation of the peritrophic membrane in thelarva of the southern corn rootworm, Diabrotica undecimpunctata. Tissue Cell,26:431-437.
    Schmidt O, Theopold, U, Strand M.2001. Innate immunity and its evasion and suppression byhymenopteran endoparasitoids. BioEssays,23:344-351.
    Schorderet S, Pearson R D, Vuocolo T, et al.1998. cDNA and deduced amino acid sequences of aperitrophic membrane glycoprotein,'peritrophin-48', from the larvae of Lucilia cuprina. Insect.Biochem. Molec.,28(2):99-111.
    Sellin J, Albrecht S, K lsch V, et al.2006. Dynamics of heart differentiation, visualized utilizing heartenhancer elements of the Drosophila melanogaster bHLH transcription factor Hand. Gene. Expr.Patterns.,6:360-375.
    Shah A P, Nongthomba U, Kelly Tanaka K K, et al.2011. Cardiac remodeling in Drosophila arises fromchanges in actin gene expression and from a contribution of lymph gland-like cells to the heartmusculature. Mech. Develop.,128:222-233.
    Shanmugavelu M, Baytan A R, Chesnut J D, et al.2000. A novel protein that binds juvenile hormoneesterase in fat body tissue and pericardial cells of the tobacco hornworm Manduca sexta L. J. Biol.Chem.,275(3):1802-1806.
    Shao L, Devenport M, Jacobs-Lorena M.2001. The peritrophic matrix of hematophagous insects. Arch.Insect Biochem. Physiol.,47(2):119-125.
    Shen Z, Jacobs-Lorena M.1998. A Type I peritrophic matrix protein from the malaria vector Anophelesgambiae binds to chitin: cloning, expression, and characterization. J. Biol. Chem.,273:17665-17670.
    Shi X,Chamankhah M, Visal–Shah S, et al.2004. Modeling the structure of the Type I peritrophic matrix:characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing19chitin binding domains. Insect. Biochem. Mol. Biol.,34(10):1101-1115.
    Shia A K, Glittenberg M, Thompson G, et al.2009. Toll-dependent antimicrobial responses in Drosophilalarval fat body require Sp tzle secreted by haemocytes. J. Cell Sci.,122:4505-4515.
    Sideri M, Tsakas S, Markoutsa E, et al.2008. Innate immunity in insects: surface-associated dopadecarboxylase-dependent pathways regulate phagocytosis, nodulation and melanization in medflyhaemocytes. Immunology,123:528-537.
    Skinner W S, Dennis P A, Li J P, et al.1991. Isolation and identification of paralytic peptides fromhemolymph of the lepidopteran insects Manduca sexta, Spodoptera exigua, and Heliothis virescens. J.Biol. Chem.,266:12873-12877.
    Spence K D, Kawata M Y.1993. Permeability characteristics of the peritrophic membranes of Manducasexta larvae. J. Insect Physiol.,39:785-790.
    Srikanth K, Park J, Stanley D W, et al.2011. Plasmatocyte-spreading peptide influences hemocytebehavior via eicosanoids. Arch. Insect Biochem.,78(3):145-160.
    Stamm B, Haese J D, Peters W.1978. SDS gel electrophoresis of proteins and glycoproteins fromperitrophic membranes of some Diptera J Insect Physiol.,24:1-8.
    Steiner H, Hultmark D, Engstr m A, et al.1981. Sequence and specificity of two antibacterial proteinsinvolved in insect immunity. Nature,292:246-248.
    Strand M R, Beck M H, Lavine M D.2006. Microplitis demolitor bracovirus inhibits phagocytosis byhemocytes from Pseudoplusia includens. Arch. Insect Biochem.,61:134-145.
    Strand M R, Clark K C, Gardiner E M.1999. Plasmatocyte spreading peptide does not induce Microplitisdemolitor polydnavirus-infected plasmatocytes to spread on foreign surfaces. Arch. Insect Biochem.Physiol.,40(1):41-52.
    Strand M R, Clark K D.1999. Plasmatocyte spreading peptide induces spreading of plasmatocytes butrepresses spreading of granulocytes. Arch. Insect Biochem. Physiol.,42(3):213-223.
    Strand M R, Hayakawa Y, Clark K D.2000. Plasmatocyte spreading peptide (PSP1) and growth blockingpeptide (GBP) are multifunctional homologs. J. Insect Physiol.,46:817-824.
    Strand M R, Pech L L.1995. Immunological basis for compatibility in parasitoid-host relationships. Annu.Rev. Entomol.,40:31-56.
    Strand M R.2008. The insect cellular immune response. Insect Sci.,15(1):1-14.
    Stuart L M, Ezekowitz R A B.2005. Phagocytosis: elegant complexity. Immunity,22:539-550.
    Sudha P M, Muthu S P.1988. Damage to the midgut epithelium caused by food in the absence ofperitrophic membrane. Curr. Sci.,57:624-625.
    Summers C B, Felton G W.1996. Peritrophic envelope as a functional antioxidant. Arch. Insect Biochem.Physiol.,32:131-142.
    Takesue Y, Yokota K, Miyajima S, et al.1989. Membrane anchors of alkaline phosphatase and trehalaseassociated with the plasma membrane of larval midgut epithelial cells of the silkworm, Bombyx mori.J. Biochem.,105:998-1001.
    Tanaka K, Uchiyama F, Asada A, et al.1983a. Synthetic studies on a picrotoxane sesquiterpene,coriamyrtin. I. The Grignard reaction of5-(2-methyl-1,3-dioxo-2-cyclopentyl) methyl-2,5H-furanone with isopropenylmagnesium bromide and stereochemistries of the products. Chemical&pharmaceutical bulletin,31(6):1943-1957.
    Tanaka K, Uchiyama F, Ikeda T, et al.1983b Synthetic studies on a picrotoxane sesquiterpene, coriamyrtin.II. An effective stereocontrolled synthesis of the picrotoxane skeleton except for a C1unit at the C9position and functionalization of the five-membered ring. Chemical&pharmaceutical bulletin,31(6):1958-1971.
    Tanaka K, Uchiyama F, Sakamoto K, et al.1983c. Synthetic studies on a picrotoxane sesquiterpene,coriamyrtin. III. Completion of the stereocontrolled total synthesis of (+-)-coriamyrtin. Chemical&pharmaceutical bulletin,31(6):1972-1979.
    Tanaka K.1985. Synthetic studies on natural products possessing picrotoxane carbon skeleton. YakugakuZasshi,105(4):305-322.
    Tauszig S, Jouanguy E, Hoffmann J A, et al.2000. Toll-related receptors and the control of antimicrobialpeptide expression in Drosophila. P. Natl. Acad. Sci. Usa.,99:10520-10525.
    Tavares J, Bravo J P, Gimenes F, et al.2011. Differential structure of the intronic promoter of the Bombyxmori A3actin gene correlated with silkworm sensitivity/resistance to nucleopolyhedrovirus. Genet.Mol. Res.,10(1):471-481.
    Tellam R L, Eisemann C.2000. Chitin is only a minor component of the peritrophic matrix from larvae ofLucilia cuprina. Insect Biochem. Mol. Biol.,30:1189-1201.
    Tellam R L, Wijffels G, Willadsen P.1999. Peritrophic matrix proteins. Insect Biochem. Mol. Biol.,29(2):87-101.
    Tellam R L.1996. The peritrophic matrix. In Biology of the Insect Midgut, ed. MJ Lehane, PF Billingsley,pp.86–114. London: Chapman&Hall.
    Terra W R, Espinoza-Fuentes F P, Ribeiro A F, et al.1988. The larval midgut of the housefly (Muscadomestica): uLtrastructure, fluid fluxes and ion secretion in relation to the organization of digestion.J.Insect physiol.,34:463-472.
    Terra W R.2001. The origin and functions of the insect peritrophic membrane and peritrophic gel. InsectBiochem. Physiol.,47:47-61.
    Theopold U, Rissler M, Fabbri M, et al.1999. Insect glycobiology: a lectin multigene family in Drosophilamelanogaster. Biochem. Biophys. Res. Commun.,261:923-927.
    Theopold U, Schmidt O, Soderhall K, et al.2004. Coagulation in arthropods, defence, wound closure andhealing. Trends. Immunol.,25:289-294.
    T gel M, Pass G, Paululat A.2008. The Drosophila wing hearts originate from pericardial cells and areessential for wing maturation. Dev. Biol.,318:29-37.
    Toma M, Vinatoru M, Paniwnyk L, et al.2001. Investigation of the effects of ultrasound on vegetal tissuesduring solvent extraction. Ultrason. Sonochem.,8(2):137-142.
    Toprak U, Baldwin D, Erlandson M, et al.2008. A chitin deacetylase and insect intestinal lipases areintegral components of Mamestra configurata peritrophic matrix. Insect Mol. Biol.,17:573-585.
    Tsakas S, Marmaras V J.2010. Insect immunity and its signaling: an overview. Isj-Invertebrate SurvivalJournal,7(2):228-238.
    Tsuzuki S, Sekiguchi S, Hayakawa Y.2005. Regulati on of growth-blocking peptide expression duringembryogenesis of the cabbage armyworm. Biochem. Biophy. Res. Co.,122:189-197.
    Valle A, Bailey M J, Whiteley A S, et al.2004. N-acyl-L-homoserine lactones (AHLs) affect microbialcommunity composition and function in activated sludge. Environ. Microbiol.,6(4):424-433.
    Veitch G E, Beckmann E, Burke B J, et al.2007. Synthesis of azadirachtin: A long but successful journey.Angew. Chem. Int. Edit.,46(40):7629-7632.
    Vignon P.1901. Recherches sur les′epith′eliums. Arch. Zool. Exp. Gen. Ser.39:371-715.
    Vilmos P, Kurucz E.1998. Insect immunity: evolutionary roots of the mammalian innate immune system.Immunol. Lett.,62:59-66.
    Wakamatsu K, Kigoshi H, Niiyama, K, et al.1986. Stereocontrolled total synthesis of (+)-tutin and(+)-asteromurin a, toxic picrotoxane sesquiterpenes. Tetrahedron,42(20):5551-5558.
    Wang J D, Mei Y, Liu C L, et al.2008. Chlorobenzene degradation by electro-heterogeneous catalysis inaqueous solution: intermediates and reaction mechanism. J. Environ. Sci.,20(11):1306-1311.
    Wang P, Granados R R.1997. Molecular cloning and sequencing of a novel invertebrate intestinal mucincDNA. J. Biol. Chem.,272:16663-16669.
    Wang P, Granados R R.1998. Observations on the presence of the peritrophic membrane in larvalTrichoplusia ni and its role in limiting baculovirus infection. J Invertebr Pathol,72(1):57-62.
    Wang P, Granados R R.2000. Calcofluor disrupts the mid-gut defense system in insects. Insect Biochem.Mol. Biol.,30:135-143.
    Wang P, Granados R R.2001. Molecular structure of the peritrophic membrane (PM): Identification ofpotential PM target sites for insect control. Arch. Insect. Biochem. Physiol.,47(2):110-118.
    Wang P, Li G, Granados R R.2004. Identification of two new peritrophic membrane proteins from larvalTrichoplusia ni: structural characteristics and their functions in the protease rich insect gut. InsectBiochem. Mol. Biol.,34:215-27.
    Wang Y, Jiang H, Kanost M R.1999. Biological activity of Manduca sexta paralytic and plasmatocytespreading peptide and primary structure of its hemolymph precursor. Insect Biochem. Molec. Biol.,29:1075-1086.
    Wang Z, Yu P, Zhang G, et al.2010. Design, synthesis and antibacterial activity of novel andrographolidederivatives. Bioorg. Med. Chem.,18(12):4269-4274.
    Ward E J, Skeath J B,2000. Characterization of a novel subset of cardiac cells and their progenitors in theDrosophila embryo. Development,127:4959-4969.
    Waterhouse D F.1957. Digestion in insects. Annu. Rev. Entomol.,2:1-18.
    Weavers H, Prieto-Sanchez S, Grawe F, et al.2008. The insect nephrocyte is a podocyte-like cell with afiltration slit diaphragm. Nature.,457:322-326.
    Wertheim B, Kraaijeveld A R, Schuster E, et al.2005. Genome wide expression in response to parasitoidattack in Drosophila. Genome. Biol.,6(94):1-20.
    Wigglesworth V B.1930. The formation of the peritrophic membrane in insects, with special reference tothe larvae of mosquitoes. Q. J. Microsc. Sci.,73:583-616.
    Wigglesworth V B.1970. The pericardial cells of insects: analogue of the reticu-loendothelial system.Journal of Reticuloendothelial Society,7:208-216.
    Wijffels G, Eisemann C, Riding G, et al.2001. A novel family of chitin-binding proteins from insect type2peritrophic matrix: cDNA sequences, chitin binding activity, and cellular localization. J. Biol. Chem.,276:15527-15536.
    Williams M J, Ando I, Hultmark D.2005. Drosophila melanogaster Rac2is necessary for a proper cellularimmune response. Genes. Cells.,10:813-823.
    Williams M J.2009. The Drosophila cell adhesion molecule Neuroglian regulates Lissencephaly-1localisation in circulating immunosurveillance cells. BMC Immunol.,10:17-29.
    Willott E, Trenczek T, Thrower L W, et al.1994. Immunochemical identification of insect hemocytepopulations: monoclonal antibodies distinguish four major hemocyte types in Manduca sexta. Eur. J.Cell Biol.,65:417-423.
    Wu W J, Wang M G, Zhou W M, et al.2001. Insecticidal sesquiterpene polyol esters from Celastrusangulatus. Phytochemistry.,58:1183-1187.
    Xu H W, Dai G F, Liu G Z, et al.2007. Synthesis of andrographolide derivatives: a new family ofalpha-glucosidase inhibitors. Bioorg. Med. Chem.,15(12):4247-4255.
    Yi F, Zou C H, Hu Q B, et al.2012. The joint action of destruxins and botanical insecticides (rotenone,azadirachtin and paeonolum) against the cotton aphid, aphis gossypii glover. MOLECULES,17(6):7533-7542.
    Yi P, Han Z, Li X, et al.2006. The mevalonate pathway controls heart formation in Drosophila byisoprenylation of Ggamma1. Science,313:1301-1303.
    Yount N Y, Yeaman M R.2004. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad.Sci. USA,101:7363-7368.
    Zasloff M.2002. Antimicrobial peptides of multicellular organisms. Nature,415:389-395.
    Zhao F, Liu Y B, Ma S G, et al.2012. New sesquiterpenes from the roots of Coriaria nepalensis.Tetrahedron.,68:6204-6210.
    Zhou H, Tang Y H, Zheng Y.2006. A new rat model of acute seizures induced by tutin. Brain Res.,1092:207-213.
    Zhu Y, Johnson T J, Myers A A, et al.2003. Identification by subtractive suppression hybridization ofbacteria-induced genes expressed in Manduca sexta fat body. Insect Biochem. Mol. Biol.,33:541-559.
    Zhuang S, Kelo L, Nardi J B, et al.2007. Neuroglian on haemocyte surfaces is involved in homophilic andheterophilic interactions of the innate immune system of Manduca sexta. Dev. Comp. Immunol.,31:1159-1167.
    Zimmermann D. Peters W.1987. Fine structure and permeability of peritrophic membranes of Calliphoraerythrocephala (Meigen)(Insecta: Diptera) after inhibition of chitin and protein synthesis. Comp.Biochem. Physiol.,86:353-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700