用户名: 密码: 验证码:
废用对达乌尔黄鼠趾长伸肌形态结构和功能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:动物实验和临床实践已证实,人或大鼠的骨骼肌经过一段时间的废用后,均会发生一定程度的萎缩。但达乌尔黄鼠作为一种具有冬眠习性的啮齿类动物,在数月冬眠过程中,其骨骼肌无疑处于废用状态,可黄鼠出眠后,却没有出现任何肌萎缩的迹象。本实验研究了废用(冬眠、吊尾)对达乌尔黄鼠趾长伸肌形态结构和功能的影响,从而为探讨达乌尔黄鼠冬眠季抗废用性肌萎缩提供科学资料与研究思路。
     目的:观察不同季节正常黄鼠,吊尾黄鼠及冬眠黄鼠趾长伸肌形态结构和肌纤维类型的变化,研究废用(冬眠、吊尾)对黄鼠趾长伸肌形态结构和功能的影响。
     方法:1.运用m-ATP酶组织化学方法对黄鼠趾长伸肌肌纤维进行染色分型,运用Powerlab系统,测定趾长伸肌的张力;2.运用Motic Images plus 2.0彩色图像分析仪计数各类型肌纤维数目并测定肌纤维的横截面积。
     结果:
     1.不同季节(夏季、秋季、冬季)正常黄鼠趾长伸肌的形态结构和肌纤维类型的比较
     (1)夏季,秋季,冬季(冬眠)正常黄鼠的趾长伸肌肌重体重比无显著变化。
     (2)夏季正常黄鼠趾长伸肌Ⅰ型肌纤维横截面积为(2561.03±326.60)μm~2,Ⅱ型肌纤维横截面积为(3606.71±294.76)μm~2;秋季正常黄鼠趾长伸肌Ⅰ、Ⅱ型肌纤维横截面积分别较夏季减少了14.50%,11.16%(p>0.05);冬季正常黄鼠趾长伸肌Ⅰ型肌纤维横截面积为(2404.29±1 58.57)μm~2,Ⅱ型肌纤维横截面积为(3329.49±173.54)μm~2。三个季节正常黄鼠趾长伸肌肌纤维横截面积无显著性差异。
     (3)夏季正常黄鼠趾长伸肌Ⅰ型肌纤维比例为(9.74±3.50)%,Ⅱ型肌纤维比例为(90.26±3.50)%;秋季正常黄鼠趾长伸肌Ⅰ型肌纤维比例为(5.43±1.41)%,Ⅱ型肌纤维比例为(94.57±1.41)%;冬季(冬眠)黄鼠趾长伸肌Ⅰ型肌纤维比例为(9.59±1.40)%,Ⅱ型肌纤维比例为(90.41±1.40)%;与夏季、冬季正常黄鼠相比,秋季正常黄鼠趾长伸肌Ⅰ型肌纤维比例显著减少(p<0.01)。
     2.不同季节(夏季、秋季、冬季)吊尾14天对黄鼠趾长伸肌形态结构和肌纤维类型的影响
     (1)夏季、秋季、冬季正常组黄鼠的体重在实验过程(14天)中均有一定程度增长,但无显著性差异;夏季,秋季吊尾组黄鼠的体重在实验过程中无显著性变化,冬季吊尾组黄鼠的体重在实验过程中下降了9.59%(p<0.01)。
     (2)夏季吊尾组黄鼠趾长伸肌湿重、肌重体重比与正常组相比,均无显著差异;秋季,冬季吊尾组黄鼠趾长伸肌湿重与正常组的相比,均明显降低(p<0.05);但趾长伸肌肌重体重比均无显著性变化。
     (3)与夏季正常组黄鼠相比,夏季吊尾组黄鼠趾长伸肌中Ⅰ、Ⅱ型肌纤维横截面分别减少了:19.12%、19.97%(p<0.05);与秋季正常组黄鼠相比,秋季吊尾组黄鼠趾长伸肌中Ⅰ、Ⅱ型肌纤维横截面分别减少了:24.11%、21.51%(p<0.05):与冬季正常组黄鼠(活跃状态)相比,冬季吊尾组黄鼠趾长伸肌中Ⅰ、Ⅱ型肌纤维横截面分别减少了:24.99%、27.39%(p<0.05)。
     (4)与正常组(夏季,秋季,冬季)相比,夏季、秋季、冬季吊尾组黄鼠趾长伸肌的Ⅰ、Ⅱ型肌纤维比例无显著性差异,肌纤维类型未发生转化。
     3.吊尾对冬季活跃状态黄鼠趾长伸肌收缩功能的影响
     (1)冬季正常组黄鼠(活跃状态)趾长伸肌等张收缩张力为:(6.92±0.37)g,强直收缩张力为:(13.25±1.71)g;冬季吊尾组黄鼠趾长伸肌等张收缩张力为:(4.94±0.48)g,强直收缩张力为(9.01±1.17)g。与对照组相比,吊尾组黄鼠趾长伸肌等张收缩张力下降了26.81%(p<0.001),强直收缩张力下降了32.00%(p<0.001)。
     (2)冬季吊尾组黄鼠趾长伸肌的TP50(收缩达到最大张力50%的时间)为(28.75±11.48)ms,TPT(收缩达到最大张力的时间)为(72.50±24.44)ms,与正常组相比其收缩时程无显著变化;冬季吊尾组黄鼠趾长伸肌的RT50(舒张到50%最大张力的时间)为(57.92±17.49)ms,RT75(舒张到75%最大张力的时间)为(86.67±23.59)ms,与正常组相比其舒张时程分别增加了23.02%,25.92%,但无显著性差异。
     4.冬眠对黄鼠趾长伸肌形态结构和肌纤维类型的影响
     (1)黄鼠进入冬眠后,其体重不断下降,趾长伸肌湿重呈下降趋势,肌重体重比增加。与冬眠前相比,冬眠1个月,2个月,及出眠(2-3天)黄鼠的体重分别下降为10.35%(p>0.05),18.48%(p<0.001),40.07%(p<0.001);趾长伸肌湿重分别下降了:9.49%(p>0.05),6.54%(p>0.05),26.70%(p<0.05);冬眠前黄鼠的趾长伸肌肌重体重比为(0.408±0.060),冬眠1个月,2个月,及出眠时趾长伸肌肌重体重比分别增加了-0.01%(p>0.05),19.61%(p>0.05)和31.08%(p<0.05)。
     (2)冬眠前黄鼠趾长伸肌Ⅰ型肌纤维横截面积为(2189.79±358.67)μm~2,Ⅱ肌纤维横截面积为(3204.14±320.74)μm~2,冬眠1个月,2个月黄鼠趾长伸肌Ⅰ肌纤维横截面积分别增加了9.80%(p>0.05),3.18%(p>0.05);Ⅱ型肌纤维横截面积分别增加了3.91%(p>0.05),3.47%(p>0.05):出眠(2-3)天黄鼠趾长伸肌的Ⅱ型肌纤维横截面积基本恢复到正常状态,出眠时Ⅰ型肌纤维横截面积与冬眠前,冬眠1个月,冬眠2个月相比,分别降低了16.75%(p<0.05),24.18%(p<0.01),19.32%(p<0.01);Ⅱ肌纤维横截面积与冬眠前,冬眠1个月,冬眠2个相比,分别降低7.68%(p>0.05),11.15%(p<0.05),10.77%(p<0.05)。
     (3)冬眠期间黄鼠趾长伸肌Ⅰ型肌纤维比例显著增加,Ⅱ型肌纤维比例显著降低,出现了由Ⅱ型肌向Ⅰ型肌的转化。冬眠前黄鼠Ⅰ型肌纤维所占比例为(5.43±1.41)%,Ⅱ型肌纤维所占比例为(94.57±1.41)%,冬眠1个月,冬眠2个月,出眠2-3天。黄鼠Ⅰ型肌纤维分别增加76.61%,64.46%,134.99%(p<0.01);Ⅱ肌纤维分别减少4.40%,3.70%,7.75%(p<0.01)。
     结论
     (1)夏季、秋季、冬季(冬眠)正常黄鼠趾长伸肌的肌重体重比、趾长伸肌Ⅰ、Ⅱ型肌纤维横截面积均无明显差异;秋季正常黄鼠趾长伸肌中Ⅰ型肌纤维比例,与夏季、冬季的相比显著降低。
     (2)与对照组相比,三个季节(夏季、秋季、冬季)吊尾黄鼠的趾长伸肌肌重体重比均无显著性变化;趾长伸肌肌纤维横截面积均显著变小,Ⅰ、Ⅱ肌纤维比例未发生变化,这一结果提示:黄鼠吊尾14天后,趾长伸肌肌仅发生了轻度萎缩。
     (3)冬季吊尾黄鼠(活跃状态)趾长伸肌收缩张力明显变小,收缩时程无显著性变化。
     (4)冬眠期间黄鼠趾长伸肌的肌重体重比、Ⅰ、Ⅱ肌纤维横截面积不仅没有下降,还有一定程度的增加,趾长伸肌中Ⅰ型肌纤维比例明显增加,Ⅱ型肌纤维比例明显减少。说明冬眠期间黄鼠趾长伸肌未发生萎缩。
With the development of clinical and space medicine, the disuse atrophy has received increasingly attention. The clinical practice and animal experiment have proved that skeletal muscles of human being and rat all would become atrophy to a certain extent after a period of disuse. The skeletal muscles of ground squirrel,a species of hibernating rodent, will be undoubtedly in a condition of disuse during several months of hibernation. However, it's muscles has no signs of atrophy after the hibernation. Our experiment have studied the effects of disuse on configuration and function of EDL in ground squirrel. Therefore, discovering the mechanism of anti-disuse atrophy of ground squirrel in primary will provide new science document and research methods to prevention of disuse atrophy.
     Objective: Observing the changes of EDL of ground squirrel in control group,taile-suspend group in different seasons(summer,autumn,winter), study the effects of disuse on configuration and function of EDL in ground squirrel.
     Methods: 1.The type of muscle fiber of EDL in ground squirrel were determined bymATPase histochemical method ,Contractile function of EDL muscle in ground squirrel was obsverved using Powerlab system and electronical stimulator. 2.The CSA and percentage composition of every muscle fibre type of EDLwere measured by Motic Images plus 2.0 software.
     Results:
     1. The comparison of configuration and muscle fiber type of EDL in normal ground squirrel in different seanson(summer, autum and winter).
     (1) The ratio of EDL weight to body weight have no obviously change in groundsquirrel in summer, autumn and winter.
     (2)The CSA of type I fiber of EDL of ground squirrel in summer was(2561.03±326.60) um~2, the CSA of type II fiber of EDL of ground squirrel in summer was (3606.71±294.76) um~2. Compared with summer, The CSA of type I and II fibers of EDL of ground squirrel in autumn decreased 14.50% and 11.16%, respectively, the CSA of type I and II of EDL in hibernation ground squirrel was(2404.29±158.57) um~2, (3329.49±173.54) um~2 , the CSA of EDL have no change in summer, autumn ,winter.
     (3) The composition percentage of type I and II of EDL in ground squirrle in summer were (9.74±3.50)%, ( 90.26±3.50 ) %. In autumn were ( 5.43±1.41 ) %,(90.41±1.40) %.; In hibernation were (9.59±1.40) %, (90.41±1.40) %; compared with summer,winter group, the composition percentage of type I muscle fiber was decreased remarkably in autumn .
     2. The effection of tale-suspend (14 days)on configuration and muscle fiber type of EDL in ground squirrel in different seanson(summer, autum, winter).
     (1) The body weight of control group in different season, was increased but have no markedly difference, there is no remarkably change in the body weight of tail-suspend group in summer ,autumn in experiment. But the body weight of tail-suspend group decreased 9.59% in winter.
     (2) In the process of experiment, compare with the control group(summer) ,the muscle wet weight of EDL, the ratio of EDL weight to body weigh in tail-suspend group have no change in summer; in autumn ,winter it were reduce remarkably in muscle wet weight of EDL ,but the ratio of EDL weight to body weight showed no change in autumn and winter.
     (3) Compared with summer control group , The CSA of type I and II fibres of EDL in summer tail-suspend group were respectively reduce: 19.12%, 19.97% ; Compared with autumn control group , The CSA of type I and II fibres of EDL in autumn tail-suspend group were respectively reduce: 24.11%、21.51%; Compared with winter control group , The CSA of type I and II fibres of EDL in winter tail-suspend group were respectively reduce 24.99%、27.39%.
     (4) Compared with control group (summer autumn winter),The percentage composition of muscle fiber in tail-suspend ground squirrel in different season have no change, the muscle type have not transformed.
     3. The effection of tail-suspend on muscle function of EDL of ground squirrel inwinter.
     (1) In control group(activity), the EDL peak isometric twitch tension was (6.92±0.37) g, the maximum titanic tension was (13.25±1.71) g ; In tail-suspend group, the EDL peak isometric twitch tension was (4.94±0.48 ) g, the maximum titanic tension was (9.01±1.17) g ; compared with control group, the peak isometric twitch tension reduced 26.81%, the maximum titanic tension reduced 32%.
     (2) The time to 50% peak tension (TP50) and time to peak tension (TPT) in tail-suspend group are (28.75±11.48) and (72.50±24.44) ms, compared with control group have no change. How ever botb50% relaxation time (RT50) and 75% relaxation time (RT75) showed increase in tail-suspend group, but don't present significant difference compared with control group. 4. The effection of hibernation on configuration and muscle fibre type in EDL in ground squirrel.
     (1) the body weight continuously decreased , the EDL weight decreased in the same time, The ratio of EDL weight to body weight showed a continuous increase in hibernation ground squirrel.. When the individual had been hibernating for 1 month, 2 month, AH(2-3d), the body weight decreased: 10.35%, 18.48%, 40.07%, the EDL muscle wet weight decreased: 9.49%,6.54%,26.70% ; The ratio of EDL weight to body weight of prehibernation was (0.408±0.060) , when the individuals had been hibernating for 1month, 2month and awake for (2-3d), the ratio increased -0.01%,19.61% and 31.08%.
     (2) In the period of hibernation ,the CSA of EDL muscle fibres increased, the type I and II fibres of EDL in prehibernating ground quirrel were (2189.79±358.67) and 3204.14±320.74) um~2 , when the individuals had been hibernating for 1month, 2month ; the CSA of type I fibre increased 9.80%, 3.18% ,and the CSA of type II fibre increased 3.91%, 3.47%. The CSA of EDL muscle fibre decreased in awaked 2-3 days,when the ground squirrel awaked 2-3 days, the type II of EDL muscle fibre recove to normal state, compared with pre-hibernation , Hibernating for 1 month , 2month , the CSA of type I deceased 16.75%, 24.18%, 19.32%; type II decreased 7.68%, 11.15%, 10.77%.
     (3) In hibernation the percentage of type I increased and type II decreased of EDL, the type II transform to type I, the percentage composition of type I and type II fibres of EDI in pre-hibernating ground squirrel were (5.43±1.41) % and (94.57±1.41) %, when the individuals had been hibernating for 1month, 2month and AH(2-3d),the percentage composition of type I fibre increased 76.61%, 64.46%, 134.99%, respectively. And the type II decreased 4.40%, 3.70%, and 7.75%.
     Conclusion
     1. The ratio of muscle weight to body weight have no change, the CSA of EDL fibre didin't present significant difference in ground quirrle in different season. in the autumn the percentage composition of type I decreased.
     2. In experiment (summer,autumn,winter), Compared with control (summer)group, the wet weight of EDL of tail-suspend(summer) ground squirrel have no change; but decreased in autumn,winter; the ratio of EDL wet weight to body weight have no change in taile-suspend group in different seasons. the CSA of EDL muscle fibre decreased, the percentage composition of EDL muscle fibres have no change in taile-suspend group defferent sensons.
     3. In winter, the contraction of EDL function had been receded, the time of tension didn't present significant change.
     4. In hibernating season, the body weight of ground squirrel decreased , the CSA of EDL fibre incrased, the percentage composition of type I of EDL increased. When the individual aroused from hibernation, the CSA comeback to normal.
引文
1.高放,余志斌等.吊尾大鼠后肢骨胳肌等长收缩功能变化的动态特征[J].中华 航空医学杂志.2004,(15):225-259.
    
    2.高云芳,樊小力,何志仙等.川芎秦和黄芪对尾部悬吊大鼠比目鱼肌肌球蛋白 ATP酶活性及肌萎缩的影响[J].航天医学与医学工程.2005,18(4):262-266.
    
    3.黄智,余斌.废用性骨骼肌萎缩治疗的研究与进展[J].中国临床康复.2004,8 (35):8060-8063.
    
    4.郄淑燕,岳涛伟.废用性肌萎缩研究进展[J[.中国临床康复.2003,7(5): 710-711,714.2000,21(45):17-21.
    
    5.刘春,张立潘,张乐宁等.间断性高位倾斜对模拟大鼠肌萎缩的对抗作用[J]. 航天医学与医学杂志.2000,13(6):391-395.
    
    6.马永烈,孙亚志.失重/模拟失重下肌肉萎缩的研究进展[J].航天医学与医学工 程.1997,10(2):149-152.
    
    7.马孝武.去负荷比目鱼肌肌纤维萎缩与转型对收缩功能的影响.第四军医大学 论文.2006.
    
    8.沈羡云,崔伟,马永烈等.3d0尾吊大鼠血循环/肌肉和骨骼系统的变化[J].航 大医学与医学工程.1999,12(4):277-280.
    
    9.孙标,刘春,倪鹤鹦等.模拟失重大鼠间断性站立或离心对抗骨胳肌萎缩的效 果比较。[J].中华航空航天医学杂志.2001,12(3):140-144.
    
    10.周继斌,樊小力,冯鉴强等.尾部悬吊对人鼠比日鱼肌梭内外肌纤维SDH活 性的影响[J].中山医科大学学报.2000,21(4s):17-21.
    
    11.周继斌,邢东琦,冯鉴强等.模拟失重影响大鼠比目鱼肌梭内外肌纤维肌球蛋 白重链的表达[J].中山医科大学学报.2002,23(1):33-36.
    
    12.吴苏娣,樊小力,唐斌等.尾部悬吊对人鼠比目鱼肌mATP酶活性的影响[J]. 西安医科大学学报.2001,22(4):295-300.
    
    13. A.-X. Bigard, E. Boehm, V. Veksler, Muscle Unloading Induces Slow to Fast Transitions in Myofibrillar but not Mitochondrial Properties[J]. Relevance to Skeletal Muscle Abnormalities in Heart Failure 1988, 30: 2391 -2401.
    
    14. Angele.Chopard, Francoise pons, Jean-Francios Marini.Cytoskeletal protein contents before and after hindlimb suspension in a fast and slow rat skeletal muscle[J].Am J Physiol Regul Integrative Comp Physiol.280:R323-R333.
    15. Ashley K. Woods, Kenneth B. Storey. Vertebrate freezing survival: Regulation of the multicatalytic proteinase complex and controls on protein degradation[J]. Biochimica et Biophysica Acta. 2006, 1760: 395-403.
    16. Booth FW. Physiologic and biochemeical effect of immobilization on muscle [J].Clinorthop. 1987, 6(219): 15-20.
    17. Claire Mercier, Jean Jobin, Jean Jobin. Effects of hindlimb suspension on contractile properties of young and old rat muscles and the impact of electrical stimulation on the recovery process [J]. Mechanisms of Ageing and Development. 1999, 106:305-320.
    18. Chrysoula K.P., Antonios K, Maria A., et al. Eletrophysiological, hostochemical, and hormonal adaptation of rats muscle after prolonged hindlimb suspension [J].Acta Astronautica. 2004,54:737-747.
    19. Deveci D., Egginton S. Cold exposure differentially stimulates angiogenesis in glycolytic and oxidative muscle of rats and hamsters[J] .Experimental Physiology. 2002, 88(6):741-746.
    20. Falempin M, In-Albon SF. Influence of brief daily tendon vibration on rat soleuse mucle in non-weight-bearing situation[J].J Appl physiol.1999, 87(1):3-9.
    21. Fitts RH, Metzger JM, Riley DA., and Unsworth BR. Models of disuse:a comparision of hindlimb suspension and immobilization[J]. J Appl Physiol. 1986, (60):1946-1953.
    22. Frank KF, Block B,Erdmann E,Schwinger Rh. Sarcoplasmic reticulum CA~(2+)-ATPase modulates cardiac con traction and relaxation[J]. Cardiovasc Res. 2003, 57(1):20-27.
    23. Galina B. Postnikova ,Svetlana V. Tselikova, Stella G Kolaeva. et al. Myoglobin content in skeletal muscles of hibernating ground squirrels rises in autumn and winter[J]. Comparative Biochemistry and Physiology. 1999,124:35-37.
    24. Harutoshi S.,Yoshihiro Y.,Kiyohiro S., et al. Different frequency treadmill running in immobilization-induced muscle atrophy and ankle joint contracture of rats[J].Scandinavian Joural of Medicine & Science in Sports. 2004,4(3): 186
    25. JohnM. Lawler, WookSong, ScorrR. Demaree. Hindlimb unloading increases oxdative stress and disrupts antioxidant capacity in skeletal muscle[J]. Free radical biology and medicine 2003, 35(1):9-16.
    26. Khalil Abnous, Kenneth B. Storey, Regulation of skeletal muscle creatine kinase from a hibernating mammal[J]. Archives of Biochemistry and Biophysics . 2007, 467:10-19
    27. Knox M, Fluckey JD, Bennett P, et al. Hindlimb unloading in adult rats using an alternative tail harness design[J]. Aviat Space Environ Med, 2004, 75(8): 692-696.
    28. Kim M H.Park K.Seasonal biochemical plasticity of flight muscle in bat[J]. Comparative biochemisty and Physiology part. 2000, 126:245-250
    29. Laurence S, Carole F ,Barbel G, et al Effect of unweighting and clenbuterol on myosin light and heavy chains in fast and slow muscles of rat [J].Am J Physiol Cell Physiol. 2000,279(5): 1558-1563.
    30. Money KE, Cheung BS. Alterations of proprioceptive function in the weightless environment[J]. J Clin Pharmacol, 1991; 31: 1007-1009.
    31. Pier JrMorinn, Kenneth B. Storey., Evidence for a reduced transcriptional state during hibernation in ground squirrels[J]. Cryobiology, 2006, 53:310-318.
    32. Rouke B.C., Yokoyama Y. Milsom W.K., et al. myosin isoform expression and MAFbx mRNA levels in hibernation golden-mantled ground squirrels (Spermophilus laterralis)[J]. Physiologycal and biochemical Zoology. 2004, 77(4):582-593.
    33. Schulte LM, Navarro J,and Kandarian SC. Regulation of sarcoplasmic reticulum calcium pump gene expression by hind -limb unweigthing[J]. Am J Physiol Cell physiol.1993 ,264:cl308-cl315.
    34. Thomason D.B. Booth F.W. Atrophy of soleus muscle by hindlinmb unweighting[J]. J Appl physiol. 1990, 87:120-126.
    35. Tinker D.B. Harlow H.J. Beck T.D.I, pritein use and muscle-fibre change in free-ranging, hibernating black bears[J]. Physiologycal Zoology. 1998, 71(4):414-424.
    36. T.D. Lohuis. Hibernating black bears (Ursus americanus) experience skeletal muscle protein balance during winter anorexia[J]. Comparative Biochemistry and Physiology. 2006, 8803:1-9.
    37. Vihlyantsev I.M.,Malyshev S.L., Shenkman B. S.,et al. The behavior of titin and the proteins of its family from skeletal ,muscle of ground squirrel (Citellus undulatus) during hibernation and rats under condition of simulated microgravity[J]. Biofizika. 2004, 49(6):995-l 102.
    38. WitzmarinFA.SoleusmuseleatroPhyinratsinindueedbyeastitnmobilization:laekofeffeetbyanaboliesteroids[J] .ArchPhysMedRehabil.1988,69(2):81-85.
    39. Wickler S. J,Hoyt D.F,Breukelen F.V. Disuse in the hibernating goden-mantled ground squirrel, Spermophilus lateralis [J]. Am J Physiol Regul Integer Comp Physiol. 1991,261 :R1214-R1217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700