用户名: 密码: 验证码:
枝链霉菌L2001的鉴定及其木聚糖酶性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从土壤中筛出一株木聚糖酶产生菌株Streptomyces sp. L2001,经鉴定为枝链霉菌。该菌株的最适产酶条件为:碳源是浓度为2.5%、粒度为80目的玉米芯水不溶性木聚糖,氮源为酵母浸膏(0.5%)+蛋白胨(1.0%),培养基初始pH值为6.0,培养温度为40℃,转速为140r/min。表面活性剂吐温80(0.8%)的添加对菌株产酶有促进作用。在最优条件下,枝链霉菌L2001木聚糖酶的产量高达1810.9U/ml。
     枝链霉菌L2001所产的木聚糖酶经硫酸铵分级沉淀、DEAE-52柱层析和CM Sepharose Fast Flow柱层析,最终两种酶在SDS-PAGE中都显示为单一条带。其中,Xyn A是该菌株所产的最主要木聚糖酶,回收率为21.8%,纯化倍数为13.3,分子量为21.1kDa。Xyn B回收率为2.6%,纯化倍数为2.4,分子量为39.4kDa。
     木聚糖酶Xyn A的最适反应pH值为5.3;50℃时pH值稳定范围是2.2~(-1)1.3,70℃时pH值稳定范围是4.3-6.7。该酶的最适反应温度为70℃;70℃时处理30min依然保留60%以上的相对酶活力。在各种金属离子和螯合剂中,Co~(2+)对酶促反应的促进作用最强。该酶具有很高的底物特异性,仅对木聚糖底物表现出特异性,对其它种类的多糖和糖苷底物均无活性。该酶对桦木木聚糖和榉木木聚糖的K_m值分别为5.8mg·ml~(-1)和5.3mg·ml~(-1)。在以桦木木聚糖和榉木木聚糖为底物时,水解产物主要为木二糖和木三糖,基本无木糖产生。该酶N端15个氨基酸残基序列为ATVVTTNQTGTDNGF。远紫外CD光谱显示,Xyn A的二级结构中大约含有37%的α-螺旋,26%的β-折叠和37%的无规则卷曲结构。
     木聚糖酶Xyn B的最适反应pH值为6.7;50℃时pH值稳定范围是4.2-9.15。Xyn B的最适反应温度为80℃;60℃时处理30min依然保留90%的相对酶活力。金属离子对Xyn B的作用同木聚糖酶Xyn A相似,金属离子Co~(2+)对酶促反应有较强的促进作用。Xyn B对多种底物都表现出底物特异性,对各种木聚糖、羧甲基纤维素、pNP-β- D-纤维二糖苷、pNP-β-D-吡喃木糖苷、pNP-α-L-呋喃阿拉伯糖苷都有活性。
     木聚糖酶Xyn A助漂麦草浆的实验结果显示,当酶用量为15U/g绝干浆时,麦草浆的白度与对照浆相比提高了2.8%ISO。在纸浆达到相同白度的情况下,酶助漂麦草浆可节约15%左右的用氯量。
Streptomyces sp. L2001 as the most promising strain was isolated and identified as Streptomyces rameus. 2.5%, 80# corncob xylan (water-insoluble) was the best carbon source. 0.5% yeast extract and 1.0% peptone was best nitrogen source. The optimal temperature, the initial pH value and the rotation rate of the cultures were 40℃, pH 6.0 and 140r/min, repectively. The maximum increase in xylanase production was observed in the presence of Tween 80 (0.8%). Under the optimized conditions, the highest xylanase acitiviy of 1810.9U/ml was achieved in the 6th day.
     Two extracellular xylanases were purified by ammonium sulfate precipitation, DEAE-52 chromatography and CM Sepharose Fast Flow chromatography. Xyn A as the most important xylanase, the molecular mass of approximately 21.1kD, was purified 13.3-fold and 21.8% activity recovery. Xyn B, the molecular mass of approximately 39.4kD,was purified 2.4-fold and 2.6% activity recovery.
     Xyn A had an optimum pH of 5.3, it was stable over pH 2.2~(-1)1.3 at 50℃and stable over pH 4.3-6.7 at 70℃. The optimal temperature was 70℃and retained 60% of its activity at 70℃after 30min. The influence of metal ions and other reagent on xylanase activity was also studied, and the xylanase was strongly activated by Co~(2+). The xylanase was highly specific towards different xylans and did not act towards other polysacchrides. Apparent K_m value of the xylanase for birchwood and beechwood were 5.8mg·ml~(-1) and 5.3mg·ml~(-1), respectively. Xyn A released mainly xylobiose and xylotriose from birchwood xylan or beechwood xylan. Its N-terminal seguence of 15 amino acid residues was determined as ATVVTTNQTGTDNGF. Circular dichroism studies indicated that the protein contains about 37% ofα-helix, 26% ofβ-sheet and 37% of radom coil.
     Xyn B had an optimum pH of 6.7 and was stable over pH 4.2-9.15 at 50℃. The optimal temperature was 80℃and retained 90% of its activity at 60℃after 30min. As the same as Xyn A, the xylanase was strongly activated by Co~(2+). The xylanase was highly specific towards different xylans, but had a little activity towards CMC, pNP-β-D- cellobioside, pNP-β-D-xylopyranosideand pNP-α-L-arabinofuranoside.
     The potential application of Xyn A was investigated in wheat straw pulp. Enzymatic treatment at a charge of 15U/g dry pulp, the wheat straw pulp revealed an increase in brightness index by 2.8%ISO. Chlorine dioxide consumption was reduced by 15% in xylanase-pretreated pulp with the pulp still maintaining brightness as the control level.
引文
[1] Beg Q K, Kapoo M, Mahajan L, et al. Microbial xylanases and their industrial applications: a review[J]. Appl Microbiol Biotechnol, 2001, 56: 326-338.
    [2] Li X T, Jiang Z Q, Li L T, et al. Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp[J]. Bioresour Technol, 2005, 96: 1370-1379.
    [3] Chanda S K, Hirst E L, Jones J K N, et al. The constitution of xylan from esparto grass (Stipa tenacissima, L.)[J]. J Chem Soc, 1950, 1289-1297.
    [4] Eda S, Ohnishi A, Kato K. Xylan isolated from the stalk of Nicotiana tabacum[J]. Agric Biol Chem, 1976, 40: 359-364.
    [5] Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanase[J]. FEMS Microb Rev, 1999, 23: 411-456.
    [6] Wong K K, Tan L U , Saddler J N. Multiplicity ofβ-1, 4-xylanase in microorganisms: functions and applications[J]. Microbiol Rev, 1988, 52(3): 305-317.
    [7] Joselesu J P, Comtat J, Ruel K. Chemistry structure of xylans and their interaction in the plant cell wall. In: Visser J, Beldman G, Kusters van Someren M A, et al (eds), Xylans and xylanase [M]. Amsterdam: Elsevier, 1992, 1-15.
    [8] Henrissat B, Claeyssens M, Tomme P, et al. Cellulase families revealved by hydrophobic cluster analysis[J]. Gene, 1989, 81: 83-95.
    [9]江正强.微生物木聚糖酶的生产及其在食品工业中应用的研究进展[J].中国食品学报, 2005, 5(1): 1-8.
    [10]孙振涛,赵祥颖,刘建军,等.微生物木聚糖酶及其应用[J].生物技术, 2007, 17(2): 93-97.
    [11] Viikari L, Tenkanen M, Buchert J, et al. Hemicellulases for industrial applications. In: Saddler, J.N. (Ed.), Bioconversion of forest and agricultural plant residues[M]. England: C.A.B. International, Wallingford, 1993, 131-182.
    [12] Senior D J, Hamilton J, Bernier R L, et al. Reduction in chlorine use during bleaching of kraft pulp following xylanase treatment[J]. Wood and pulp chemistry, 1992, 75(11): 125-130.
    [13] Tolan J S, Canovas R V. The use of enzymes to decrease the CL2 requirements in pulp bleaching[J]. Pul Pap Can, 1992, 93: 39-40.
    [14] Oliveiraa L A, Porto A L F, Tambourgi E B. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes[J]. Bioresour Technol, 2006, 97: 862- 867.
    [15] Das M, Gupta S, Kapoor V, et al. Enzymatic polishing of rice——A new processing technology[J]. LWT-Food Science and Technology, 2008, 41(10): 2079-2084
    [16] Fang H Y, Chang S M, Hsieh M C, et al. Production, optimization growth conditions and properties of the xylanase from Aspergillus carneus M34[J]. J Mol Catal B: Enzym, 2007, 49: 36-42.
    [17] Meshram M, Kulkarni A, Jayaraman V K, et al. Optimal xylanase production using Penicilium janthinellum NCIM 1169: A model based approach[J]. Biochem Eng J, 2008, 40: 348-356.
    [18] Wang S L, Yen Y H, Shih I L, et al. Production of xylanases from rice bran by Streptomyces actuosus A-151[J]. Enzyme Microb Technol, 2003, 33: 917-925.
    [19] Yan Q J, Hao S S, Jiang Z Q ,et al. Properties of a xylanase from Streptomyces matensis being suitable for xylooligosaccharides production[J]. J Mol Catal B: Enzym, 2009, 58: 72-77.
    [20] Ninawe S, Kuhad R C. Use of xylan-rich cost effective agro-residues in the production of xylanase by Streptomyces cyaneus SN32[J]. J Appl Microbiol, 2005, 99: 1141-1148.
    [21] Ding C H, Jiang Z Q, Li X T, et al. High activity xylanase production by Streptomyces olivaceoviridis E-86[J]. World J Microbiol Biotechnol, 2004, 20: 7-10.
    [22]李市场,李爱江,潘仁瑞,等.低能离子注入技术诱变选育木聚糖酶高产菌[J].激光生物学报, 2008, 17(1): 90-94.
    [23]李秀婷,宋微,马家津,等.巨枝膝梗孢液态发酵产木聚糖酶的研究[J].食品科技, 2008, 6: 6-8.
    [24]代义,吕淑霞,林英,等.高产木聚糖酶菌株筛选、鉴定及产酶条件的研究[J].生物技术, 2008, 18(2): 70-73.
    [25]李里特,丁长河,江正强,等.一株产木聚糖酶链霉菌的鉴定及发酵产酶[J].微生物学通报, 2003, 30(6): 59-64.
    [26]江正强,邓伟,翟倩,等.链霉菌D21产木聚糖酶的发酵条件研究[J].林产化学与工业, 2007, 27(1): 1-5.
    [27]李秀婷,佘元莉,孙赟,等.链霉菌F0107液体发酵产木聚糖酶条件的优化[J].农业机械学报, 2009, 40(7): 175-179.
    [28]郝涤非,唐小平,孟彩龙.一株产木聚糖酶放线菌的选择性分离和鉴定[J].食品工业科技, 2009, 30(12): 200-203.
    [29]吴萍,罗许敏.细黄链霉菌产木聚糖酶的研究[J].安徽科技学院学报, 2007, 21(1): 23-26.
    [30]孙晓霞,谢响明,吴玉英,等.白色链霉菌产木聚糖酶规律及其耐热耐碱性的初步研究[J].北京林业大学学报, 2005, 27(3): 72-75.
    [31]周玉恒,张厚瑞.木聚糖酶纯化的研究进展[J].现代食品科技, 2006, 87(22): 181-185.
    [32] Sá-Pereira P, Paveia H, Costa-Ferreira M, et al. A new look at xylanases: an overview of purification strategies[J]. Mol Biotechnol, 2003, 24: 257-281.
    [33] Bakir U, Yavascaoglu S, Guvenc F, et al. An endo-β-1, 4-xylanase from Rhizopus oryzae: production, partial purification and biochemical characterization[J]. Enzyme Microb Technol, 2001, 29: 328-334.
    [34] Martínez-Trujillo A, Pérez-Avalos O, Ponce-Noyola T. Enzymatic properties of a purified xylanase from mutant PN-120 of Cellulomonas flavigena[J]. Enzyme Microb Technol, 2003, 32: 401-406.
    [35] Kim D Y, Han M K, Lee J S, et al. Isolation and characterization of a cellulase-free endo-β-1, 4-xylanase produced by an invertebrate-symbiotic bacterium, Cellulosimicrobium sp. HY-13[J]. Process Biochem, 2009, 44: 1055-1059.
    [36] Ghanem N B, Yusef H H, Mahrouse H K. Production of Aspergillus terreus xylanase in solid- state cultures: application of the Plackett-Burman experimental design to evaluate nutritional requirements[J]. Bioresour Technol, 2000, 73: 113-121.
    [37] Saha B C. Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum[J]. Process Biochem, 2002, 37: 1279-1284.
    [38] Khandeparkar R, Bhosle N B. Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112[J]. Res Microbiol, 2006, 157: 315- 325.
    [39] Chen L L, Zhang M, Zhang D H, et al. Purification and enzymatic characterization of twoβ-endoxylanases from Trichoderma sp. K9301 and their actionsin xylooligosaccharide production[J]. Bioresour Technol, 2009, 100: 5230-5236.
    [40] Lu F X, Lu M, Lu Z X, at al. Purification and characterization of xylanase from Aspergillus ficuum AF-98[J]. Bioresour Technol, 2008, 99: 5938-5941.
    [41] Wakiyama M, Tanaka H, Yoshihara K, et al. Purification and properties of family-10 endo-1,4-β-xylanase from Penicillium citrinum and structural organization of encoding gene[J]. Journal of Bioscience and Bioengineering, 2008, 105(4): 367-374.
    [42] Li L T, Tian H M, Cheng Y Q, et al. Purification and characterization of a thermostable cellulose-free xylanase from the newly isolated Paecilomyces themophila[J]. Enzyme Microb Technol, 2006, 38: 780-787.
    [43] Ninawe S, Kapoor M, Kuhad R C. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32[J]. Bioresour Technol, 2008, 99: 1252-1258.
    [44] Wang Y R, Zhang H L, He Y Z. Characterization, gene cloning, and expression of a novel xylanase XYNB from Streptomyces olivaceoviridis A1[J]. Aquaculture, 2007, 267: 328-334.
    [45] Kaneko S, Kuno A. Purification and characterization of a family G/11β-xylanase from Streptomyces olivaceovirdis E-86[J]. Biosci Biotech Biochem, 2000, 64(2): 447-451.
    [46] Georis J, Giannotta F, Buyl E D, et al. Purification and properties of three endo-β-1, 4-xylanase produced by Streptomyces strain sp. S38 which differ in their ability to enhance the bleaching of kraft pulps[J]. Enzyme Microb Technol, 2000, 26: 178-186.
    [47]徐海燕,张志焱,谷巍,等.黑曲霉B-2所产木聚糖酶的酶学性质研究[J].饲料与畜牧, 2008, 12: 21-23.
    [48]包怡红,李雪龙.木聚糖酶产生菌——类芽孢杆菌的筛选及其酶学性质研究[J].中国食品学报, 2008, 8(2): 36-41.
    [49]胡叶碧,沈浥,王璋.经木聚糖酶处理的玉米皮膳食纤维的组成及其胆盐吸附特性研究[J].食品工业科技, 2008, 5: 116-118.
    [50]祝美云,侯传伟,魏书信,等.酶法制取玉米水溶性膳食纤维的研究[J].食品科学, 2008, 29(10): 211-214.
    [51]王之晖,宋乾武.木聚糖酶在硫酸盐木浆辅助漂白中的应用研究[J].环境工程学报, 2007,1(3): 58-61.
    [52]史宝军,崔细鹏,王淑彩,等.木聚糖酶在肉鸡小麦日粮中的应用效果[J].养殖与饲料, 2007, 6: 55-57.
    [53]范美霞,付灿,孙迅,等.粗毛栓菌木聚糖酶的纯化及性质[J].菌物学报, 2010, 29(1): 83-90.
    [54] Battan B, Sharma J, Dhiman S S, et al. Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry[J]. Enzyme Microb Technol, 2007, 41: 733-739.
    [55] Kusakabe I,Yasui T, Kobayashi T. Enzymatic hydrolysis extraction of xylan containing natural materials. J Agr Chem Soc Japan, 1976, 50: 199-208.
    [56]阎逊初.放线菌的分类和鉴定[M].北京:科学出版社, 1992.
    [57]中国科学院微生物所放线菌的分类组.链霉菌鉴定手册[M].北京:科学出版社, 1975.
    [58] Shirling E B, Gottleie B D. Methods for characterization of streptomyces species[J]. Int J Syst Bacteriol, 1996, 16: 313-340.
    [59]姜成林,徐丽华,许宗雄.放线菌分类学[M].昆明:云南大学出版社, 1975.
    [60] C. W.迪芬巴赫, G. S.德弗克斯勒,种康,等. PCR技术实验指南[M].北京:化学工业出版社, 2006.
    [61] Jeannmougin F, Thompson J D, Gouy M, et al. Multiple sequence alignment with Clustal X[J]. Trends Biochem Sci, 1998, 23: 403-405.
    [62] Kumar S, Tamura K, Nei M. MEGA: molecular evolutionary genetics analysis software for microcomputers[J]. Comput Appl Biosci, 1994, 10: 189-191.
    [63] Miller G L. Use of dintrosalicylic acid reagent for determination of reducing sugar[J]. Anal Chem, 1959, 31(3): 426-428.
    [64] Lowry O H, Rousebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent[J]. Biol Chem. 1951, 193: 265-275.
    [65] Laemmli U K. Cleavage of struetural proteins during the assembly of the head of bacteriophage T4[J]. Nature (London), 1970, 227: 680-685.
    [66] Smith D C, Wood T M. Xylanase production by Aspergillus awamori.Development of a medium and optimisation of extracellular xylanase andβ-xylosidases while maintaining low protease production. Biotechnol Bioeng, 1991, 38(8): 883-890.
    [67] Purkarthofer H, Steiner W. Induction of endo-β-xylanase in the fungus Thermomyces langionsus[J]. Enzyme Microb Technol, 1995, 17: 114-118.
    [68] Gomes J, Purkarthofer H, Hayn M, et al. Production of high level of cellulose-free xylanase by the thermophilic fungus Thermomyces lanuginosus in laboratory and pilot scales using lignocellulosic materials[J]. Appl Microbiol Biotechnol, 1993, 39(6): 700-707.
    [69] Charin T, Naiyatat P, Masanori W, et al. Thermostable and alkaline-tolerant microbial cellulase- free xylanases produced from agricultural wastes and the properties required for usein pulp bleaching bioprocesses: a review[J]. Process Biochem, 2003, 38: 1327-1340.
    [70] Singh S, Andreas M M, Bernard A P. Thermomyces Lanuginosus: properties of strains and their hemicellulases[J]. J Ferment Technol, 2003, 27: 33-64.
    [71] Xu Z H, Bai Y L, Xu X, et al. Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp. WLUN024 with wheat bran as the main substrate[J]. World J Microbiol Biotechnol, 2005, 21: 575-581.
    [72] Poorna C A, Prema P. Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling [J]. Bioresour Technol, 2007, 98: 485-490.
    [73] Nemec T, Jernejc K. Influence of Tween 80 on liquid metabolism of an Aspergillus niger strain[J]. Appl Biochem Biotechnol, 2002, 101: 229-238.
    [74] Nascimento R P, Coelho R R R, Marques S, et al. Production and partial characterisation of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil[J]. Enzyme Microb Technol, 2002, 31: 549-555.
    [75] Watt D K, Ono H, Hayashi K. Agrobacterium tumefaciensβ-glucosidase is also an effectiveβ-xylosidase, and has a high transglycosylation activity in the presence of alcohols[J]. Biochimica et Biophysica Acta, 1998, 1385: 78-88.
    [76] Lacke A H. 1, 4-β-D-xylan xylohydrolase of Sclerotium rolfsii[J]. Methods Enzymol, 1988, 160: 679-684.
    [77] Edman P. Preparation of phenyl thiohydantoins from some natural amino acids[J]. Acta Chem.Scand. 1950, 4: 277-282.
    [78] Ruiz-Arribas A, Fernández-Abalos J M, Sánchez P, et al Overproduction, Purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8[J]. Appl Environ Microbiol 1995, 61(6): 2414-2419.
    [79] Mohana S, Shah A, Divecha J, at al. Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash[J]. Bioresour Technol, 2008, 99: 7553-7564.
    [80] Sá-Pereira P, Mesquita A, Duarte J C, et al. Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties[J]. Enzyme Microb Technol, 2002, 30: 924-933.
    [81] Magnuson T S, Crawford D L. Purification and characterization of an alkaline xylanase from Streptomyces viridosporus T7A[J]. Enzyme Microb Technol, 1997, 21: 160-164.
    [82] Anthony C G, Thomas W J. Production, purification, and characterization ofβ-(1, 4)-endo- xylanase of Streptomyces roseiscleroticus[J]. Appl Environ Microbiol, 1991, 57(4): 987-992.
    [83] Dieter K, Sushma V M, Francine A, et a. Purification and chacterization of a new xylanase (xylanase B) produced by Streptomyces lividans 66[J]. Biochem J, 1990, 267: 45-50.
    [84] Liu M Q, Liu G F. Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it[J]. Protein Expression and Purification, 2008, 57: 101–107.
    [85] Andrade M A, Chacon P, Merelo J J, et al. Evaluation of secongdary structure of proteins from UV circular dichroism using an unsqupervised learning neural network[J]. Protein Eng, 1993, 6: 383- 390.
    [86]李瑜,许时婴,庞凌云,等.蒜氨酸酶的光谱特征研究[J].食品科学, 2007, 28(7): 60-62.
    [87]许强,杨体强,敖敦格日勒,等.应用圆二色光谱研究电场对辣根过氧化物酶二级结构的影响[J].光谱学与光谱分析, 2007, 27(3): 565-568.
    [88] Kulkarni N, Rao N. Application of xylanase from alkalophilic hermophilic Bacillus sp. NCIM 59 in biobleaching of bagasse pulp[J]. J Biotechnol, 1996, 51: 167-173.
    [89] Beg Q K, Bhushan B, Kapoor M. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp[J]. Enzyme Microb Technol, 2000, 27: 459-466.
    [90] Shah A K, Cooper D, Adolphson R, et al. Xylanase treatment of oxygen-bleached handwood kraft pulp at high temperature and alkaline pH levels gives substantial savings in bleaching chemicals[J]. J Pulp Pap Sci, 2000, 26(1): 8-11.
    [91] Ninawe S, Kuhad RC. Bleaching of wheat straw-rich soda pulp with xylanase from a thermoal-kalophilic Streptomyces cyaneus SN32[J]. Bioresour Technol, 2006, 97: 2291-2295.
    [92] Garg A P, Roberts J C, McCarthy A J. Bleach boosting effect of cellulase-free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme preparations on birchwood kraft pulp[J]. Enzyme Microb Technol, 1998, 22: 594-598.
    [93] Ziaie-Shirkolaee Y, Talebizadeh A, Soltanali S. Comparative study on application of T. lanuginosus SSBP xylanase and commercial xylanase on biobleaching of non wood pulps[J]. Bioresour Technol, 2008, 99: 7433-7437.
    [94] Elegir G, Sykes M, Jeffries T W. Differential and synergistic action of Streptomyces endo- xylanases in prebleaching of kraft pulps[J]. Enzyme Microb Technol, 1995, 17: 954-959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700