用户名: 密码: 验证码:
厦门湾常风浪场数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深水区的波浪在向近区岸传播的过程中,由于受到水深地形变化、能量耗散、底摩擦、水流等因素的作用,发生反射、折射、绕射、波浪破碎、浅水变形和非线性效应等现象。波浪是港口海岸工程设计中最为重要的动力因素之一,与水流的相互作用引起海底泥沙输运,不仅影响了近岸的环境变化,对浅海生产作业和海岸工程建设规划(如港口建设、河口治理、岸滩防护等)、海上输运、水产养殖、滨海企业和海洋旅游等等的建设发展也造成了很大影响。随着沿海地区社会经济的不断发展,人类海岸地活动的日趋频繁,沿海工程项目的数量越来越多,投资规模越来越大,工程项目的分险性也越来越引起人们的高度重视,这些都对近岸波浪等海洋环境要素的精确预测提出了更高的要求。
     本文利用SWAN(Simulating Wave Nearshore)海浪模式为基础构筑厦门湾浅海波浪数值计算模式。首先设计实验方案,研究理想风场、潮位的变化、理想潮流场对波浪传播的影响,以反映风场、水深变浅导致的能量耗散以及潮位潮流场的变化对近岸波浪传播的影响。其次,将模型应用于台湾海峡风浪的数值计算,模拟了常风状态下台湾海峡内风浪的成长和传播过程,选取模拟结果作为厦门湾波浪场的模拟计算中的边界条件。最后,利用SWAN波浪模型,在厦门湾的潮流场模型计算的基础上选取7月份与10月的多年月平均风场作为盛行季风计算风场,在考虑风能量输入、白浪效应、水深诱导的波浪破碎、底摩擦、波—波相互作用的等物理作用上,计算厦门湾在潮流作用下的风浪场的成长和传播变化过程,计算结果表明:金门岛以北,受水深以及金门岛本身的阻挡影响,波高相对较小。厦门岛内侧,鼓浪屿以北水深相对较浅,属于掩蔽条件较好的区域,总体波高较小;潮位对厦门湾波浪成长的影响在0.03m以下。潮流对波浪的成长影响比较大:当潮流流向与波浪传播方向相同时,潮流减缓了波浪的成长,使得波高变小。当潮流流向与波浪传播方向相反的时候,潮流大大加速了波浪的成长,波高变大。7月份厦门湾的波浪在潮流作用下最大增幅为0.13m,最大减幅为0.08m;10月份厦门湾的波浪在潮流作用下,最大增幅为0.08m,最大减幅为0.12m。
When wave propagate the shallow area from deepwater, many phenomena will occur due to the different effect of submarine topography, energy dissipate, bottom friction and current etc, such as reflection, refraction, diffraction, wave breaking, shoaling transformation , non-linearity wave-wave interaction and so on. Since the sediment will be transferred by interaction with tide, wave is one of the most important hydrodynamic factors of harbor engineering. Wave not only change the environment of shallow sea, as well as the coastal production, construction planning, marine transportation, fishery, seaside enterprises, marine tourism and so on. While the development of economy and more and more human activity, ocean engineering, engineering venture, a high quality of the wave forecast is required.
     This paper used SWAN (Simulating Wave Nearshore) as a mode of numerical simulation to build the Xiamen Bay project. At first, we designed an experimentation plan to study the wind field, water level and tidal current that effect upon the wave growth and propagation, in order to responses the most important influence of depth-induced dissipation, current field and water level to the wave growth and propagation. Second, use SWAN model to simulate the wave field of Taiwan Strait , put the numeral results in use as boundary condition of Xiamen Bay. At last, use the tide simulation results of Xiamen Bay as the initial condition and the waves simulation results of the Taiwan Strait as boundary condition, select the monthly mean wind force in July and the one in October input to Xiamen Bay, fully consider the power input, white capping dissipation, wave breaking, bottom friction and nonlinear wave-wave interaction, we use the SWAN model to simulate the wave field of Xiamen Bay. The result shows as below:
     First, the height of wave in the northland of Jinmen Island is low because of depth and the blockade of Island.
     Second, the height of wave in the inboard Xiamen Island is low because of the lee.
     Third, tidal current is the important influence to the growth of wave.
引文
[1]陈阳.海岸工程波浪数学模型的研究与应用[D].南京:河海大学,2000.
    [2]张永刚.波浪的折射2绕射及反射的数值模拟[D].大连:大连理工大学,1995.
    [3]左其华,姚国权,丁炳灿.用误差传播法计算波浪折射和绕射[J].水利水运科学研究,1993,(3):225-232.
    [4]姚国权.波浪折射、绕射与反射联合运算简介[J].水利水运科学研究,1987,(4):91-202.
    [5]Dalrymple R A,Kirby J T.Wave diffraction due to areas of energy dissipation[J].J.Wtrwy,Port 1984,110(1):67-78.
    [6]徐福敏,张长宽.一种浅水波浪数值模型的应用研究[J].水动力学研究与进展,2000,A辑,5(4):429-434.[7]
    [7]RisRC,HolthuijsenLH,BooijN.A Spectral Model for Waves in the Nearshore Zone[J].CoastalEngineering,1994,68-78.
    [8]李瑞杰.考虑非线性弥散影响的波浪变形数学模型[J].海洋学报,2001,23(1):102-108.
    [9]李瑞杰,王爱群,王厚杰.波浪在浅水传播中的弱非线性效应[J].海洋工程,2000,18(3):30-38.
    [10]严以新.潮汐河口地区的波流相互作用的数学模型[J].海洋工程,1989,7(3):47-55.
    [11]Goda YA.Synthesis of Breaker Indices[J].Trans.Of ASCE.1970,2(part2.):227-229.
    [12]高学平,曾广冬,张亚.不规则波数值水槽的造波和阻尼消波[J].海洋学报,2002,24(2):127-132.
    [13]Peregrine D H.Long wave on a beach[J].J.Fluid Mech.,1965,27(4):815-827.
    [14]Radder A C.On the parabolic equation method for water-wave propagation[J].J.Fluid mech.,1979,(1):159-176.
    [15]Kirby J T.A general wave equation for wave over rippled beds[J].J.Fluid Mech.,1986,162:171-186.
    [16]Kirby J T,Dalrymple R A.An approximant model for nonlinear dispersion in monochromatic wave propagation models[J].Coastal Engineering,1987,9:545-561.
    [17]Zhao Y,Anastasiou K.Econnomical random wave propagation modeling taking into account nonlinear amplitude dispersion[J].Coastal Engineering,1993,20:59-83.
    [18]Nadaoka K,Beji S,Nakagawa Y.A fully-Dispersive nonlinear wave model and its numerical solution[A].In:Proc 24th Int Conf Coastal Engineering[C].Kobe,Japan,New York:ASCE,1994,427-441.
    [19]Isobe M.Time-dependent mild-slope equation for random waves[A].In:Proc 24th Int Conf Coastal Engineering[C].Kobe,Japan,New York:ASCE,1994,285-299.
    [20]Ris R C,Holthuijsen L H,Booij N.A Spectral Model for Waves in the near shore Zone[J].Coastal Engineering,1994,68-78.
    [21]Komen G.J.,Cavaleri L.,Donelan M.,Hasselamann K.,Hasselamann S.,Janessen P.A.E.M.Dynamics and modeling of the Ocean Waves,Cambridge University Press,1994.
    [22]LIUPLF.Model equations for wave propagations from deep to shallow water[J].Coastal and Ocean Engineering,1995,(1):125-158.
    [23]Berkhoff J C W.Computation of combined refraction-diffraction[A].In:Proc.of the 13th conf.on coastal Engineering[C].New York:ASCE,1972,Vol.1.,471-490.
    [24]Miles J.W.On the generation of surface waves by shear flows[J].Fluid Mech,1957,3,185-205.
    [25]Hasselmann K.On the spectral dissipation of ocean waves due to whitecapping[J].1974,Boand-layer meteor,6,1-2,107-127.
    [26]Battjes J.A.and J.P.F..M.Janssen,Energy loss and setup due to breaking of random wave[J].Proc.16thInt.Conf.Engineering,ASCE,1978,569-587.
    [27]Eldeberky Y.Nonlinear transformation of wave spectra in the nearshore zone[D].Ph.D.thesis,Delft University of Technology,Department of Civil Engineering,World Scientific,1996,47.
    [28]Ris R C,Holthuijsen L H,Booij N.A Spectral Model for Waves in the near shore Zone[J].Coastal Engineering,1994,68-78.
    [29]Zambresky,L.A verification study of global WAM model,Technical report No 63 ECMRWF 89pp,1989.
    [30]Yin Bao-shu,Wang Tao,M.I.EI-Sabh.A Third Generation Shallow Water Wave Numerical ModeI-YE-WAM.Chines Journal of Oceanology and Limnology,1996.14(2):106-112.
    [31]Hsu,T.W.,S.H.Ou and J.M.Liau.Hindcasting nearshore wind waves using a FEM code for SWAN,Coastal Engineering,2005,52,177-195.
    [32]Kirby J T,Dalrymple R A.An approximant model for nonlinear dispersion in monochromatic wave propagation models[J].Coastal Engineering,1987,9:545-561.
    [33]陈希,沙文钰,闵锦忠.台湾岛邻近海域台风浪的模拟研究[J].海洋预报,2002,19(4),1-10.
    [34]CavaIeriL,PMalanotte 2 Rizzolil Wind wave predictionin shallow water:Theory and Aplications[J]1JGeophysRes,1981,86(C11):10961-10973.
    [35]陈希,沙文钰,闵锦忠.湛江港邻近海域台风浪的模拟研究[J].南京气象学院学报,2002,25(6):779-786.
    [36]严以新,徐福敏,茅丽华.一种新型的数值模拟近岸波浪的动谱平衡方程模型[J].科学通报,2001,46(1):73-77.
    [37]Kirby J T,Dalrymple R A.A parabolic equation for the combined refraction2diffraction of stokes waves by mildly varying topography[J].J.Fluid Mech,,1983,136:453-466.
    [38]Zuo Qihua,Ding Bingcan.Wave2current propagation over a frictional topography[J].China Ocean Engineering,1998,12(4):417-426.
    [39]丁平兴,史峰岩,孔亚珍.非均匀流场中随机波折射2绕射的数值计算[J].华东师范大学学报(自然科学版),1998,2:69-76
    [40]台伟涛,蒋德才.均匀流场中随机波传播的折绕射模型[J].海洋通报,1993,12(4):9-21.
    [41]尹宝树,王涛,侯一筠等.渤海波浪和潮汐风暴潮相互作用对波浪影响的数值研究[J].海洋与湖沼,2001,32(1):109-116.
    [42]Mastenbroek C,Burgers G,Janssen P A E M.The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer[J].J Phys Oceanogr,1993,8:1856-1866.
    [43]Zhang M Y,Li Y S.The synchronous coupling of a third-generation wave model and a two dimentional storm model[J].Ocean Engineering,1996,6:533-543.
    [44]Robert J Weaver.Effect of wave forces on storm surge[D].Florida:The university of Florida,2004.
    [45]金正华,王涛,尹宝树.浪,潮,风暴潮联合作用下的底应力效应[J].海洋与湖沼,1998,29(6):604-610.
    [46]林祥.近岸海洋动力要素相互作用的数值模拟及其对物质输运影响的研究[D].青岛:中国科学院海洋研究所,2002.
    [47]鞠红梅.深度破碎效应对近岸台风浪计算影响德数值研究[D].中国海洋大学,2005,18-35.
    [48]国家海洋局东海分局.东海区沿岸海洋水文气候概况[M].海洋出版社,1993,216-233.
    [49]严恺,梁其荀.海港工程[M].海洋出版社,1996,26-100.
    [50]胡建宇.台湾海峡及其邻近海区海洋动力环境特征的研究[D].厦门大学,2002,1-10.
    [51]李玉成,陈士荫,俞肁修等译.海岸及海洋工程手册[M].大连理工大学出版社,1992,271-299.
    [52]邱大洪,薛鸿超.工程水文学[M].人民交通出版社,1999,80-202.
    [53]海港水文规范[Z].中华人民共和国交通部,1998,6-51.
    [54]中国海湾志编纂委员会.中国海湾志-第八分册[M].海洋出版社,1993,165-243.
    [55]郑颖青,吴启树等.近106a来登陆福建台风的统计分析[J].台湾海峡,2006,25(4):541-547.
    [56]文圣常.海浪理论与计算原理[M].科学出版社,1984,469-471.
    [57]邱大洪.工程水文学[M].人民交通出版社,1999,158-160.
    [58]张进峰.典型海域的海浪数值模拟研究[D].武汉理工大学,2005,20-44.
    [59]宋立荣.粤东海岸台风风暴潮数值预报[J].海洋预报,2003,20(4):70-75.
    [60]赵鑫.黄世昌.浙东沿海“9711”台风波浪场数值模拟研究[J].浙江水利科技,2006,(3):24-27.
    [61]李燕,薄兆海.SWAN模式对黄渤海海域浪高的模拟能力试验[J].海洋预报,2005,22(3):75-82.
    [62]邵守良.深水和浅水风浪要素的计算[J].港工技术,1997,(2):12-15.
    [63]Holthuijsen,L.H.,Booij,N.,Ris,R.C.,Haagsma,I.J.G.,Kieftenburg,A.T.M.M.,Kriezi,E.E.,Zijlema,M.SWAN Cycle Ⅲ version 40.11 user manual,2000.
    [64]Ou,S.H.,Liau,J.M.,Hsu,T.W.,Tzang,S.Y.,Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan.Ocean Eng.2002a,29,947-971.
    [65]杨德周.渤海海浪数值预报模式的研究[D].中国科学院研究生院,2004,35-46.
    [66]邱桔斐.江苏沿海风、浪特征研究[D].河海大学,2005,20-65.
    [67]叶钦.浅水波浪德数值模拟和高频地波雷达资料同化[D].中国海洋大学,2005,35-48.
    [68]蒋德才,台伟涛,楼顺里.海浪能量谱德折绕射研究-缓坡破碎带联合模型[J].海洋学报,1993,15(6):37-46.
    [69]叶雨颖.台湾海峡风浪场的数值模拟研究[D].厦门大学,2006,33-56.
    [70]季杜鑫.厦门湾三维潮流数值模拟研究[D].厦门大学,2006,14-26.
    [71]姬厚德.台湾海峡及附近港湾的风浪场的数值模拟研究[D].厦门大学,2007,10-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700