用户名: 密码: 验证码:
南海对于台风伊布都响应的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
台风是发生在海洋上的强烈天气系统,是海气相互作用最为直观的表现形式。台风产生的海面气旋式风应力以及强烈的混合过程,对上层海洋与深层海水之间的热量、能量和物质交换产生重大影响,因此研究海洋对于台风过程的响应特征具有重要的科学意义。
     首先,采用海浪模式WWATCH-Ⅲ模拟计算了台风伊布都期间南海的波浪场。结果表明:随着台风中心向西移动,最大浪高区域也逐渐向西移动。接近台风中心的波高和波龄都较大,而远离台风中心的波高则相对较小、波浪比较年轻,并且波高的分布具有明显的右偏性。同时,对考虑了波浪作用的海面风应力进行了计算,为后续的海洋模式的计算奠定了基础。
     其次,采用上述计算的海面风应力作为POM模式的驱动,研究了南海流场和温度对于台风的响应。结果表明:台风过后,海洋表面温度下降2~6°C ,且在台风路径两侧不对称,具有明显的右偏性。受台风强混合作用的影响,混合层加深10~60m ,上混合层热量损失约824.78W /m~2,其中垂向混合是造成热量损失的主导动力因素。由于受上混合层热通量输送的影响,混合层以下附近水层处于增温状态,海水温度做近惯性波动。同时,台风还能引起强烈的近惯性流,最大流速出现在上混合层,可达1.4m /s。
     最后,对论文的研究工作进行了总结,并对未来的研究方向进行了展望。
Typhoon is a strong atmosphere system happened above the ocean, which is the most intuitionistic expression of air-sea interaction. The cyclonic stress on the sea surface and the strong mixing processes forced by the typhoon play an important role in the processes of the heat, energy and mass exchange between the upper ocean and the deep ocean. Therefore, the study of the ocean response to the typhoon is an important scientific issue.
     Firstly, the wave field of the South China Sea (SCS) during the process of Typhoon Imbudo is calculated by the WWATCH-Ⅲmodel. The results indicate that the max field of significant wave height (SWH) travels west as the typhoon moves to the westward. The SWH and wave age is larger at the typhoon center. And far away from the typhoon center, the SWH becomes smaller and the wave becomes younger. At the same time, the SWH is larger by the right side of the typhoon track. Furthermore, the wind stress at the sea surface is calculated considering the wave introduced stress as a base of circulation model.
     Then, the response of the SCS to Typhoon Imbudo is examined using POM model, which is driven by the wind stress calculated above by the wave model. The results indicate that SST decreases by2~6°C with a rightward-biased response as Typhoon Imbudo passes across the SCS. Due to a strong mixing process, the mixed layer (ML) depth deepens as much as 10~60m and ML heat budget loses 824.78W /m~2, which is dominated by the vertical mixing. By the response of upper ML heat transport, the temperature below the ML increases and oscillates near the inertial period. Furthermore, strong inertial currents are generated by the storm with the max currents up to 1.4 m/s in the upper ML.
     Finally, the conclusions are drawn and several prospects of future study are formulated.
引文
[1] Black P. G.. Ocean temperature changes introduced by tropical cyclones. Ph. D. dissertation. The Pennsylvania State University, 1983, 278pp
    [2] Blumberg A. F., Mellor G. L.. A description of a three-dimensional coastal ocean circulation model in Three-Dimensional Coastal Ocean Models, Vol. 4, American Geophysical Union, Washington, 1987, 208pp
    [3] Booij N., Ris R. C., Holthuisen L. H.. A third-generation wave model for coastal regions. Part I. Model description and validation. J Geophys. Res., 1999, 104: 7649-7666
    [4] Bouws E., Komen G. J.. On the balance between growth and dissipation in an extreme depth-limited wind-sea in the southern north sea. J. Phys. Oceanogr., 1983, 13: 1653-1658
    [5] Bretherton F. P., Carrett C. J. R.. Wave trains in inhomogenous moving media. Proc. Roy. Soc. London A, 1968, 302: 529-554
    [6] Brink K. H.. Observation of the response of thermocline currents to hurricane. J Phys. Oceanogr., 1989, 19: 1017-1022
    [7] Brooks D. A.. The wake of Hurricane Allen in the western Gulf of Mexico. J Phys. Oceanogr., 1983, 13: 117-129
    [8] Chalikov D. V., Belevich M. Yu.. One-dimensional theory of the wave boundary layer. Bound. Layer Meteor., 1993, 63: 65-96
    [9] Chalikov D.. The parameterization of the wave boundary layer. J. Phys. Oceanogr., 1995, 25: 1333-1349
    [10] Chu P. C., Veneziano J. M., Fan C., et al.. Response of the South China Sea to Tropical Cyclone Ernie 1996. J Geophys. Res., 2000, 105: 13991-14009
    [11] Church J. A., Foyce T. M., Price J. F.. Current and density observations across the wake of Hurricane Gay. J Phys. Oceanogr., 1989, 19: 259-265
    [12] Cornillon P., Stramma L., Price J. F.. Satellite measurements of sea surface cooling during Hurricane Golria. Nature, 1987, 326: 373-375
    [13] Da Silva A., Young A .C., Levitus S. Atlas of Surface Marine Data 1994,Volume 3, Anomalies of Heat and Momentum Fluxes. NOAA Atlas NESDIS 8. U.S. Department of Commerce, NOAA, NESDIS, 1994, 411 pp.
    [14] Da Silva A., Young A .C., Levitus S. Atlas of Surface Marine Data 1994, Volume 4, Anomalies of Fresh Water Fluxes. NOAA Atlas NESDIS 9. U.S. Department of Commerce, NOAA, NESDIS, 1994, 308 pp.
    [15] Davis R. W., Moore E. F.. A numerical study of vortex shedding from rectangles. J. Fluid Mech., 1982, 116: 475-506
    [16] Dickey T., Frye D., Mcneil J., et al.. Upper-ocean temperature response to Hurricane Felix as measured by the Bermuda Tested Mooring. Mon. Weather. Rev., 1998, 126: 1195-1201
    [17] Donelan W. A., Dobson F. W., Smith S. D.. On the dependence of sea surface roughness on wave development. J Phys. Oceanogr., 1993, 23: 2143-2149
    [18] Elsberry R. S., Fraim T. N., Trapnell R. N.. A mixed layer model of the oceanic thermal response to hurricanes. J Geophys. Res., 1976, 81: 1153-1162
    [19] Ezer T., Mellor G. L.. Diagnostic and prognostic calculations of the North Atlantic circulation and sea level using a sigma coordinate ocean model. J. Geophys. Res., 1994, 99: 14159-14171
    [20] Fedorov K. N., Varfolomeev A. A., Ginzburg A. I., et al.. Thermal reaction of the ocean on the passage of the hurricane Ella. Okeanologiya, 1979, 19: 992-1001
    [21] Fisher E. L.. Hurricane and the sea surface temperature field, J Meteor., 1958, 15: 328-333
    [22] Forristail G. Z.. A two-layer model for hurricane-driven currents on an irregular grid. J. Phys. Oceanogr., 1980, 10: 1417-1438
    [23] Galperin, B., Kantha L. H., Hassid S., et al. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 1988, 45: 55-62
    [24] Gelci R., Cazale H., and Vassal J.. Prevision de la houle, la methode des densites spectroangulaires. Bull. Inform. Comite Central Oceanogr. d’Etude Cotes, 1957, 9: 416-435
    [25] Gill A. E.. On the behavior of internal waves in the wakes of storms. J Phys. Oceanogr., 1984, 14: 1129-1151
    [26] Günther Heinz, Hasselmann S., Janssen P.A.E.M.. The WAM Model cycle 4, Technical Report 4, 1992
    [27] Halpern D.. Observations of the deepening of the wind-mixed layer in the Northeast Pacific Ocean. J. Phys. Oceanogr., 1974, 4: 454–466
    [28] Hasselmann K., Barnett T. P., Bouws E., et al.. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. Suppl. A, 1973, 8: 1-95
    [29] Hasselmann K.. On the nonlinear energy transfer in a gravity wave spectrum, 1. J. Fluid Mech., 1962, 12: 481-500
    [30] Hasselmann K.. On the nonlinear energy transfer in a gravity wave spectrum, 2. J. Fluid Mech., 1963, 15: 273-281
    [31] Hasselmann S., Hasselmann K., Allender J.H., et al.. Computations and parameterizations of the nonlinear energy transfer in a gravity wave-spectrum, part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 1985, 15: 1378-1391
    [32] Hasselmann S., Hasselmann K.. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, part I: A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr., 1985, 15: 1369-1377
    [33] Hassemann K., Barnett T. P., Bouws E., et al.. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project(JONSWAP). 1973, 12, 95pp
    [34] Hearn C. J., Holloway P. E.. A three-dimensional barotropic model of the response of the Australian North west shelf to tropical cyclones. J. Phys. Oceanogr., 1990, 20: 60-80
    [35] Honey R. L.. Surface Thermal Boundary Condition for Ocean Circulation Models. J. Phys. Oceanogr., 1971, 1(4): 241-248
    [36] Hong C., Yoon J.. A three-dimensional numerical simulation of TyphoonHolly in the northwestern Pacific Ocean. J. Geophys. Res., 2003, 108, doi: 10.1029/2002JC001563
    [37] Jacob S. D., Shay L. K., Mariano A. J., et al.. The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 2000, 30: 1407-1429
    [38] Jacob S. D., Shay L. K., Mariano A. J.. The 3D mixed layer response to Hurrine Gilbert. J Phys. Oceanogr., 2000, 30: 1407-1429
    [39] Jacob S. D., Shay L. K.. The role of oceanic mesoscale features on the tropical cyclone-induced mixed layer response: A model study. J. Phys. Oceanogr., 2003, 33: 649– 676.
    [40] Jassen P. A. E. M.. Quasi-linear theory of wind-wave generation applied to wave forecasting. J phys. Oceanogr., 1991, 21: 1631-1642
    [41] Komen G. J., Cavaleri L., Donelan M., et al. Dynamics and modeling of ocean waves. Cambridge University Press, 1994, 532pp
    [42] Komen G. J., Hasselmann K., Hasselmann S.. On the existence of a fully developed wind sea spectrum. J. Phys. Oceanogr., 1984, 14: 1271-1285
    [43] Leipper D. F.. Observed ocean conditions and Hurricane Hilda, 1964. J Atmos. Sci., 1967, 24: 182-196
    [44] Leonard B. P.. A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Engng., 1979, 19: 59-98
    [45] Liu Z., Xu J., Zhu B., et al.. The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data. Chin. J. Oeano.l limnol., 2007, 25(2): 123-131
    [46] Longuet-Higgins M. S., Stewart R. W.. Radiation stress and mass transport in gravtity waves, with application to‘surf-beats’. J. Fluid Mech, 1962, 13: 481-504
    [47] Longuet-Higgins M. S., Stewart R. W.. The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech, 1961, 10: 529-549
    [48] Ly L. N., Kantha L. H.. Hurricane Camille shelf wave simulation using anumerical ocean circulation model. Proceedings: Estuarine and Coastal Modeling, Second Int’l Conference, American Society of Civil Engineers, 1992, 586–593
    [49] Ly L. N., O’Connor W. P.. Gulf coast hurricane surge simulation using a numerical ocean circulation model. Proceedings: Marine Technology Society Conference, 1991, Vol. II: 1236-1241
    [50] Ly L. N.. A numerical study of sea level and current response to Hurricane Frederic using a coastal ocean model for the Gulf of Mexico. J Oceanogr., 1994, 50: 599-616
    [51] Ma dala R. V., Piacsek S. A.. A semi-implicit numerical model for baroclinic oceans. J. Comput. Phys., 1977, 23: 167-178
    [52] Mastenbroek C., Burgers G., Jassen P.A.E.M.. The Dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J phys. Oceanogr., 1993, 23: 1856-1866
    [53] Mellor G. L., Ezer T., Oey L Y.. On the pressure gradient conundrum of sigma-cordinate ocean models. J Atmos Oceanic Technol, 1994, 11:1120-1129
    [54] Mellor G. L., Ezer T., Oey L. Y.. The pressure gradient conundrum of sigma coordinate ocean models. J. Atmos. Oceanic. Technol., 1994, 11: 1126-1134
    [55] Mellor, G. L., Kantha L. H., Herring H. J.. On Gulf Stream frontal eddies. A numerical experiment, Ocean Modelling, 1986, 68: 7-11.
    [56] Mellor, G.L., Yamada T.. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 1974, 31: 1791-1806
    [57] Mellor, G.L., Yamada T.. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 1982, 20: 851-875
    [58] Minato S.. Storm surge simulation using POM and a revisitation of dynamics of sea surface elevation short-term variation. Meteorol. Geophys., 1998, 48: 79-88
    [59] Mitsuyasu H.. On the growth of the spectrum of wind-generated waves (I). Rep. Res. Inst. Appl. Mech., Kyushu Univ., 1968, 16: 459-482
    [60] Mitsuyasu H.. On the growth of the spectrum of wind-generated waves (Ⅱ). Rep. Res. Inst. Appl. Mech., Kyushu Univ., 1969, 17: 235-243
    [61] Miyazaki M., Ueno T., Unoki S.. Theoretical investigation of typhoon surges along the Japanese coast. Oceanogr. Mag., 1961, 13: 51-75
    [62] Morey S. L., Bourassa M. A., Dukhovskoy D S, et al.. Moeling studies of the upper ocean response to a tropical cyclone. Ocean Dynamics, 2006, 56: 594-606
    [63] Oey, L. Y., Mellor G. L., Hires R. I.. A three-dimensional simulation of the Hudson-Raritan estuary. Part I: Description of the model and model simulations. J. Phys. Oceanogr., 1985, 15: 1676-1692
    [64] Oey, L. Y., Mellor G. L., Hires R. I.. A three-dimensional simulation of the Hudson-Raritan estuary. Part II: Comparison with observation. J. Phys. Oceanogr., 1985, 15: 1693-1709
    [65] Oey, L. Y., Mellor G. L., Hires R. I.. A three-dimensional simulation of the Hudson- Raritan estuary. Part III: Salt flux analyses. J. Phys. Oceanogr., 1985, 15: 1711-1720
    [66] Phillips O. M.. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 1985, 156: 505-531
    [67] Phillips O. M.. The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 1958, 4: 426-434
    [68] Plant W. J.. A relation between wind stress and wave slope. J. Geophys. Res., 1982, 87: 1961-1967
    [69] Prasad T. G., Hogan P. J.. Upper-ocean response to Hurricane Ivan in a 1/25o Nested Gulf of Mexico HYCOM. J Geophys. Res., 2007, 112: doi:10.1029/2007JC003695
    [70] Price J. F., Mooers C., Leer J.. Observation and simulation of storm-induced mixed-layer deepening. J. Phys. Oceanogr., 1978, 8: 582-599
    [71] Price J. F., Sanford T. B., Forristall G. Z.. Forced stage response to a moving hurricane, J Phys. Oceanogr., 1994, 24: 233-260
    [72] Price J. F.. Internal wave wake of a moving storm.PartI: scales, energybudget and observations, J Phys. Oceanogr., 1983, 13: 949-965
    [73] Price, J. F.. Upper ocean response to a hurricane. J. Phys. Oceanogr., 1981, 11: 153-175
    [74] Pudov V. D., Varfolomeev A. A., Fedorov K. N.. Vertical structure of the wake of a typhoon in the upper coean. Okeanologiya, 1979, 21: 142-146
    [75] Qiao, F., Chen S., Li C., et al.. The study of wind, wave, current extreme parameters and climatic characters of the South China Sea. Journal of Marine Technology Society, 1999, 33 (1), 61-68.
    [76] Resio D. T., Perrie W.. A numerical study of nonlinear energy fluxes due to wave-wave interactions. Part I: Methodology and basic results. J. Fluid Mech., 1991, 223: 609-629
    [77] Shay L. K., Black P. G., Mariano A. J., et al.. Upper ocean response to Hurricane Gilbert. J Geophys. Res., 1992, 97: 20227-20248
    [78] Shay L. K., Elsberry R. L.. Near-intertial ocean current response to a Hurricane Frederic, J Phys. Oceanogr.. 1987, 17: 1249-1269
    [79] Simon W. C., Richard A. A.. Numerical simulations of the ocean’s nonlinear, baroclinic response to translating hurricanes. J Phys. Oceanogr.. 1978, 8: 468-480
    [80] Simons, T. J.. Verification of numerical models of Lake Ontario. Part I, circulation in spring and early summer. J. Phys. Oceanogr., 1974, 4: 507-523
    [81] Snyder R. L., Dobson F. W., Elliott J. A., et al.. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 1981, 102: 1-59
    [82] Synder R. L., Dobson F. W., Elliott J. A., et al.. Array measurements of atmospheric pressure fluctuation above surface gravity waves. J. Fluid Mech, 1981, 102: 1-59
    [83] Taira K., Kitagawa S., Otobe H., et al.. Observation of temperature and velocity from a surface buoy moored in the Shikoku basin(OMLET-88)—An ocean response to a typhoon.. J. Oceanography, 1993, 49: 397-406
    [84] Tolman H. L.. Alleviating the garden sprinkler effect in wind wave models.Ocean Mod., 2002, 4: 269-289
    [85] Tolman H. L.. Distributed memory concepts in the wave modle WAVEWATCH III. Parallel Computing, 2002, 28: 35-52
    [86] Tolman H. L.. Limiters in third-generation wind wave models. The Global Atmosphere and Ocean System, 2002, 8: 67-83
    [87] Tolman H. L.. User manual and system documentation of WAVEWATCH-III version 2.22. NOAA/NWS/NCEP/MMAB Technical Note 222, 2002, 133 pp
    [88] Tracy B. A., Resio D. T.. Theory and calculation of the nonlinear energy transfer between sea waves in deep waters. WES Resport 11, US Army Corps of Engineers, 1982
    [89] Van Vledder G. Ph.. Improved method for obtaining the integration space for the computation of nonlinear quadruplet wave-wave interaction. In Proceeding of the 6th International Workshop on Wave Forecasting and Hindcasting, 2000, 418-431
    [90] Wada A.. The processes of SST cooling by typhoon passage and case study of typhoon Rex with a mixed layer ocean model. Meteorol. Geophys., 2002, 52: 31-66
    [91] Walker N. D., Leben R. R., Balasubramanian S.. Hurricane forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett., 2005, 32, doi: 10.1029/2005GL023716
    [92] Webb D. J.. Non-linear transfers between sea waves. Deep-Sea Res., 1978, 25: 279-298
    [93] Welander P.. Numerical prediction of storm surges. Adv. Geophys., 1961, 8: 315-379
    [94] Wen S. C., Zhang D. C., Guo P. F.,and Chen B. H.. Parameters in wind-wave frequency spectra and their bearing on spectrum forms and growth. Acta Oceanol. Sin., 1989, 8: 15-39
    [95] Whitham G. B.. A general approach to linear and non-linear dispersive waves using a Lagrangian. J. Fluid Mech, 1965, 22: 273-283
    [96] Witter, D. L., Chelton D. B.. A Geosat altimeter wind speed algorithm and amethod for altimeter wind speed algorithm development. J. Geophys. Res., 1991, 96: 8853-8860
    [97] Xia C., Qiao F., Zhang M., et al.. Simulation of double cold cores of the 35°N section in the Yellow Sea with a wave-tide-circulation coupled model. J Oeanlo. Limnol., 2004a, 22(3): 292-298
    [98] Xia C., Qiao F., Zhang Q.. Numerical modeling of the quasi-global ocean circulation based on POM. J Hydrodyn., Ser B, 2004, 16(5): 537-543
    [99] Xie L., Pietrafesa L. J., Wu K.. A numerical study of wave-current interaction through surface and bottom stresses: costal ocean response to Hurricane Fran of 1996. J Geophys Res, 2003, dio: 10.1029/2001JC001078
    [100] Yin Bao-shu,Wang Tao,M.I.EI-Sabh. A third generation shallow water wave numerical Model—YE-WAM. Chin. J. Oeanol. Limnol., 1996, 14(2): 106-112
    [101] Zelder S. E., Dickey T. D., Doney S. C., et al.. Analyses and simulation of the upper ocean’s response to Hurricane Felix at the Bermuda Tested Mooring site:13-23 August 1995. J Geophys. Res., 2002, 107, doi:10.1029/2001JC000969
    [102]郭东建,曾庆存.理想海域中台风引起的潮、流及波的分析I.开阔海域的情况.气候与环境研究, 1997, 12: 323-332
    [103]郭东建,曾庆存.理想海域中台风引起的潮、流及波的分析II.海岸及陆架的影响.气候与环境研究, 1998, 3: 15-26
    [104]华锋,王道龙,袁业立等.复杂地形下海浪数值模式的特征线计算格式.海洋科学进展, 2005, 23(3): 272-280
    [105]黄立文,邓健.黄、东海海洋对于台风过程的响应.海洋与湖沼, 2007, 38(3): 246-252
    [106]李东辉,张铭.南海上层流场对Frankic(9606)强热带风暴响应的数值计算.海洋预报, 2003, 20(4): 56-63
    [107]李立,许金殿.近海对台风的响应标注I.大亚湾海况对8708和8710号台风的综合响应.台湾海峡, 1994, 13(3): 213-218
    [108]刘增宏,许建平,朱伯康等.利用Argo资料研究2001-2004年期间西北太平洋海洋上层对热带气旋的响应.热带海洋学报, 2006, 25(1): 1-8
    [109]潘增弟,孙乐涛,华锋,袁业立. LAGFD-Ⅱ区域性海浪数值模式及其应用Ⅰ.海浪数值模式.海洋与湖沼, 1992, 23(4): 343-349
    [110]潘增弟,孙乐涛,华锋,袁业立. LAGFD-Ⅱ区域性海浪数值模式及其应用Ⅱ.特征线嵌入网格计算方法.海洋与湖沼, 1992, 23(5): 459-467
    [111]齐义泉,朱伯承,施平等. WWATCH模式模拟南海海浪场的结果分析.海洋学报, 2003, 25: 1-9
    [112]苏洁,李磊,鲍献文等.黄渤海表层海温对台风过程响应的数值试验.青岛海洋大学学报, 2001, 31(2): 165-172
    [113]许东峰,刘增宏,徐晓华等.西北太平洋暖池区台风对海表温度的影响.海洋学报, 2005, 27(6):1-6
    [114]袁业立,华锋. LAGFD-WAM海浪数值模式II:区域性特征线嵌入格式及其应用.海洋学报, 1992, 14(6): 12-23
    [115]袁业立,潘增弟. LAGFD-WAM海浪数值模式I:基本物理模型.海洋学报, 1992, 14(5): 1-7
    [116]朱建荣,秦曾灏.海洋对热带气旋响应的研究I.海洋对静止、移速不同的热带气旋响应,海洋与湖沼, 1995, 26(2): 146-153
    [117]朱建荣,秦曾灏.海洋对热带气旋响应的研究II.不同海洋热力结构下的情形,海洋与湖沼, 1995, 26(5): 455-459
    [118]朱建荣,周健.东中国海对热带气旋的响应.上海水利, 1997, 46(1): 13-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700