用户名: 密码: 验证码:
大气—海浪耦合模式的物理基础及数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探寻海气界面的动量、热量及物质交换过程及其影响机制是海气相互作用研究的核心问题,长期以来都是大气、海洋科学家们关注的热点问题之一。海浪作为海气界面普遍存在的现象,一方面通过海浪状态对海气之间的动量、热量以及物质交换产生重要影响,另一方面海浪的破碎及海面风切削波峰等生成的海面飞沫在海面形成水滴蒸发层,直接或间接地影响着海气界面的动量、热量及水汽通量。准确地理解和参数化海浪状态和海面飞沫对海气间动量和热量通量的影响,是海气相互作用研究的重要课题,是建立大气-海浪耦合模式的基础。
     基于前人的研究与观测,本文给出了一个同时考虑波浪状态和海面飞沫影响的、适用于从中低风速到极端高风速条件的无量纲海面动力学粗糙度与波龄的关系。新提出关系对应的海面拖曳系数与海面10-m风速的关系同已有的外海和实验室观测数据符合得较好。此关系表明:在中低风速可以忽略飞沫影响时,无量纲的海面粗糙度与波龄并非单调的增减关系,而是随波龄先增大后减小;而在高风速下,飞沫的影响使得海面拖曳系数随风速的增大而不再增大,反而减小;不同波龄对应的海面拖曳系数在风速为25-33 m/s范围时出现极大值。
     本文还回顾了中低风速下海面标量粗糙度的参数化方法,讨论了大气底层耗散加热效应以及海面飞沫对海气热通量的影响。通过考虑波浪状态对白冠覆盖率的影响给出了适用于气泡生成沫滴的飞沫生成函数,将其同Zhao et al.(2006)受波浪状态影响、适用于飞滴的生成函数连接起来得到了受波浪状态影响、适用于各种半径的飞沫生成函数。进一步将得到的飞沫生成函数应用于Andreas(1992)估计飞沫热通量的方法,同时考虑海面飞沫热力学过程的反馈效应,进而得到了考虑波浪状态影响的飞沫感热和潜热通量的估计方法。由此方法估计的飞沫感热和潜热通量在给定的大气、海面环境条件下,一方面随风速的增大而增大,另一方面相同风速条件下,随波龄和风海雷诺数的增大而增大。
     基于对大气-海浪模式耦合基础的讨论,本文将新一代天气研究与预报WRF模式和第三代海浪模式WAVEWATCHⅢ耦合起来,建立了一个大气-海浪耦合系统。将耦合系统应用于一个理想台风的模拟中,通过对不同试验方案模拟结果的分析与对比,研究了不同海面动力学粗糙度参数化方案、大气底层耗散加热以及海面飞沫热通量对台风系统的影响。波浪状态对海面粗糙度的影响增大了海面摩擦,减弱了台风强度,减小了台风浪的有效波高,但不同海面粗糙度参数化方案对台风移动路径及海气热通量影响不大;应用本文新提出的海面动力学粗糙度参数化方案时,模拟的理想台风强度相对非耦合的控制试验减弱约5%,最大有效波高减小约6%。大气底层耗散加热效应能增大海气界面总热通量,增强台风的强度,使台风的中心海平面气压加深8-10%,最大海面10 m风速增大6-10%,最大有效波高增大10-15%。海面飞沫热通量能显著地增强台风强度,增大海面风速和海面动量通量以及海面波高;同时海面飞沫热通量直接影响着海气界面的总热量和水汽通量,显著地增大海气界面的潜热和水汽通量。此外,海面状态影响的海面动力学粗糙度、大气底层耗散加热效应以及海面飞沫热通量三者对台风系统的影响并不是孤立的,而是互相影响的。同时考虑以上三种效应时,模拟的台风最低中心海平面气压相对于控制试验加深了10.7 hPa,台风强度增强14%,最大海面10-m风速和最大有效波高相对于控制试验也分别增大了18%和4%;海气之间总的热通量相对于控制试验增大约10%,而海气间总潜热通量增大得更为显著(约18%)。
     本文还将大气-海浪耦合系统应用于200509号台风Matsa个例的模拟,并通过对耦合试验与非耦合的控制试验模拟结果的分析与对比研究了大气-海浪模式的耦合对Matsa台风的影响。结果表明:考虑了海浪状态、大气底层耗散加热以及海面飞沫对海气动量和热量通量的影响,大气-海浪模式的耦合增大了海面动力学粗糙度及海气热量和水汽通量;同非耦合的控制试验相比,耦合试验模拟的Matsa台风强度有所增强,中心气压及表面最大风速同最佳路径资料符合得更好;对于Matsa台风浪的模拟,同卫星高度计观测资料的对比也表明耦合试验模拟的有效波高同观测资料更为接近。
Understanding the processes and mechanisms of air-sea momentum, heat and mass transfers is essential to the study of air-sea interaction, and has taken on community interests in the past. As ubiquitous phenomena on the sea surface, surface waves can influence air-sea momentum, heat and mass exchanges through sea-state-dependent surface roughness. Meanwhile, sea spray produced by bursting bubbles in whitecaps and wind tearing of breaking wave crests can modify transfers of momentum, heat and mass across the air-sea interface directly or indirectly. Reliable understanding and parameterizing the impacts of wave state and sea spray on air-sea momentum and heat fluxes is crucial to air-sea interaction research, and is the physical basis of the coupled atmosphere-wave model.
     Based on previous studies and measurements, a parameterization of sea surface areodynamic roughness, which adapts to from low-to-moderate wind conditions to extremely-high wind conditions, is given by taking wave state and sea spray effects into account. The relationship between drag coefficient and wind speed corresponding to the new proposed parameterization agrees well with the existing field and laboratory observational data. According to this relation, under low-to-moderate wind conditions when the sea spray effects can be neglected, the nondimensional areodynamic roughness first increases and then decreases as the wave age increases. While under high wind conditions the drag coefficient decreases with increasing wind speed because of the modification of logarithmic wind profile by spray droplets. In addition, drag coefficients corresponding to different wave states reach their maximum value when the wind speed is between 25 to 33 m s-1.
     Parameterization of sea surface scalar roughness under low-to-moderate wind is reviewed, and dissipative heating and sea spray effects on air-sea heat flux are discussed in this paper. Taking into account the effect of wave state on whitecap coverage, a sea spray generation function (SSGF) for bubble-derived droplets is presented. Combined it with the wave-state-dependent SSGF for spume droplets (Zhao et al., 2006), a SSGF applicable to both bubble-derived and spume droplets with wave state effects included is obtained. Applying this SSGF to Andreas (1992)’s method for estimating sea spray heat flux and considering the thermodynamical feedback of sea spray, an algorithm to estimate wave state affected sea spray heat flux is accomplished. Given the atmospheric and oceanic environment, sea spray heat flux estimated by this algorithm increases with wind speed, wave age and windsea Reynolds number as well.
     Based on the discussion of air-sea momentum and heat fluxes, the next generation Weather Research and Forecasting (WRF) model is coupled with the third generation wave model WAVEWATCH III to establish a coupled atmosphere-wave system. In order to investigate the impacts of different sea-state-dependent roughness, dissipative heating and sea spray heat flux on typhoon system, the coupled model is applied to an idealized typhoon. It is found that sea-state-dependent roughness increases sea surface friction, reduces typhoon intensity and surface wave height. Whereas the impacts of different sea-state-dependent areodynamic roughness parameterizations on air-sea heat flux and typhoon track are insignificant. When using the new presented wave state and sea spray affected areodynamic roughness parameterization, the minimum central pressure for the coupled simulation is reduced by about 5% relative to the uncoupled simulation, and the simulated maximum significant wave height is also reduced by about 6%. The inclusion of dissipative heating increases the air-sea heat flux, thus intensifies the typhoon system, leading to an 8-10% increase of minimum central pressure, a 6-10% increase of maximum wind speed at 10-m height and a 10-15% increase of maximum significant wave height. Incorporating sea spray heat flux substantially strengthens the typhoon system, and increases surface wind and wave height. It also influences air-sea heat fluxes directly, and significantly increases the air-sea latent heat and water vapor fluxes. In addition, it should be pointed out that the impacts of sea-state-dependent sea surface roughness, dissipative heating and sea spray heat flux on the typhoon system are not isolated, but dependent upon each other. With all the three effects included, the minimum central pressure in the coupled simulation is 10.7 hPa deeper than in the uncoupled simulation, corresponding to a 14% increase of the intensity of typhoon system. The simulated maximum wind speed and significant wave height increase by 18% and 4% respectively. The simulated total air-sea heat flux for the coupled simulation also increases about 10%, while the air-sea latent heat flux increases more significantly by about 18%.
     The coupled atmosphere-wave system is further used in the simulation of Typhoon Matsa (2005). The effects on the typhoon system of the coupling between atmosphere and wave models are investigated through the analyses and comparisons of the results of the coupled and control simulations. It is shown that, considering the impacts of sea state, dissipative heating and sea spray heat flux, the coupled experiment simulates a stronger typhoon whose central pressure and maximum sustained wind agree better with the data in the best track from RSMC. In addition, comparison with the observed significant wave heights of Jason-1 altimeter indicates that the significant wave heights simulated by the coupled experiment are better consistent with the observations along the satellite tracks.
引文
1.丁赟, 2005:风浪状态对海面风应力的影响,中国海洋大学硕士论文, 80.
    2.管长龙, 2000:我国海浪理论及预报研究的回顾与展望.青岛海洋大学学报, 30, 549-556.
    3.管长龙,孙群, 2001:风浪成长关系的分析及其对3/2指数律的支持.青岛海洋大学学报, 31, 633-639.
    4.刘春霞,齐义泉,梁建茵, 2005: WRF与海浪模式耦合及其对台风的影响.中国气象学会2005年年会论文集, 2300-2307.
    5.沙文钰,潘玉萍, 2004:用COARE算法测试4种最新海面空气动力粗糙度方案.自然科学进展, 14, 196-200.
    6.史剑, 2006:海-气界面湍通量参数化的初步研究,解放军理工大学硕士论文, 65.
    7.汪炳祥, 1997:两参量的海面阻力系数模式的探讨.海洋与湖沼, 28, 96-103.
    8.汪炳祥,陈伯海, 1996:海面阻力系数模式的探讨.海洋学报, 18, 99-106.
    9.汪炳祥,李国璋,陈伯海,吕红民, 1997:海面粗糙度分析.海洋学报, 19, 20-28.
    10.文凡,苏泽宇,吕红民, 2005:粗糙度与风浪特征量关系的研究.海洋与湖沼, 36, 31-35.
    11.文圣常,余宙文, 1984:海浪理论与计算原理.科学出版社,北京, 662 pp.
    12.肖风劲, 2005:降水偏多气温接近常年台风麦莎造成损失严重--2005年8月.气象, 31, 94-
    95.
    13.薛社生,田纪伟,徐德伦, 2001:海气界面浪沫中泡沫液滴的尺寸分布.海洋与湖沼, 32, 88-93.
    14.于卫东, 2004:气候过程中的海洋-大气相互作用研究--小尺度的海-气通量过程和大尺度的热带海-气相互作用过程,中国科学院研究生院博士学位论文, 78.
    15.于卫东, Z. Li, H. L. Treut, and袁业立, 1999:耦合大气海浪模式(LMD-WAM)的全球海气通量研究.水动力学研究与进展, 14, 189-199.
    16.袁业立等, 1992: LAGFD-WAM海浪数值模式, I:基本物理模型.海洋学报, 14, 1-7.
    17.——, 1992: LAGFD-WAM海浪数值模式, II:区域性特征线嵌入格式及其应用.海洋学报, 14, 12-24.
    18.张子范,李家春, 1998:风浪发展对海面阻力系数的影响.中国科学A辑, 28, 53-61.
    19.——, 1999:水气动量交换的实验研究.空气动力学学报, 17, 285-291.
    20.——, 2001:海气界面动量、热量及水汽交换系数的数值模拟.水动力学研究与进展, 16, 119-129.
    21. Alamaro, M., 2001: Wind Wave Tank for Experimental Investigation of Momentum and Enthalpy Transfer from the Ocean Surface at High Wind Speed, Master thesis at Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 79.
    22. Alamaro, M., K. A. Emanuel, J. J. Colton, W. R. McGillis, and J. Edson, 2002: Experimental Investigation of Air-Sea Transfer of Momentum and Enthalpy at High Wind Speed. 25th Conference on Hurricanes and Tropical Meteorology, San Diego, Ca., 2.
    23. Anctil, F. and M. A. Donelan, 1996: Air-water momentum flux observations over shoaling waves. J. Phys. Oceanogr., 26, 1344-1353.
    24. Anderson, R. J., 1993: A study of wind stress and heat flux over the open ocean by the inertial dissipation method. J. Phys. Oceanogr., 23, 2153-2161.
    25. Anderson, R. J. and S. D. Smith, 1981: Evaporation coefficient for the sea surface from eddy flux measurements. J. Geophys. Res., 86, 449-456.
    26. Andreas, E. L., 1992: Sea Spray and the Turbulent Air-Sea Heat Fluxes. J. Geophys. Res., 97, 11429-11441.
    27.——, 1994: Comments on "On the Contribution of Spray Droplets to Evaporation"by Lutz Hasse. Boundary-Layer Meteorol., 68, 207-214.
    28.——, 1995: The Temperature of Evaporating Sea Spray Droplets. J. Atmos. Sci., 52, 852-862.
    29.——, 1996: Reply. J. Atmos. Sci., 53, 1642-1648.
    30.——, 1998: A New Sea Spray Generation Function for Wind Speeds up to 32 m s-1. J. Phys. Oceanogr., 28, 2175-2184.
    31.——, 2002: A review of the sea spray generation function for the open ocean. Atmosphere-Ocean Interactions, W. Perrie, Ed., WIT Press, 1-46.
    32.——, 2003: An algorithm to predict the turbulent air-sea fluxes in high-wind, spray conditions. CD-ROM of preprints, 12th Conference on Interaction of the Sea and Atmosphere of the American Meteorological Society, Long Beach, CA, 7.
    33.——, 2004: A bulk air-sea flux algorithm for high-wind, spray conditions, Version 2.0. Preprints, 13th Conference on Interactions of the Sea and Atmosphere, Portland, ME, 8.
    34. Andreas, E. L. and J. DeCosmo, 1999: Sea Spray Production and Influence on Air-Sea Heat and Moisture Fluxes over the Open Ocean. Air-Sea Exchange: Physics, Chemistry and Dynamics, Kluwer Academic Publishers, 327-362 pp.
    35. Andreas, E. L. and K. A. Emanuel, 1999: Effects of Sea Spray on Tropical Cyclone Intensity. 23rd Conference on Hurricanes and Tropical Meteorology, Dallas, TX, American Meteorological Society, Boston, MA, 22-25.
    36. Andreas, E. L. and J. DeCosmo, 2002: The signature of sea spray in the HEXOS turbulent heat flux data. Boundary-Layer Meteorol., 103, 303-333.
    37. Andreas, E. L., J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The Spray Contribution to Net Evaporation from the Sea: A Review of Recent Progress. Boundary-Layer Meteorol., 72, 3-52.
    38. Atakturk, S. S. and K. B. Katsaros, 1999: Wind Stress and Surface Waves Observed on Lake Washington. J. Phys. Oceanogr., 29, 633-650.
    39. Banner, M. L., W. Chen, E. J. Walsh, J. B. Jensen, S. Lee, and C. Fandry, 1999: The Southern Ocean Waves Experiment. Part I: Overview and Mean Results. J. Phys. Oceanogr., 29, 2130-2145.
    40. Bao, J.-W., J. M. Wilczak, J.-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 2190-2210.
    41. Beljaars, A. C. M., 1994: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255-270.
    42. Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677-691.
    43. Betts, A. K. and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693-709.
    44. Bister, M. and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233-240.
    45. Blanchard, D. C., 1963: The Electrification of the Atmosphere by Particles from Bubbles in the Sea. Vol. 1, Progress in Oceanography, MacMillan, 71-202 pp.
    46.——, 1989: The size and height to which jet drops are ejected from bursting bubbles in seawater. J. Geophys. Res., 94, 10999-11002.
    47. Blanchard, D. C. and A. H. Woodcock, 1957: Bubble Formation and Modification in the Sea and its Meteorological Significance. Tellus, 9, 145-158.
    48. Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions, 1. Model description and validation. J. Geophys. Res., 104, 7649-7666.
    49. Bortkovskii, R. S., 1973: On the Mechanism of Interaction between the Ocean and the Atmosphere during a Storm. Fluid Mech. Sov. Res., 2, 87-94.
    50. Bourassa, M. A., D. G. Vincent, W. L. Wood, C. A. Clayson, and J. A. Curry, 1999: A Flux Parameterization Including the Effects of Capillary Waves and Sea State Determination of surface turbulent fluxes for the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment: Comparison of satellite retrievals and in situ measurements. J. Atmos. Sci., 56, 1123-1139.
    51. Bouws, E. and G. J. Komen, 1983: On the balance between growth and dissipation in an extreme depth-limited wind-sea in the southern north sea. J. Phys. Oceanogr., 13, 1653-1658.
    52. Brocks, K. and L. Krugermeyer, 1970: The hydrodynamic roughness of the sea surface. Rep. No. 15, Institue for Radiometeeorologie und Maritime Meteorologie, Hamburg University.
    53. Brutsaert, W., 1975: The Roughness Length for Water Vapor Sensible Heat, and Other Scalars. J. Atmos. Sci., 32, 2028-2031.
    54. Brutsaert, W. H., 1982: Evaporation Into the Atmosphere: Theory, History and Application. Reidel, Dordrecht, 299 pp.
    55. Burk, S. D., 1984: The Generation, Turbulent Transfer and Deposition of the Sea-Salt Aerosol. J. Atmos. Sci., 41, 3040-3051.
    56. Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometeorology, D. A. Haugen, Ed., American Meteorological Society, 67-100.
    57. Bye, J. A. T. and A. D. Jenkins, 2006: Drag coefficient reduction at very high wind speeds. J. Geophys. Res., C111, C03024, doi:10.1029/2005JC003114.
    58. Chaen, M., 1973: Studies on the production of sea-salt particles on the sea surface. Mem. Fac. Fish., Kagoshima Univ., 22, 49-107.
    59. Chalikov, D., 1995: The Parameterization of the Wave Boundary Layer. J. Phys. Oceanogr., 25, 1333-1349.
    60. Chalikov, D. V. and M. Y. Belevich, 1993: One-dimensional theory of the wave boundary layer. Boundary-Layer Meteorol., 63, 65-96.
    61. Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639-640.
    62.——, 1958: A note on empirical wind-wave formulae. Quart. J. Roy. Meteor. Soc., 84, 443-
    447.
    63. Chen, F. and J. Dudhia, 2001: Coupling an advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569-585.
    64. Chen, S.-H. and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99-118.
    65. Chou, M.-D. and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Tech. Memo. 104606, 3, 85 pp.
    66. Clayson, C. A. and J. A. Curry, 1996: Determination of surface turbulent fluxes for the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment: Comparison of satellite retrievals and in situ measurements. J. Geophys. Res., 101, 28515-28528.
    67. Clayson, C. A., C. W. Fairall, and J. A. Curry, 1996: Evaluation of turbulent fluxes at the ocean surface using surface renewal theory. J. Geophys. Res., 101, 28503-28514.
    68. Davis, R. W. and E. F. More, 1982: A numerical study of vortex shedding from rectangles. J. Fluid Mech., 166, 475-506.
    69. Deacon, E. L. and E. K. Webb, 1962: Aerodynamic roughness of the sea. J. Geophys. Res., 67, 3167-3172.
    70. DeCosmo, J., 1991: Air-Sea Exchange of Momentum, Heat and Water Vapor over Whitecap Sea States, PhD. Thesis of University of Washington, 212.
    71. DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-Sea Exchange of Water Vapor and Sensible Heat: The Humidity Exchange over the Sea (HEXOS) Results. J. Geophys. Res., 101, 12001-12016.
    72. Desjardins, S., J. Mailhot, and R. Lalbeharry, 2000: Examination of the Impact of a Coupled Atmospheric and Ocean Wave System. Part I: Atmospheric Aspects. J. Phys. Oceanogr., 30, 385-401.
    73. Donelan, M. A., 1979: On the fraction of wind momentum retained by waves. Marine Forecasting, C. Nihoul, Ed., Elsevier, 141-159.
    74.——, 1982: The dependence of the aerodynamic drag coefficient on wave parameters. Proc. First Int. Conf. on Meteorology and Air/Sea Interactions of the Coastal Zone, Hague, Netherlands, Amer. Meteor. Soc.
    75.——, 1990: Air-sea interaction. The sea: Ocean Engineering Science, B. l. Mehaute and D. M. Hanes, Eds., Wiley-Interscience, 239-292.
    76. Donelan, M. A., W. M. Drennan, and K. B. Katsaros, 1997: The air-sea momentum flux in conditions of mixed wind sea and swell. J. Phys. Oceanogr., 27, 2087-2099.
    77. Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.
    78. Doyle, J. D., 1995: Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis. Tellus, 47A, 766-788.
    79.——, 2002: Coupled atmosphere-ocean wave simulations under high wind conditions. Mon. Wea. Rev., 130, 3087-3099.
    80. Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, doi:10.1029/2000JC000715.
    81. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107.
    82. Dyer, A. J. and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715-721.
    83. Ebuchi, N., Y. Toba, and H. Kawamura, 1992: Statistical study on the local equilibrium between wind and wind waves by using data from ocean data buoy stations. J. Oceanogr. Soc. Japan, 48, 77-92.
    84. Edson, J. B. and E. L. Andreas, 1997: Modeling the Role of Sea Spray on Air-SeaHeat andMoisture Exchange. 12th Symposium on Boundary Layers and Turbulence, American Meteorological Society, Boston, MA, 490-491.
    85. Edson, J. B., C. W. Fairall, P. G. Mestayer, and S. E. Larsen, 1991: A study of the inertial-dissipation method for computing air-sea fluxes. J. Geophys. Res., 96, 10689-10711.
    86. Edson, J. B., C. J. Zappa, J. A. Ware, W. R. McGillis, and J. E. Hare, 2004: Scalar flux profile relationships over the open ocean. J. Geophys. Res., 109.
    87. Emanuel, K. A., 1995: Sensitivity of Tropical Cyclones to Surface Exchange Coefficients and a Revised Steady-State Model Incorporating Eye Dynamics. J. Atmos. Sci., 52, 3969-3976.
    88.——, 2003: A similarity hypothesis for air-sea exchange at extreme wind speeds. J. Atmos. Sci., 60, 1420-1428.
    89. Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The Effect of Sea Spray on Surface Energy Transports over the Ocean. Global Atmos. Ocean Sys., 2, 121-142.
    90. Fairall, C. W., J. B. Edson, S. E. Larsen, and P. G. Mestayer, 1990: Inertial-dissipation air-sea flux measurements: A prototype system using real time spectral computations. J. Atmos. Oceanic Tech., 7, 425-453.
    91. Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for TOGA COARE. J. Geophys. Res., 101, 3747-3764.
    92. Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm. Journal of Climate, 16, 571-591.
    93. Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 1295-1308.
    94. Fels, S. B. and M. D. Schwarzkopf, 1975: The Simplified Exchange Approximation: A New Method for Radiative Transfer Calculations. J. Atmos. Sci., 32, 1475-1488.
    95. Fitzgerald, J. W., 1975: Approximation Formulas for the Equilibrium Size of an Aerosol Particle as a Function of its Dry Size and Compositon and the Ambient Relative Humidity. J. Appl. Meteorol., 14, 1044-1049.
    96. Francis, J. R. D., 1951: The aerodynamic drag of a free water surface. Proc. Roy. Soc. London A, 206, 387-406.
    97. Friedlander, S. K., 1977: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.
    98. Friehe, C. A. and K. F. Schmitt, 1976: Parameterization of Air-Sea Interface Fluxes of Sensible Heat and Moisture by the Bulk Aerodynamic Formulas. J. Phys. Oceanogr., 6, 801-809.
    99. Garratt, J. R., 1977: Review of Drag Coefficients over Oceans and Continents. Mon. Wea. Rev., 105, 915-929.
    100.——, 1992: The atmospheric boundary layer. Cambridge atmospheric and space science series, Cambridge, MA: Cambridge University Press.
    101. Gathman, S. G., 1982: A Time-Dependent Oceanic Aerosol Profile Model. NRL Rep. 8536, Naval Research Laboratory, Washington, D.C., 35 pp.
    102. Geernaert, G. L., K. B. Katsaros, and K. Richter, 1986: Variations of the drag coefficient and its dependence on sea state. J. Geophys. Res., 91, 7667-7679.
    103. Geernaert, G. L., S. E. Laresn, and F. Hansen, 1987: Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res., 92, 13127-13139.
    104. Gelci, R., H. Cazale, and J. Vassal, 1957: Prevision de la houle, la methode des densites spectroangulaires. Bull. Inform. Comite Central Oceanogr. Etude Cotes, 9, 416-435.
    105. Goda, Y. and K. Nagai, 1974: Investigation of the statistical properties of sea waves with fields and simulated data. Rept. Port Harbor Res. Inst., 13, 3-37.
    106. Grell, G. A. and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.
    107. Guan, C. and L. Xie, 2004: On the Linear Parameterization of Drag Coefficient over Sea Surface. J. Phys. Oceanogr., 34, 2847-2851.
    108. Guan, C., W. Hu, J. Sun, and R. Li, 2007: The Whitecap Coverage Model from Breaking Dissipation Parametrizations of Wind Waves. J. Geophys. Res., in press.
    109. Hamada, T., 1963: An experimental study of development of wind waves. Rept. Port Harbor Res. Inst., 2, 1-41.
    110. Hanson, J. L. and O. M. Phillips, 1999: Wind Sea Growth and Dissipation in the Open Ocean. J. Phys. Oceanogr., 29, 1633-1648.
    111. Hasse, L., 1992: On the Contribution of Spary Droplets to Evaporation. Boundary-Layer Meteorol., 61, 309-313.
    112. Hasselmann, K., 1962: On the nonlinear energy transfer in a gravity wave spectrum, 1. J. Fluid Mech., 12, 481-500.
    113.——, 1963: On the nonlinear energy transfer in a gravity wave spectrum, 2. J. Fluid Mech., 15, 273-281.
    114. Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D. J. Olbers, K. Richter, W. Sell, and H. Walden, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. Suppl. A, 8, 1-95.
    115. Hasselmann, S. and K. Hasselmann, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, part 1: A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr., 15, 1369-1377.
    116. Hasselmann, S., K. Hasselmann, J. H. Allender, and T. P. Barnett, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum, part 2: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, 1378-1391.
    117. Hellerman, S. and M. Rosenstein, 1983: Normal Monthly Wind Stress Over the World Ocean with Error Estimates. J. Phys. Oceanogr., 13, 1093-1104.
    118. Hong, S.-Y. and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339.
    119. Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 2621-2639.
    120. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Wea. Rev., 132, 103-120.
    121. Hsu, S. A., 1974: A dynamic roughness equation and its application to wind stress determination at the air-sea interface. J. Phys. Oceanogr., 4, 116-120.
    122. Iida, N., Y. Toba, and M. Chaen, 1992: A new expression for the production rate of sea water droplets on the sea surface. J. Oceanogr., 48, 439-460.
    123. Janjic, Z. I., 1990: The step-mountain coordinate: physical package. Mon. Wea. Rev., 118, 1429-1443.
    124.——, 1994: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945.
    125.——, 1996: The surface layer in the NCEP Eta Model. Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., Boston, MA, 354-355.
    126.——, 2000: Comments on 'Development and Evaluation of a Convection Scheme for Use in Climate Models'. J. Atmos. Sci., 57, 3686-3686.
    127.——, 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437, 61 pp.
    128. Janssen, P. A. E. M., 1989: Wave-induced stress and the drag of airflow over sea waves. J. Phys. Oceanogr., 19, 745-754.
    129.——, 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 1631-1642.
    130.——, 1994: Results with a coupled wind wave model. ECMWF Tech. Rep. No. 71, 58 pp.
    131.——, 1997: Does Wind Stress Depend on Sea-State or Not? a Statistical Error Analysis of Hexmax Data. Boundary-Layer Meteorol., 83, 479-503.
    132. Janssen, P. A. E. M. and P. Viterbo, 1996: Ocean waves and the atmospheric climate. Journal of Climate, 9, 1296-1287.
    133. Johnson, H. K., J. Hojstrup, H. J. Vested, and S. E. Larsen, 1998: On the Dependence of Sea Surface Roughness on Wind Waves. J. Phys. Oceanogr., 28, 1702-1716.
    134. Jones, I. S. F. and Y. Toba, 2001: Wind stress over the ocean. Cambridge University Press, 307 pp.
    135. Kain, J. S. and J. M. Fritsch, 1990: A one-dimensional entraining / detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802.
    136.——, 1993: Convective parameterization for mesoscale models: The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 246.
    137. Kaplan, J. and W. M. Frank, 1993: The Large-Scale Inflow-Layer Structure of Hurricane Frederic (1979). Mon. Wea. Rev., 121, 3-20.
    138. Katsaros, K. B. and S. S. Atakturk, 1992: Dependence of Wave Breaking Statistics on Wind Stress and Wave Development. Breaking Waves, M. L. B. a. R. H. J. Grimshaw, Ed., Springer-Verlag, 119-132.
    139. Katsaros, K. B. and G. de Leeuw, 1994: Comment on "Sea Spray and the Turbulent Air-Sea Heat Fluxes" by Edgar L Andreas. J. Geophys. Res., 99, 14339-14343.
    140. Kawai, S., K. Okada, and Y. Toba, 1977: Field data support of three-seconds power law and the gu*σ-4- spectral form for growing wind waves. J. Oceanogr. Soc. Japan, 33, 137-150.
    141. Kepert, J. D., 1996: Comments on `The Temperature of Evaporating Sea Spray Droplets'. J. Atmos. Sci., 53, 1634-1641.
    142. Kepert, J. D., C. W. Fairall, and J.-W. Bao, 1999: Modelling the Interaction between the Atmospheric Boundary Layer and Evaporating Sea Spray Droplets. Air-Sea Exchange: Physics, Chemistry and Dynamics, Kluwer Academic Publishers, 363-409 pp.
    143. Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulation. Meteorological Monographs, American Meteorological Society, Boston, MA., 1-84.
    144. Kientzler, C. F., A. B. Arons, D. C. Blandhard, and A. H. Woodcock, 1954: Photographic Investigation of the Projection of Droplets by Bubbles Bursting at a Water Surface. Tellus, 6, 1-7.
    145. Kitaigorodskii, S. A., 1968: On the calculation of the aerodynamic roughness of the sea surface. Izv. Atmos. Oceanic Phys., 4, 498-502.
    146. Kitaigorodskii, S. A. and Y. A. Volkov, 1965: On the roughness parameter of the sea sueface and calculation of momentum flux in the near-water layer of the atmosphere. Izv. Atmos. Oceanic Phys., 1, 973-988.
    147. Koga, M., and Y. Toba, 1981: Droplet distribution and dispersion processes on breaking wind waves. Tohoku Geophys. J., 28, 1-25.
    148. Komen, G. J., K. Hasselmann, and S. Hasselmann, 1984: On the existence of a fully developed windsea spectrum. J. Phys. Oceanogr., 14, 1271-1285.
    149. Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, Cambridge, 532 pp.
    150. Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Boundary-Layer Meteorol., 9, 91-112.
    151. Kraan, C., W. A. Oost, and P. A. E. M. Janssen, 1996: Wave Energy Dissipation by Whitecaps. J. Atmos. Oceanic Tech., 13, 262-267.
    152. Lacis, A. A. and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31, 118-133.
    153. Lafon, C., J. Piazzola, P. Forget, O. L. Calve, and S. Despiau, 2004: Analysis of the Variations of the Whitecap Fraction as Measured in a Coastal Zone. Boundary-Layer Meteorol., 111, 339-360.
    154. Lalbeharry, R., J. Mailhot, S. Desjardins, and L. Wilson, 2000: Examination of the impact of a coupled atmospheric and ocean wave system. Part II: Ocean wave aspects. J. Phys. Oceanogr., 30, 402-415.
    155. Laprise, R., 1992: The Euler Equations of motion with hydrostatic pressure as as independent variable. Mon. Wea. Rev., 120, 197-207.
    156. Large, W. G. and S. Pond, 1981: Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. J. Phys. Oceanogr., 11, 324-336.
    157.——, 1982: Sensible and Latent Heat Flux Measurements over the Ocean. J. Phys. Oceanogr., 12, 464-482.
    158. Lee, D.-K., Y.-I. Ahn, and C.-J. Kim, 2004: Impacts of ocean roughness and bogus typhoons on summertime circulation in a wave-atmosphere coupled regional climate model. J. Geophys. Res., 109, D06112, doi: 10.1029/2003JD003781.
    159. Leonard, B. P., 1979: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng., 88, 17-74.
    160. Li, W., 2004: Modelling air-sea fluxes during a western Pacific typhoon: Role of sea spray. Adv. Atmos. Sci., 21, 269-276.
    161. Li, W., W. Perrie, E. L. Andreas, J. Gyakum, and R. McTaggart-Cowan, 2003: Impact of sea spray on numerical simulation of extratropical hurricanes. CD-ROM of preprints, 12th Conference on Interaction of the Sea and Atmosphere of the American Meteorological Society, Long Beach, CA, 9.
    162. Lin, W., L. P. Sanford, S. E. Suttles, and R. Valigura, 2002: Drag coefficients with fetch-limited wind waves. J. Phys. Oceanogr., 32, 3058-3074.
    163. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092.
    164. Ling, S. C., 1993: Effect of Breaking Waves on the Transport of Heat and Water Vapor Fluxes from the Ocean. J. Phys. Oceanogr., 23, 2360-2372.
    165. Ling, S. C. and T. W. Kao, 1976: Parameterization of the Moisture and Heat Transfer Process over the Ocean under Whitecap Sea States. J. Phys. Oceanogr., 6, 306-315.
    166. Ling, S. C., T. W. Kao, and A. I. Saad, 1980: Microdroplets and Transport of Moisture from Ocean. Proc. ASCE. Eng. Mech. Div., 106, 1327-1339.
    167. Lionello, P., P. Malguzzi, A. Buzzi, and, 1998: On the coupling between the atmospheric circulation and the ocean wave field: an idealized case. J. Phys. Oceanogr., 28, 161-177.
    168. Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface. J. Atmos. Sci., 36, 1722-1735.
    169. Maat, N., C. Kraan and W. A. Oost, 1991: The roughness of wind waves. Boundary-Layer Meteorol., 54, 89-103.
    170. Makin, V. K., 1998: Air-Sea Exchange of Heat in the Presence of Wind Waves and Spray. J. Geophys. Res., 103, 1137-1152.
    171.——, 2005: A Note on the Drag of the Sea Surface at Hurricane Winds. Boundary-Layer Meteorol., 115, 169-176.
    172. Masuda, A. and T. Kusaba, 1987: On the Local Equilibrium of Winds and Wind-Waves in Relation to Surface Drag. J. Oceanogr. Soc. Japan, 43, 28-36.
    173. Mellor, G. L. and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851-875.
    174. Merzi, N. and W. H. Graf, 1985: Evaluation of the drag coefficient considering the effects of mobility of the roughness elements. Ann. Geophys., 3/4, 473-478.
    175. Michalakes, J., J. Dudhia, D. Gill, J. Klemp, and W. Skamarock, 1999: Design of a nextgeneration regional weather research and forecast model. Towards Teracomputing, World Scientific, 117-124.
    176. Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang, 2004: The Weather Research and Forecast Model: Software Architecture and Performance.Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology, Reading, U.K.
    177. Miller, B. I., 1964: A study of the filling of hurricane Donna (1960) over land. Mon. Wea. Rev., 92, 389-406.
    178. Miller, M. A., 1987: An Investigation of Aerosol Generation in the Marine Planetary Boundary Layer, The Pennsylvania State University, 142.
    179. Mitsuyasu, H., 1968: On the growth of the spectrum of wind-generated waves, 1. Rep. Res. Inst. appl. Mech., Kyushu Univ., 16, 459-482.
    180.——, 1969: On the growth of the spectrum of wind-generated waves, 2. Rep. Res. Inst. appl. Mech., Kyushu Univ., 17, 235-243.
    181. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682.
    182. Monahan, E. C., 1986: The ocean as a source for atmospheric particles. The Role of Air-Sea Exchange in Geochemical Cycling, P. Buat-Menard, Ed., D. Reidel, Dordrecht, 129-163.
    183. Monahan, E. C. and I. O'Muircheartaigh, 1980: Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed. J. Phys. Oceanogr., 10, 2094-2099.
    184. Monahan, E. C. and D. K. Woolf, 1989: Comments on "Variations of Whitecap Coverage with Wind Stress and Water Tempearture". J. Phys. Oceanogr., 19, 706-709.
    185. Monahan, E. C., K. L. Davidson, and D. E. Spiel, 1982: Whitecap Aerosol Productivity Deduced from Simulation Tank Measurements. J. Geophys. Res., 87, 8898-8904.
    186. Monahan, E. C., D. E. Spiel, and K. L. Davidson, 1983: Model of Marine Aerosol Generation via Whitecaps and Wave Disruption. Ninth Conference on Aerospace and Aeronautical Meteorology, Boston, Omaha, Neb., American Meteorological Society., 147-
    158.
    187. Monahan, E. C., C. W. Fairall, K. L. Davidson, and P. J. Boyle, 1983: Observed Inter-Relations between 10 m Winds, Ocean Whitecaps and Marine Aerosol. Quart. J. Roy. Meteor. Soc., 109, 379-392.
    188. Monbaliu, J., 1994: On the use of the Donelan wave spectral parameter as a measure for the roughness of wind waves. Boundary-Layer Meteorol., 67, 277-291.
    189. Moon, I.-J., I. Ginis, and T. Hara, 2004: Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys. Res. Lett., 31, L20302, doi:10.1029/2004GL020988.
    190.——, 2004: Effect of Surface Waves on Air-Sea Momentum Exchange. Part II: Behavior of Drag Coefficient under Tropical Cyclones. J. Atmos. Sci., 61, 2334-2348.
    191. Moon, I.-J., T. Hara, I. Ginis, S. E. Belcher, and H. L. Tolman, 2004: Effect of Surface Waves on Air-Sea Momentum Exchange. Part I: Effect of Mature and Growing Seas. J. Atmos. Sci., 61, 2321-2333.
    192. Oost, W. A., G. J. Komen, C. M. J. Jacobs, and C. V. Oort, 2002: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Boundary-Layer Meteorol., 103.
    193. Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol., 9, 857-861.
    194. Perrie, W. and Y. Zhang, 2001: A regional climate model coupled to ocean waves: Synoptic to multimonthly simulations. J. Geophys. Res., 106, 17753-17771.
    195. Perrie, W., W. Zhang, W. Perrie, X. Ren, W. Zhang, and Z. Long, 2004: Impacts of Sea Surface Fluxes on the Development of Midlatitude Storms
    196. Simulation of extratropical Hurricane Gustav using a coupled atmosphere-ocean-sea spray model. AGU Spring Meeting Abstracts, 53, 04.
    197. Perrie, W., W. Zhang, X. Ren, Z. Long, E. L. Andreas, J. Gyakum, and R. McTaggart-Cowan, 2004: The role of waves, sea spray and the upper ocean in midlatitude storm development. CD-ROM of preprints, 26th Conference on Hurricanes and Tropical Meteorology of the American Meteorological Society, Miami, FL, 2.
    198. Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 4, 426-434.
    199.——, 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505-531.Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology, Reading, U.K.
    177. Miller, B. I., 1964: A study of the filling of hurricane Donna (1960) over land. Mon. Wea. Rev., 92, 389-406.
    178. Miller, M. A., 1987: An Investigation of Aerosol Generation in the Marine Planetary Boundary Layer, The Pennsylvania State University, 142.
    179. Mitsuyasu, H., 1968: On the growth of the spectrum of wind-generated waves, 1. Rep. Res. Inst. appl. Mech., Kyushu Univ., 16, 459-482.
    180.——, 1969: On the growth of the spectrum of wind-generated waves, 2. Rep. Res. Inst. appl. Mech., Kyushu Univ., 17, 235-243.
    181. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682.
    182. Monahan, E. C., 1986: The ocean as a source for atmospheric particles. The Role of Air-Sea Exchange in Geochemical Cycling, P. Buat-Menard, Ed., D. Reidel, Dordrecht, 129-163.
    183. Monahan, E. C. and I. O'Muircheartaigh, 1980: Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed. J. Phys. Oceanogr., 10, 2094-2099.
    184. Monahan, E. C. and D. K. Woolf, 1989: Comments on "Variations of Whitecap Coverage with Wind Stress and Water Tempearture". J. Phys. Oceanogr., 19, 706-709.
    185. Monahan, E. C., K. L. Davidson, and D. E. Spiel, 1982: Whitecap Aerosol Productivity Deduced from Simulation Tank Measurements. J. Geophys. Res., 87, 8898-8904.
    186. Monahan, E. C., D. E. Spiel, and K. L. Davidson, 1983: Model of Marine Aerosol Generation via Whitecaps and Wave Disruption. Ninth Conference on Aerospace and Aeronautical Meteorology, Boston, Omaha, Neb., American Meteorological Society., 147-
    158.
    187. Monahan, E. C., C. W. Fairall, K. L. Davidson, and P. J. Boyle, 1983: Observed Inter-Relations between 10 m Winds, Ocean Whitecaps and Marine Aerosol. Quart. J. Roy. Meteor. Soc., 109, 379-392.
    188. Monbaliu, J., 1994: On the use of the Donelan wave spectral parameter as a measure for the roughness of wind waves. Boundary-Layer Meteorol., 67, 277-291.
    189. Moon, I.-J., I. Ginis, and T. Hara, 2004: Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys. Res. Lett., 31, L20302, doi:10.1029/2004GL020988.
    190.——, 2004: Effect of Surface Waves on Air-Sea Momentum Exchange. Part II: Behavior of Drag Coefficient under Tropical Cyclones. J. Atmos. Sci., 61, 2334-2348.
    191. Moon, I.-J., T. Hara, I. Ginis, S. E. Belcher, and H. L. Tolman, 2004: Effect of Surface Waves on Air-Sea Momentum Exchange. Part I: Effect of Mature and Growing Seas. J. Atmos. Sci., 61, 2321-2333.
    192. Oost, W. A., G. J. Komen, C. M. J. Jacobs, and C. V. Oort, 2002: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Boundary-Layer Meteorol., 103.
    193. Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol., 9, 857-861.
    194. Perrie, W. and Y. Zhang, 2001: A regional climate model coupled to ocean waves: Synoptic to multimonthly simulations. J. Geophys. Res., 106, 17753-17771.
    195. Perrie, W., W. Zhang, W. Perrie, X. Ren, W. Zhang, and Z. Long, 2004: Impacts of Sea Surface Fluxes on the Development of Midlatitude Storms
    196. Simulation of extratropical Hurricane Gustav using a coupled atmosphere-ocean-sea spray model. AGU Spring Meeting Abstracts, 53, 04.
    197. Perrie, W., W. Zhang, X. Ren, Z. Long, E. L. Andreas, J. Gyakum, and R. McTaggart-Cowan, 2004: The role of waves, sea spray and the upper ocean in midlatitude storm development. CD-ROM of preprints, 26th Conference on Hurricanes and Tropical Meteorology of the American Meteorological Society, Miami, FL, 2.
    198. Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 4, 426-434.
    199.——, 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505-531.
    224. Stephens, G. L., 1978: Radiation profiles in extended water clouds. Part II: Parameterization schemes. J. Atmos. Sci., 35, 2123-2132.
    225. Stewart, R. W., 1974: The air-sea momentum exchange. Boundary-Layer Meteorol., 6.
    226. Stramska, M., 1987: Vertical Profiles of Sea Salt Aerosol in the Atmospheric Surface Layer: A Numerical Model. Acta Geol. Pol., 35, 87-100.
    227. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.
    228. Sugimori, Y., M. Akiyama, and N. Suzuki, 2000: Ocean measurement and climate prediction-expectation for signal processing. J. Signal Processing, 4, 209-222.
    229. Sugioka, K. and S. Komori, 2005: The effects of droplets on mass transfer in wind-driven turbulence with breaking waves. Transactions of the Japan Society of Mechanical Engineers, Ser. B, 71, 7-14.
    230. Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans Their Physics, Chemistry, and General Biology. Prentice-Hall, 1087 pp.
    231. Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231-235.
    232. Taylor, P. K. and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572-590.
    233. Tenerelli, J. E., S. S. Chen, W. Zhao, and M. A. Donelan, 2001: High-resolution simulations of hurricane Floyd using MM5 coupled with a wave model. Workshop Program for the Eleventh PSU/NCAR MM5 Users' Workshop, 4.
    234. Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519-542.
    235. Toba, Y., 1972: Local balance in the air-sea boundary process, I. On the growth process of wind waves. J. Oceanogr. Soc. Japan, 28, 109-120.
    236. Toba, Y. and M. Chaen, 1973: Quantitative expression of the breaking of wind waves on the sea surface. Rec. Oceanogr. Works Japan, 12, 1-11.
    237. Toba, Y. and M. Koga, 1986: A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress. Oceanic Whitecaps, E. C. Monahan and G. M. Niocaill, Eds., Springer, New York, 37-47.
    238. Toba, Y., S. Komori, Y. Suzuki, and D. Zhao, 2006: Similarity and dissimilarity in air-sea momentum and CO2 transfers: The nondimensional transfer coefficients in light of the windsea Reynolds number. Atmosphere-Ocean Interactions, W. A. Perrie, Ed., WIT Press, 53-82.
    239. Toba, Y., N. Iida, H. Kawamura, N. Ebuchi, and I. S. F. Jones, 1990: The wave dependence of sea-surface wind stress. J. Phys. Oceanogr., 20, 705-721.
    240. Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, 782-797.
    241.——, 1997: User manual and system documentation of WAVEWATCH-III version 1.15, NOAA / NWS / NCEP / OMB Technical Note 151, 97 pp.
    242.——, 1999: User manual and system documentation of WAVEWATCH III version 1.18, Tech. Note 166, NOAA/NWS/NCEP/OMB, 110 pp.
    243.——, 2002: User manual and system documentation of WAVEWATCH-III version 2.22, NOAA / NWS / NCEP / MMAB Technical Note 222, 133 pp.
    244.——, 2002: Validation of WAVEWATCH III version 1.15 for a global domain. Tech. Note 213, NOAA/NWS/NCEP/OMB, 33 pp.
    245. Tolman, H. L. and D. V. Chalikov, 1996: Source terms in a third-generation wind-wave model. J. Phys. Oceanogr., 26, 2497-2518.
    246. Tracy, B. and D. T. Resio, 1982: Theory and calculation of the nonlinear energy transfer between sea waves in deep water. WES Report 11, US Army Corps of Engineers.
    247. van Dorn, W. G., 1953: Wind stress on an artificial pond. J. Mar. Res., 12, 249-276.
    248. Van Vledder, G. P., 2000: Improved method for obtaining the integration space for the computation of nonlinear quadruplet wave-wave interaction. Proceedings of the 6th International Workshop on Wave Forecasting and Hindcasting, 418-431.
    249.——, 2002: Improved parameterizations of nonlinear four wave interactions for application in operational wave prediction models. Report 151a, Alkyon, The Netherlands.
    224. Stephens, G. L., 1978: Radiation profiles in extended water clouds. Part II: Parameterization schemes. J. Atmos. Sci., 35, 2123-2132.
    225. Stewart, R. W., 1974: The air-sea momentum exchange. Boundary-Layer Meteorol., 6.
    226. Stramska, M., 1987: Vertical Profiles of Sea Salt Aerosol in the Atmospheric Surface Layer: A Numerical Model. Acta Geol. Pol., 35, 87-100.
    227. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.
    228. Sugimori, Y., M. Akiyama, and N. Suzuki, 2000: Ocean measurement and climate prediction-expectation for signal processing. J. Signal Processing, 4, 209-222.
    229. Sugioka, K. and S. Komori, 2005: The effects of droplets on mass transfer in wind-driven turbulence with breaking waves. Transactions of the Japan Society of Mechanical Engineers, Ser. B, 71, 7-14.
    230. Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans Their Physics, Chemistry, and General Biology. Prentice-Hall, 1087 pp.
    231. Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231-235.
    232. Taylor, P. K. and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572-590.
    233. Tenerelli, J. E., S. S. Chen, W. Zhao, and M. A. Donelan, 2001: High-resolution simulations of hurricane Floyd using MM5 coupled with a wave model. Workshop Program for the Eleventh PSU/NCAR MM5 Users' Workshop, 4.
    234. Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519-542.
    235. Toba, Y., 1972: Local balance in the air-sea boundary process, I. On the growth process of wind waves. J. Oceanogr. Soc. Japan, 28, 109-120.
    236. Toba, Y. and M. Chaen, 1973: Quantitative expression of the breaking of wind waves on the sea surface. Rec. Oceanogr. Works Japan, 12, 1-11.
    237. Toba, Y. and M. Koga, 1986: A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress. Oceanic Whitecaps, E. C. Monahan and G. M. Niocaill, Eds., Springer, New York, 37-47.
    238. Toba, Y., S. Komori, Y. Suzuki, and D. Zhao, 2006: Similarity and dissimilarity in air-sea momentum and CO2 transfers: The nondimensional transfer coefficients in light of the windsea Reynolds number. Atmosphere-Ocean Interactions, W. A. Perrie, Ed., WIT Press,
    53-82.
    239. Toba, Y., N. Iida, H. Kawamura, N. Ebuchi, and I. S. F. Jones, 1990: The wave dependence of sea-surface wind stress. J. Phys. Oceanogr., 20, 705-721.
    240. Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, 782-797.
    241.——, 1997: User manual and system documentation of WAVEWATCH-III version 1.15, NOAA / NWS / NCEP / OMB Technical Note 151, 97 pp.
    242.——, 1999: User manual and system documentation of WAVEWATCH III version 1.18, Tech. Note 166, NOAA/NWS/NCEP/OMB, 110 pp.
    243.——, 2002: User manual and system documentation of WAVEWATCH-III version 2.22, NOAA / NWS / NCEP / MMAB Technical Note 222, 133 pp.
    244.——, 2002: Validation of WAVEWATCH III version 1.15 for a global domain. Tech. Note 213, NOAA/NWS/NCEP/OMB, 33 pp.
    245. Tolman, H. L. and D. V. Chalikov, 1996: Source terms in a third-generation wind-wave model. J. Phys. Oceanogr., 26, 2497-2518.
    246. Tracy, B. and D. T. Resio, 1982: Theory and calculation of the nonlinear energy transfer between sea waves in deep water. WES Report 11, US Army Corps of Engineers.
    247. van Dorn, W. G., 1953: Wind stress on an artificial pond. J. Mar. Res., 12, 249-276.
    248. Van Vledder, G. P., 2000: Improved method for obtaining the integration space for the computation of nonlinear quadruplet wave-wave interaction. Proceedings of the 6th International Workshop on Wave Forecasting and Hindcasting, 418-431.
    249.——, 2002: Improved parameterizations of nonlinear four wave interactions for application in operational wave prediction models. Report 151a, Alkyon, The Netherlands.
    276. Yu, W., Z. Li, and Y. Yuan, 2005: Improvement of the SLP simulation in the coupled AGCM-ocean surface wave model. Chin. Sci. Bull., 50, 2397-2400.
    277. Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data. Journal of Climate, 11, 2628-2644.
    278. Zhang, D.-L. and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer - sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteorol., 21, 1594-1609.
    279. Zhang, D.-L. and E. Altshuler, 1999: The Effects of Dissipative Heating on Hurricane Intensity. Mon. Wea. Rev., 127, 3032-3038.
    280. Zhang, D., Z. Wu, D. Jiang, W. Wang, B. Chen, W. Tai, S. Wen, Q. Xu, and P. Guo, 1992: A hybrid model for numerical wave forecasting and its implementation-II. The discrete part and implementation of the model. Acta Oceanol. Sin., 11, 157-178.
    281. Zhang, W., W. Perrie, and W. Li, 2006: Impacts of Waves and Sea Spray on Midlatitude Storm Structure and Intensity. Mon. Wea. Rev., 134, 2418-2442.
    282. Zhao, D., 2002: A note on wave state dependence of sea-surface roughnesss. Proceedings of the twelfth international offshore and polar engineering conference, Kitakyushu, Japan, 74-80.
    283. Zhao, D. and Y. Toba, 2001: Dependence of whitecap coverage on wind and wind-wave properties. J. Oceanogr., 57, 603-616.
    284. Zhao, D., Y. Toba, K.-i. Sugioka, and S. Komori, 2006: New sea spray generation function for spume droplets. J. Geophys. Res., 111, 02007.
    285. Zilitinkevich, S. S., 1995: Non-local turbulent transport: pollution dispersion aspects of coherent structure of convective flows. Air Pollution III-Volume I. Air Pollution Theory and Simulation, H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Computational Mechanics Publications, Southampton Boston, 53-60.
    286. Zubkovskii, S. L. and T. K. Kravchenko, 1967: Direct measurements of some turbulence in the near-water layer. Izv. Atmos. Oceanic Phys., 3, 127-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700