用户名: 密码: 验证码:
考虑内潮耗散的南海潮波伴随同化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南海位于中国大陆南端,是沟通太平洋和印度洋的重要通道之一,地理位置非常重要。南海地形变化剧烈,岛礁众多,使得南海的潮波系统非常复杂。南海潮能耗散较强,在深水处,仅考虑底摩擦耗散不能充分体现潮能耗散的实际情况,还必须考虑表面潮向内潮转换时的能量损失,即内潮耗散。
     本文建立了南海潮波模式及其伴随同化模式,在传统二维潮波方程的基础上加入了内潮耗散项,考虑了内潮耗散对南海潮波系统的影响。在前人工作基础上,改进了内潮耗散参数化方案,并给出了内潮耗散项中地形效应参数的计算公式。
     评估了全球大洋潮汐模式TPXO7.2、GOT00.2、NAO.99b和DTU10在南海的准确度。依据对比分析结果,选用DTU10模式来计算本研究的开边界条件。
     以63个验潮站和24个TOPEX/Poseidon卫星高度计轨道交叉点处的调和常数作为观测值,利用伴随同化方法来优化模式中的底摩擦系数和内潮耗散系数,使得模拟结果与观测值更加接近。为了寻找最优的优化方案,设计了7组数值实验。实验1~7M2分潮模拟结果与观测值的均方根偏差分别为29.78cm、24.08cm、12.64cm、12.56cm、10.19cm、10.63cm和10.15cm,可以看出实验7先优化内潮耗散系数再优化底摩擦系数的模拟结果最优。
     确定了同化方案后,本文建立了1/8°和1/4°两种水平分辨率的M2分潮的单分潮数值模式,通过对比发现,水平分辨率1/4°模式的计算时长大约为1/8°模式的1/5,而误差仅略大。考虑到4个分潮耦合模拟需要积分时间更长,为了提高计算效率,采用分辨率为1/4°的模式进行最终的M2、S2、K1、O1四个分潮耦合同化模拟。对于1/4°模式而言,7个实验方案中结果最优的仍为实验5、6和7,实验7最优,其次是实验5,与1/8°模式情况相同。
     采用先优化内潮耗散系数再优化底摩擦系数的方案,对南海M2、S2、K1、O1分潮进行了耦合同化模拟。M2、S2、K1和O1分潮模拟值与观测值的均方根偏差分别为12.35cm、6.47cm、9.79cm和8.21cm,模拟结果与观测符合良好。基于该模拟结果,分析了南海M2、S2、K1、O1四个分潮的潮汐潮流特征,较好地体现了南海潮波的传播规律。
     基于四个分潮耦合同化模拟结果,分析了南海M2、S2、K1、O1四个分潮的潮能通量分布情况。四个分潮的潮能都由太平洋经吕宋海峡传入,然后向西南方向传播。S2分潮的潮能通量量级明显小于另外三个分潮的潮能通量。不论对于半日分潮还是对于全日分潮来说,都是在吕宋海峡处的潮能通量最大。
     基于四个分潮耦合同化模拟结果,还分析了南海的潮能耗散情况。南海的潮能耗散除了底摩擦造成的底摩擦耗散外,还通过表面潮向内潮转换的方式来进行耗散,即内潮耗散。南海的底摩擦耗散主要发生在沿岸浅水区域,内潮耗散主要集中在吕宋海峡等深水区,吕宋海峡处为最大。
The South China Sea (SCS) is located in the south of China mainland. It is animportant area to connect the Pacific Ocean and Indian Ocean. The steep bottomtopography and numerical islands form a complex tidal system in the SCS. The tidalenergy dissipation in the SCS is very strong. In the deep water area, the bottomfriction dissipation can not represent the dissipation of tidal energy sufficiently. Thetidal energy dissipation also occurs through the scattering of surface tides into internaltides, which is called internal tide dissipation.
     In this paper, the tidal and adjoint model are built in the SCS. A parameterizationof internal tide dissipation is added to the traditional2-D tidal equations, consideringthe internal tide dissipation on the influence of the tidal wave system in the SCS.Based on previous studies, the parameterization of internal tide dissipation isimproved, and the expression of the bottom roughness parameter is given.
     In order to obtain better open boundary conditions, the global tide modelsTPXO7.2, GOT00.2, NAO.99b and DTU10are compared in the SCS. Accoding tothe results of comparison, DTU10is chosen to compute the open boundary conditionsin this study.
     The harmonic constants at63tide gauge stations and24TOPEX/Poseidonsatellite altimeter crossover points are used as observations. The bottom frictioncoefficient and the internal tide dissipation coefficient are optimized by using adjontmethod to minimize the distance between the simulated results and observations. Inorder to get the best optimizing scheme, seven experiments are designed. The rootmean square deviations between the results for M2tide of seven experiments andobservations are29.78cm,24.08cm,12.64cm,12.56cm,10.19cm,10.63cm and10.15cm respectively. It can be seen that the results of Experiment7is best.
     After the optimizing scheme is confirmed, numerical models for M2tide with thehorizonal resolution of1/8degree and1/4degree are built. By comparing the results,the computational time of the model with the horizontal resolution of1/4degree isone five of that of the model with the horizontal resolution of1/8degree. But the erroris slightly bigger. In order to improve the computional efficiency, the model with thehorizontal resolution of1/4degree is choosen to simulate the principal tidalcomponents M2, S2, K1and O1simultaneously.
     By using the scheme of Experiment7, the adjoint numerical simulation of tidalcomponents M2, S2, K1and O1in the SCS are achieved. The root mean squaredeviations between the simulations of the four tidal components and obsernations are12.35cm,6.47cm,9.79cm and8.21cm respectively. The simulated results coincidewith the observed. The cotidal charts for M2, S2, K1and O1are given, and they reflectthe characteristics of tides in the SCS.
     The tidal energy flux of the four principal tidal constituents is analysed in thispaper based on the numerical results. The tidal energy propagates to the SCS throughthe Luzon Strait from the Pacific Ocean, and then propagates southwestward. Themagnitude of tidal energy flux for S2tide is less than the other three tides. Thestrongest tidal energy is in the Luzon Stait for both semidiurnal and diurnal tidalconstituents.
     According to the numerical results, the tidal energy dissipation in the SCS isstudyed. In the SCS, the tidal energy is dissipated not only by the bottom friction butalso by scattering of the surface tide into the internal tide. The bottom frictiondissipation occures in shallow water area, the internal tide dissipation mainlyconcentrates in the Luzon Strait.
引文
[1]方国洪.关于中国近海潮汐潮流分布的若干有待进一步研究的问题.第一届潮汐与海平面学术讨论会论文集.国家海洋局海洋科技情报研究所出版,1986:12-20.
    [2] Wyrtki K. Physical oceanography of the Southeast Asian waters, Scientific Results of MarineInvestigations of the South China Sea and the Gulf of Thailand1959-1961, NAGA Rep.2,1961,195pp., Scripps Inst. of Oceanor., La Jolla, Calif..
    [3]俞慕耕.南海潮汐特征的初步探讨.海洋学报,1984,6(4):293-300.
    [4] Fang G H. Tide and tidal current charts for the marginal seas adjacent to China. ChineseJournal of Oceanology and Limnology,1986,4(1):1-16.
    [5]曹德明,方国洪,黄企洲,等.南沙及其西南海域的潮波系统.海洋与湖沼,1997,28(2):198-207.
    [6] Mazzega P, Bergé M. Ocean tides in the Asian semienclosed seas from TOPEX/POSEIDON.Journal of Geophysical Research,1994,99(C12):24867-24881.
    [7] Yanagi T, Takao T, Morimoto A. Co-tidal and co-range charts in the South China Sea derivedfrom satellite altimetry data. La Mer,1997,35(3):85-93.
    [8]暴景阳,晁定波,李建成,等.由T/P卫星测高数据建立南中国海潮汐模型的初步研究.武汉测绘科技大学学报,1999,24(4):341-345.
    [9]暴景阳,晁定波,李建成.南中国海TOPEX/POSEIDON轨迹交叉点测高数据的潮汐调和分析.测绘学报,2000,29(1):17-23.
    [10] Hu J Y, Kawamura H, Hong H S, Kobashi F, Xie Q. Tidal features in the China Seas and theiradjacent sea areas as derived from TOPEX/POSEIDON altimeter data. Chinese Journal ofOceanology and Limnology,2001,19(4):293–305.
    [11]李培良,左军成,李磊,等.南海TOPEX/POSEIDON高度计资料的正交响应法潮汐分析.海洋与湖沼,2002,33(3):287-295.
    [12]刘克修,马继瑞,许建平,等.用TOPEX/Poseidon资料研究南海潮汐和海面高度季节变化.热带海洋学报,2002,21(3):55-63.
    [13] Ye A L, Robinson I S. Tidal dynamics in the South China Sea. Geophysical Journal of theRoyal Astronomical Society,1983,72:691–707.
    [14]沈育疆,胡定明,梅丽明,等.南海潮汐数值计算.海洋湖沼通报,1985,1:1-11.
    [15]丁文兰.南海潮汐和潮流的分布特征.海洋与湖沼,1986,17(6):468-480.
    [16]方国洪,曹德明,黄企洲.南海潮汐潮流的数值模拟.海洋学报,1994,16(4):1-12.
    [17]黄企洲,王文质,陈俊昌.南海的潮汐、潮流和风暴增水.华南理工大学学报(自然科学版),1994,22(增刊):101-110.
    [18] Fang G H, Kwok Y K, Yu K J, Zhu Y H. Numerical simulation of principal tidal constituentsin the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research,1999,19:845-869.
    [19]曹德明,方国洪.南海北部潮汐潮流的数值模型.热带海洋,1990,9(2):63-70.
    [20]曹德明,方国洪.北部湾潮汐和潮流的数值模拟.海洋与湖沼,1990,21(2):105-113.
    [21]夏华永,殷忠斌,郭芝兰,等.北部湾三维潮流数值模拟.海洋学报,1997,19(2):21-31.
    [22]孙洪亮,黄卫民.北部湾潮汐潮流的三维数值模拟.海洋学报,2001,23(2):1-8.
    [23]钱成春,沈育疆.南海西南部海域M2潮波传播分布研究.海洋学报,1994,16(5):25-33.
    [24]吴自库,田纪伟,吕咸青,等.南海潮汐的伴随同化数值模拟.海洋与湖沼,2003,34(1):101-108.
    [25]吴自库,王丽娅,吕咸青,等.北部湾潮汐的伴随同化数值模拟.海洋学报,2003,25(2):128-135.
    [26]吴自库,田纪伟,赵骞.南海潮波三维同化数值模拟.水动力学研究与进展,2004, A辑19(4):501-506.
    [27] Zu T T, Gan J P, Erofeeva S Y. Numerical study of the tide and tidal dynamics in the SouthChina Sea. Deep-Sea Research I,2008,55:137–154.
    [28]邱章,徐锡祯,龙小敏.南海北部一观测点内潮特征的初步分析.热带海洋,1996,15(4):63-67.
    [29] Zhao Z X, Klemas V, Zheng Q A, et al. Remote sensing evidence for baroclinic tide origin ofinternal solitary waves in the northeastern South China Sea. Geophysical Research Letters,2004,31: L06302, doi:10.1029/2003GL019077.
    [30]张效谦,梁鑫峰,田纪伟.南海北部450m以浅水层内潮和近惯性运动研究.科学通报,2005,50(18):2027-2031.
    [31]方文东,施平,龙小敏,等.南海北部孤立内波的现场观测.科学通报,2005,50(13):1400-1404.
    [32]郭朴,方文东,甘子钧,等.南海北部大陆坡区的内潮特征.科学通报,2006,51(增刊Ⅱ):15-22.
    [33]柯自明,尹宝树,徐振华,等.南海文昌海域内孤立波特征观测研究.海洋与湖沼,2009,40(3):269-274.
    [34]廖光洪,袁耀初, Arata K,等.吕宋海峡ADCP观测的450m以浅水层内潮特征分析.中国科学:地球科学,2011,41(1):124-140.
    [35]李俊德,梁楚进,金魏芳,等.南海东沙岛西南大陆坡内潮特征.海洋学研究,2011,29(1):1-8.
    [36]司广成,侯一筠.南海北部东沙岛附近的内潮和余流特征.海洋与湖沼,2012,43(1):10-16.
    [37] Liu Z Y, Lozovatsky I. Upper pycnocline turbulence in the northern South China Sea. ChinaScience Bulletin,2012,57(18):2302-2306, doi:10.1007/s11434-012-5137-8.
    [38]袁叔尧,徐锡祯,邓九仔,等.南海东北部内潮数值研究.热带海洋,1995,14(4):15-23.
    [39]方国洪,李鸿雁,杜涛.内潮的一种分层三维数值模式.海洋科学集刊,1997,38:1-15.
    [40]蔡树群,黄企洲,邱章,等.内潮动力机制的数值研究.热带海洋,2000,19(3):27-32.
    [41] Jan S, Chern C-S, Wang J, and Chao S-Y. Generation of diurnal K1internal tide in the LuzonStrait and its influence on surface tide in the South China Sea. Journal of GeophysicalResearch,112, C06019, doi:10.1029/2006JC004003.
    [42] Miao C B, Chen H B, and Lv X Q. An isopycnic-coordinate internal tide model and itsapplication to the South China Sea. Chinese Journal of Oceanology and Limnology,2011,29(6):1339-1356.
    [43] Taylor G I. Tidal friction in the Irish Sea. Philosophical Transactions of the Royal Society ofLondon,1919, A230:193.
    [44] Jeffreys H. Tidal friction in shallow seas. Philosophical Transactions of the Royal Society ofLondon,1920, A221:239264.
    [45]李培良.渤黄东海潮波同化数值模拟和潮能耗散的研究:[博士学位论文].青岛:中国海洋大学,2002.
    [46] Egbert G D, Ray R D. Significant dissipation of tidal energy in the deep ocean inferred fromsatellite altimeter data. Nature,2000,405,775-778.
    [47] Egbert G D, Ray R D. Estimates of M2tidal energy dissipation from TOPEX/Poseidonaltimeter data. Journal of Geophysical Research,2001,106(C10):22475-22502.
    [48] Jayne S R, St Laurent L C. Parameterizing tidal dissipation over rough topography.Geophysical Research Letters,2001,28(5):811-814.
    [49] St Laurent L C, Simmons H L, and Jayne S R. Estimating tidally driven mixing in the deepocean. Geophysical Research Letters,2002,29(23),2106, doi:10.1029/2002GL015633.
    [50] Niwa Y, Hibiya T. Three-dimensional numerical simulation of M2internal tides in the EastChina Sea. Journal of Geophysical Research,2004,109, C04027,doi:10.1029/2003JC001923.
    [51]佟景全,雷方辉,毛庆文,等.不考虑局地引潮势的南海正压潮能通量与潮能耗散.热带海洋学报,2010,29(3):1-9.
    [52] Alford M H, Mackinnon J A, Nash J D, et al. Energy flux and dissipation in Luzon Strait: twotales of two ridges. Journal of Physical Oceanography,2011,41:2211-2222.
    [53] Schwiderski E W. Ocean tides, part I: Global ocean tidal equations. Marine Geodesy,1980,3:161-217.
    [54] Schwiderski E W. Ocean tides, part II: A hydrodynamical interpolation model. MarineGeodesy,1980,3:218-257.
    [55] Schwiderski E W. On charting global ocean tides. Reviews of Geophysics and SpacePhysics,1980,18(1):243-268.
    [56] Cartwright D E, Ray R D. Oceanic tides from Geosat altimetry. Journal of GeophysicalResearch,1990,95(C3):3069-3090.
    [57] Eanes R J, Bettadpur S V. The CSR3.0global ocean tide model: Diurnal and semi-diurnalocean tides from TOPEX/POSEIDON altimetry. Technical Report CRS-TM-96-05, Centrefor Space Research, University of Texas, Austin, Texas,1996.
    [58] Ray R D. A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2.NASA/TM-1999-209478, Goddard Space Flight Centre, Greenbelt, MD, USA,1999.
    [59] Le Provost C, Genco M L, Lyard F, et al. Spectroscopy of the world ocean tides from a finiteelement hydrodynamic model. Journal of Geophysical Research,1994,99(C12):24777-24797.
    [60] Le Provost C, Lyard F, Molines J M, et al. A hydrodynamic ocean tide model improved byassimilating a satellite altimeter-derived data set. Journal of Geophysical Research,1998,103(C3):5513-5529.
    [61] Lefèvre F, Lyard F H, and Le Provost C. FES98: A new global tide finite element solutionindependent of altimetry. Geophysical Research Letters,2000,27(17):2717-2720.
    [62] Lyard F, Lefevre F, Letellier T, Francis O. Modelling the global ocean tides: a modern insightfrom FES2004, Ocean Dynamics,2006,56:394-415.
    [63] Egbert G D, Bennett A F, and Foreman M G G. TOPEX/POSEIDON tides estimated using aglobal inverse model. Journal of Geophysical Research,1994,99(C12):24821-24852.
    [64] Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides. Journal ofAtmospheric and Oceanic Technology,2002,19:183-204.
    [65] Matsumoto K, Takanezawa T, and Ooe M. Ocean tide models developed by assimilatingTOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and aregional model around Japan. Journal of Oceanography,2000,56:567–581.
    [66] Andersen O B, Woodworth P L, and Flather R A. Intercomparison of recent ocean tide models.Journal of Geophysical Research,1995,100(C12):25261-25282.
    [67] Schrama E J O, Ray R D. A preliminary tidal analysis of TOPEX/POSEIDON altimetry.Journal of Geophysical Research,1994,99(C12):24799-24808.
    [68] Shum C K, Woodworth P L, Andersen O B, et al. Accuracy assessment of recent ocean tidemodels. Journal of Geophysical Research,1997,102(C11):25173-25194.
    [69] Penna N T, Bos M S, Baker T F, et al. Assessing the accuracy of predicted ocean tide loadingdisplacement values. J Geod,2008,82:893-907.
    [70]汪一航,方国洪,魏泽勋,等.基于卫星高度计的全球大洋潮汐模式的准确度评估.地球科学进展,2010,25(4):353-359.
    [71] Gladkikh V, Tenzer R. A comparison of model estimates of ocean-tide loading displacementsin New Zealand. Journal of Geodetic Science,2011,1(2):94-113.
    [72] Savcenko R, Bosch W. EOT08a-empirical ocean tide model from multi-mission satellitealtimetry Report81.2008, Deutsches Geod tisches Forschungsinstitut (DGFI), München.
    [73] Savcenko R, Bosch W. EOT10a-a new global tide model from multi-mission altimetry.Geophysical Research Abstracts, EGU General Assembly2010, Vol.12, EGU2010-9624,2010.
    [74]李大炜,李建成,金涛勇,等.利用验潮站资料评估全球海潮模型的精度.大地测量与地球动力学,2012,32(4):106-110.
    [75] Cheng Y C, Andersen O B. Improvement in global ocean tide model in shallow water regions.Altimetry for Oceans and Hydrology OST-ST Meeting, Poster Number: SV.1-6845, Lisbon,2010, Oct.18-22.
    [76] Munk W H, Cartwright D E. Tidal Spectroscopy and Prediction. Philosophical Transactionsof the Royal Society of London, Series A, Mathematical and Physical Sciences,1966,259:533-583.
    [77]王永刚,方国洪,曹德明,等.渤、黄、东海潮汐的一种验潮站资料同化数值模式.海洋科学进展,2004,22(3):253-274.
    [78] Llewellyn Smith S G, Young W R. Conversion of the barotropic tide. Journal of PhysicalOceanography,2002,32,1554-1566.
    [79] Egbert G D, Ray R D, Bills B G. Numerical modeling of the global semidiurnal tide in thepresent day and in the last glacial maximum. Journal of Geophysical Research,2004,109(C03003).
    [80] Zaron E D, Egbert G D. Estimating open-ocean barotropic tidal dissipation: the Hawaiianridge. Journal of Physical Oceanography,2006,36:1019-1035.
    [81] Yanagi T, Takao T. Clockwise phase propagation of semi-diurnal tides in the Gulf of Thailand.Journal of Oceanography,1998,54:143-150.
    [82]毛庆文,乔义泉,施平,等.在南海南部大纳土纳岛附近存在S2分潮的无潮点吗?科学通报,2006,51(增刊Ⅱ):23-26.
    [83]高秀敏.渤海潮波伴随同化研究:[硕士学位论文].青岛:国家海洋局第一海洋研究所,2010.
    [84]孙湘平.中国近海区域海洋.北京:海洋出版社,2006,136-147.
    [85] Fang G H, Yang J F, Thao Y C. A two-dimensional numerical model for tidal motion in theTaiwan Strait. Marine Geophysical Researches,1984,7:267-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700