用户名: 密码: 验证码:
筑坝堆石料应力路径本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆石料作为一种常用的工程建筑材料,由于具有强度高、压实性好、成本低和性质稳定等优点已在土石坝工程中得到广泛应用。随着土石坝设计坝高的不断增加,筑坝堆石料的受力情况变得更为复杂,而坝料的应力应变关系也已成为工程设计中所必须了解和掌握的基本性质之一。目前的室内试验通常是在围压不变条件下进行三轴剪切使试样达到破坏状态,其应力路径与堆石料在坝体施工和蓄水过程的实际应力路径有所不同,而采用三轴试验结果整理得到的本构计算模型进行坝体应力应变分析时其结果与实测数据仍存在一定差距,其主要原因就是所用的本构模型通常不能很好地反映应力路径的影响。基于上述问题,本文进行了筑坝堆石料应力路径本构关系研究,主要内容如下:
     (1)研究了粗粒土的工程特性。在对土体应力路径最新研究成果进行总结评述的基础上,论述了堆石料应力路径本构模型研究的必要性。针对坝体堆石料的实际应力路径,介绍了模拟坝体填筑期的等应力比路径,以及蓄水期转折应力路径下的三轴排水试验。根据试验结果整理了应力应变关系曲线,分析了堆石料在不同形式应力路径下的应力与变形特性。
     (2)采用应变解耦分析的办法,分别考虑p、q应力对体应变和剪应变的影响,在兼顾实际应用的前提下,提出了等应力比路径四模量增量非线性模型和三模量增量非线性模型,两模型都适于描述堆石料在等应力比路径下的应力应变关系。
     (3)根据堆石料应力路径试验结果,分析了经典的邓肯-张模型的应力路径适用性问题,并提出了一个新的应力路径本构模型。该模型根据堆石料在不同应力路径下的变形规律性,对应力路径进行合理分区,构建了不同路径分区下合适的本构柔度矩阵。新模型构造简单,能充分考虑应力路径的影响。
     (4)对Gudehus-Bauer亚塑性本构模型进行了适当改进,使之适于描述堆石料复杂应力路径下的应力应变关系。采用变异粒子群优化算法确定了模型参数,并取得了较好的效果。为了考虑应力路径的影响,分析了Gudehus-Bauer亚塑性模型参数与瞬时应力路径之间的关系,将应力路径影响引入亚塑性本构模型。计算结果表明,改进的Gudehus-Bauer亚塑性模型能够较好地模拟堆石料的主要力学特性,适于堆石坝的应力应变分析。
Rockfill,as a common construction material in civil engineering,is widely used in the earth-rock dam engineering for its advantages of high strength,good compactibility,low cost and stable properties.With the increasing of design height in earth-rock dam,the stress state of rockfill becomes more complex,and the stress-strain relations of rockfill have already become one of the basic properties that must be deeply understood in the engineering design. At present the laboratory tests are usually conducted in triaxial shear state with constant confining pressure until the samples reach the failure state,the stress path of which is quite different from that of rockfill during dam construction and reservoir filling,and the results in the stress-strain analysis of dam body using the calculating constitutive model proposed by triaxial test results have differences with the measured data in some degree.The main reason of the problem is that the constitutive model adopted can not fully take the effect of stress path into account.Based on the above problems,the paper carries out the study on constitutive relations of dam rockfill considering the effect of stress path.The main work is as follows:
     (1) The engineering characteristics of coarse grained soil are studied.Based on the latest research on stress path summarized,the necessity of studying on the stress-path constitutive model of rockfill is to be considered.For simulating the actual stress path of dam rockfill, drained triaxial tests under two types of stress path are introduced,which are the stress paths of constant stres ratio during dam construction and the transitional stress paths upon reservoir filling.According to the measured stress-strain relation curves,the stress and deformation characteristics of rockfill under different forms of stress path are analyzed in detail.
     (2) Employing the method of decoupling analysis on strain variable,the coupling effects of mean principal stress p and shear stress q are taken into account.On the premise of considering practical application,the incrementally nonlinear models of rockfill under the stress paths of constant stress ratio including four modulus and three modulus are proposed respectively.The two proposed models are suitable for describing the stress-strain relations of rockfill under the paths of constant stress ratio.
     (3) Based on the stress-path test results of rockfill,the applicability of classical Duncan-Chang model in stress-path analysis is discussed,and a new stress-path constitutive model is proposed.According to the deformation regularity of rockfill under different stress paths,the stress paths are divided into several parts and the constitutive compliance matrixes in each stress-path partition are presented.The proposed model is simple and can fully reflect the effect of stress path.
     (4) Referring to the Gudehus-Bauer hypoplastic constitutive model,the model is improved appropriately to describe the stress-strain relations of rockfill under complex stress paths.The mutation particle swarm optimization algorithm is employed to determine the constitutive parameters and it is proved to present good performance.For considering the effect of stress path,the relations between the constitutive parameters in Gudehus-Bauer model and instantaneous stress path are analyzed and the stress-path factor is integrated into the hypoplastic constitutive model.The calculation results show that the improved Gudehus-Bauer hypoplastic model can well predict the main mechanical properties of rockfill, which is suitable for the stress-strain analysis on rockfill dam.
引文
[1]龚晓南,叶黔元,徐日庆.工程材料本构方程.北京:中国建筑工业出版社,1995.
    [2]蒋彭年.土的本构关系.北京:科学出版社,1982.
    [3]伊颖锋.小应变条件下土体本构关系的研究及其在工程中的应用:(博士学位论文).南京:河海大学,2003.
    [4]章根德.地质材料本构模型的最近进展.力学进展.1994,24(3):374-385.
    [5]郑颖人.岩土塑性力学的新进展——广义塑性力学.岩土工程学报.2003,25(1):1-10.
    [6]章根德.土的本构模型及其工程应用.北京:科学出版社,1995.
    [7]迟世春,相彪.基于损伤扰动的土体本构关系研究.世界地震工程.2007,23(2):139-144.
    [8]张丙印,于玉贞,张建民.高土石坝的若干关键技术问题.中国土木工程学会第九届土力学及岩土工程学术会议论文集,北京,2003:163-186.
    [9]“七五”国家重点科技攻关.混凝土面板堆石坝研究成果汇编.能源部、水利部水利水电规划设计总院.1990,10:88-128.
    [10]日本土质工学会编,郭熙灵,文丹译.粗粒料的现场压实.北京:中国水利水电出版社,1999.
    [11]Sowers G F,Williams R C,Wallace T S.Compressibility of broken rock and the settlement of rockfills.The 6th International Conference on Soil Mechanics and Foundation Engineering,Toronto,Canada,1965:561-565.
    [12]刘祖德.土石坝变形计算的若干问题.岩土工程学报.1983,5(1):1-13.
    [13]土工试验规程SL237-1999.北京:中国水利水电出版社,1999.
    [14]贾革续.粗粒土工程特性的试验研究:(博士学位论文).大连:大连理工大学,2003.
    [15]顾淦臣,束一鸣,沈长松.土石坝工程经验与创新.北京:中国电力出版社,2004.
    [16]郭庆国.关于粗粒土抗剪强度特性的试验研究.水利学报.1987,(5):59-65.
    [17]郭熙灵,胡辉,包承纲.堆石料颗粒破碎对剪胀性及抗剪强度的影响.岩土工程学报.1997,19(3):83-88.
    [18]刘汉龙,秦红玉,高玉峰等.堆石粗粒料颗粒破碎试验研究.岩土力学.2005,26(4):562-566.
    [19]Rowe P W.The stress-dilatancy relation of static equilibrium of an assembly of particles in contact.Proc.Royal Society,1962:500-527.
    [20]Vesic A S,Clough G E.Behavior of granular materials trader high stress.Journal of the Soil Mechanics and Foundation Divison,ASCE,SM3,1968.
    [21]Lee K L,Seed H B.Drained strength characteristics of soil.Journal of the Soil Mechanics and Foundation Division,ASCE,SM6,1967.
    [22]Marsal R J.Discussion.The 6th International Conference on Soil Mechanics and Foundation Engineering,1965:310-316.
    [23]De Mello V F B.Reflections on design decisions of practical signficance to embankment dams.Geotechnique.1977,27(3):279-355.
    [24]Leps T M.Review of shearing strength of rockfill.Journal of the Soil Mechanics and Foundation Division.1984,36(4):115-143.
    [25]司洪洋.论无粘性砂卵石与堆石的力学性质.岩土工程学报.1990,12(6):32-41.
    [26]田树玉.粗粒土抗剪强度特性的研究.大坝观测与土工测试.1997,21(2):35-38.
    [27]张启岳,司洪洋.粗颗粒土大型三轴压缩试验的强度与应力~应变特性.水利学报.1982,(9):22-31.
    [28]黄文熙.土的工程性质.北京:水利电力出版社,1983.
    [29]郭庆国.关于粗粒土应力应变特性及非线性参数的试验研究.水利学报.1983,(11):44-50.
    [30]郭庆国.粗粒土的工程特性及应用.郑州:黄河水利出版社,1998.
    [31]屈智炯.粗粒土在高土石坝的应用研究.水电站设计.1998,14(1):83-88.
    [32]刘萌成,高玉峰,刘汉龙等.堆石料变形与强度特性的大型三轴试验研究.岩石力学与工程学报.2003,22(7):1104-1111.
    [33]袁聚云.土工试验与原理.上海:同济大学出版社,2003.
    [34]黄质宏,谢应新.不同应力路径下红粘土的力学特性.贵州水力发电.1998,12(3):28-30.
    [35]袁继国,仵彦卿.应力路径对泥岩变形特性的影响.陕西水力发电.2000,16(4):5-7.
    [36]Lambe T W.Stress path method.Journal of the Soil Mechanics and Foundations Division,ASCE.1967,93(6):309-331.
    [37]Lambe T W,Marr W A.Stress path method:Second edition.Journal of the Geotechnical Engineering Division,ASCE.1979,105(6):727-738.
    [38]濮家骝,李广信.发展水平报告之二—土的本构类系及其验证与应用.岩土工程学报.1986,8(1):47-82.
    [39]刘九功,唐桂英,蒋大友.应力路径分析在岩土工程中的应用.石家庄经济学院学报.1995,18(2):187-192.
    [40]李新华,张斗斗,谭丁.不同应力路径状态下土中应力.河北理工学院学报.2002,24(4):119-124.
    [41]戴自航,沈蒲生,程嫒彩.土的应力-应变路径若干问题描述.岩土工程学报.2004,26(6):854-857
    [42]Lambe T W,Whitman R V.Soil mechanics.New York:John Wiley & Sons,1969.
    [43]Atkinson J H,Richardson D,Stallebrasse S E.Effect of recent stress history on the stiffness of overconsolidated soil.Geotechnique.1990,40(4):531-540.
    [44]Jardine R J,Ports D M.Some practical applications of a non-linear ground model.Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering,Florence,Italy,1991:223-228.
    [45]Jardine R J.Some observations on the kinematic nature of soil stiffness.Soils and Foundations.1992,32(2):111-124.
    [46]Jardine R J.One perspective of the pre-failure deformation characteristics of some geomateriais.Proceedings of the International Symposium on Pre-Failure Deformation Characteristics of Geomaterials,1994:151-182.
    [47]Malandraki V,Toll D G.Triaxial tests on weakly bonded soil with changes in stress path.Journal of Geotechnical and Geoenvironmental Engineering.2001,127(3):282-291.
    [48]孙岳崧,濮家骝,李广信.不同应力路径对砂土应力应变关系的影响.岩土工程学报.1987,9(6):79-87.
    [49]陈存礼,胡再强,王志刚.不同应力路径对加筋土应力—应变关系的影响.陕西水力发电.1998,14(1):13-16.
    [50]王朝东,潘轺湘,喻小生.在普通土大三轴仪上进行土的应力路径试验的探讨.岩土力学.1991,12(1):57-63.
    [51]梁军.不同应力路径堆石料的抗剪强度特性.四川水利.1996,17(4):32-37.
    [52]张文慧,王保田,张福海.应力路径和固结应力比对土体变形特性的影响.中国土木工程学会第九届土力学及岩土工程学术会议论文集,北京,2003:25-28.
    [53]柏树田,周晓光.堆石在平面应变条件下的强度和应力—应变关系.岩土工程学报.1991,13(4):33-40.
    [54]柏树田,周晓光,晁华怡.应力路径对堆石变形特性的影响.水力发电学报.1999,(4):76-80.
    [55]张如林.模拟大坝实际应力路径下堆石料本构关系研究:(硕士学位论文).大连:大连理工大学,2008.
    [56]张锦军,向大润.不同应力路径下粘土的本构关系验证.河海大学学报(自然科学版).1991,19(6):23-30.
    [57]张林洪,刘荣佩,谢婉丽.等应力比路径条件下堆石料的应力应变特性.大坝观测与土工测试.2001,25(4):46-49.
    [58]谢婉丽.大坝应力路径条件下粗粒料的强度和变形特性的研究:(硕士学位论文).昆明:昆明理工大学,2002.
    [59]张林洪,谢婉丽,刘荣佩.土石粗粒料的弹塑性本构模型研究.岩土工程技术.2002,(2):95-99.
    [60]谢婉丽,王家鼎,张林洪.土石粗粒料的强度和变形特性的试验研究.岩石力学与工程学报. 2005,24(3):430-437.
    [61]邱金营.应力路径对砂土应力应变关系的影响.岩土工程学报.1995,17(2):75-82.
    [62]杜文山,刘祖德,李柏乔.颗粒材料应力路径计算模型及在变形计算中的应用.中国土木工程学会第九届土力学及岩土工程学术会议论文集,北京,2003:25-28.
    [63]方祥位,陈正汉,申春妮等.残积土特殊应力路径的三轴试验研究.岩土力学.2005,26(6):932-936.
    [64]Kondner R L.Hyperbolic stress-strain response:cohesive soils.Proc.ASCE JSMFD,1963:89.
    [65]Duncan J M,Chang C Y.Nonlinear analysis of stress and strain in soils.Journal of the Soil Mechanics and Foundations Division,ASCE.1970,96(5):1629-1652.
    [66]Duncan J M,Byrne P M,Wang K S,et al.Strength,stress-strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses.Department of Civil Engineering,University of California,Berkeley,Report No.UCB/CT/80-01.
    [67]Kulhawy F H,Duncan J M.Stresses and movements in oroville dam.Journal of Soil Mechanics and Foundation Division,ASCE.1972,98(SM7):653-665.
    [68]Corotis R B,Hassan M,Krizek R J.Nonlinear stress-strain formulation for soils.Journal of Geotechnical Engineering Division,ASCE.1974,100(GT9):993-1008.
    [69]Schultze E,Teosen G.A common stress-strain relationship for soils.Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering,1979:277-280.
    [70]Eisenstern Z,Law S T C.The role of constitutive laws in analysis of embankments.第四届国际土力学与基础工程会议,成都科技大学译,1979.
    [71]刘祖德,陆士强,杨天林等.应力路径对填土应力应变关系的影响及其应用.岩土工程学报.1982,4(4):45-55.
    [72]徐日庆,龚晓南.土的应力路径非线性行为.岩土工程学报.1995,17(4):56-60.
    [73]顾淦臣,黄金明.混凝土面板堆石坝的堆石料本构模型与应力变形分析.水力发电学报.1991,(1):12-24.
    [74]邱斌,徐志伟.中主应力对邓肯-张模型影响的真三轴试验研究.岩土工程技术.2002,(1):45-47.
    [75]赖勇,施建勇,雷国辉.砂土在小应变下考虑应力路径影响的本构模型的试验研究.岩土工程学报.2006,28(6):745-749.
    [76]沈珠江.土体应力应变分析的一种新模型.第五届全国土力学及基础工程学术讨论会,北京,1990:101-105.
    [77]张宗亮,贾延安,张丙印.复杂应力路径下堆石体本构模型比较验证.岩土力学.2008,29(5):1147-1151.
    [78]张丙印,贾延安,张宗亮.堆石体修正Rowe剪胀方程与南水模型.岩土工程学报.2007,29(10): 1443-1448.
    [79]Domaschuk L,Wade N H.A study of bulk and shear moduli of sand.Journal of the Soil Mechanics and Foundations Division,ASCE.1969,95(2):561-582.
    [80]Battelino D,Majes B.A hypoelastic model of soils accounting for failure.Proceedings of the 9th ICSMFE,1977,1:39-42.
    [81]Naylor D J.Stress-strain laws for soils.Applied Science Publishers Lit,1978.
    [82]屈智炯,何昌荣,刘双光.新型石渣坝:粗粒土筑坝的理论与实践.北京:中国水利水电出版社,2002.
    [83]严伟,徐进,屈智炯等.无粘性土石混合料K-G模型参数研究.东北水利水电.2006,24(1):51-54.
    [84]张斌,屈智炯.考虑剪胀和软化特性的粗粒土应力应变模型.岩土工程学报.1991,13(6):64-69.
    [85]刘开明,屈智炯,肖晓军.粗粒土的工程特性及本构模型研究.四川大学学报(工程科学版).1993,73(6):93-102.
    [86]高正中,胡德金,张青云.复杂应力路径下土的本构模型研究.四川大学学报(工程科学版).1997,1(5):50-56.
    [87]胡德金,高正中,张青云.不同应力路径下粉煤灰本构模型研究.水利学报.1998,(4):20-26.
    [88]高莲士,汪召华,宋文晶.非线性解耦K-G模型在高面板堆石坝应力变形分析中的应用.水利学报.2001,(10):1-7.
    [89]高莲士,蔡昌光,朱家启.堆石料现场侧限压缩试验解耦K-G模型参数分析方法及在面板坝中的应用.水力发电学报.2006,25(6):26-33.
    [90]郭诚谦.土石坝的若干发展.水利水电技术.1998,29(10):22-25.
    [91]Lade P V,Duncan J M.Stress path dependent behavior of cohesionless soil.Journal of Geotechnical Engineering Division,ASCE.1976,GT1.
    [92]Lade P V.Elastoplastic stress-strain theory for cohesionless soil with curved yield surface.International Journal of Solids and Structure.1977,13(1):1019-1035.
    [93]Roscoe K H,Burland J B.On the generalized stress-strain behavior of wet clay.Cambridge University Press,1968.
    [94]陈生水,沈珠江,郦能惠.复杂应力路径下无粘性土的弹塑性数值模拟.岩土工程学报.1995,17(2):20-28.
    [95]刘萌成.应力路径条件下堆石料工程特性及本构模型研究:(硕士学位论文).南京:河海大学,2002.
    [96]刘萌成,高玉峰,黄晓明.考虑强度非线性的堆石料弹塑性本构模型研究.岩土工程学报.2005,27(3):294-298.
    [97]姚仰平,罗汀.岩土硬化的应力路径相关性及硬化参数的构造方法.中国岩石力学与工程学会第七次学术大会论文集,西安,2002:106-110.
    [98]姚仰平,罗汀,孙德安等.黏土和砂土简单的三维本构模型.岩土工程学报.2002,24(2):240-246.
    [99]罗汀,路德春,姚仰平.考虑应力路径影响下砂土的三维本构模型.岩土力学.2004,25(5):688-693.
    [100]路德春,罗汀,姚仰平.砂土应力路径本构模型的试验验证.岩土力学.2005,26(5):717-722.
    [101]王靖涛,杨毅,张曦映.考虑应力路径的砂土的神经网络本构关系模型.岩石力学与工程学报.2002,21(10):1487-1489.
    [102]姚辉,王靖涛.多重应力路径下粘土本构关系的神经网络模型.岩石力学与工程学报.2003,22(9):1454-1457.
    [103]曾静,冯夏庭,王靖涛等.不同应力路径下砂土的神经网络弹塑性本构模型研究.岩土力学.2004,25(6):896-900.
    [104]杨杰,王靖涛.砂土弹塑性-损伤本构关系的数值建模.华中科技大学学报(城市科学版).2005,22(1):63-65.
    [105]任青阳,王靖涛.等主应力比路径下砂土弹塑性本构关系的数值建模.华中科技大学学报(城市科学版).2005,22(3):69-71.
    [106]李广信.土的清华弹塑性模型及其发展.岩土工程学报.2006,28(1):1-10.
    [107]Romano M.Continuum theory for granular media with a critical state.Archives of Mechanics.1974,26(6):1011-1028.
    [108]Dafalias Y F.Bounding surface plasticity.Ⅰ:mathematical foundation and hypoplasticity.Journal of Engineering Mechanics.1986,112(9):966-987.
    [109]Kolymbas D.A novel constitutive law for soils.The 2nd International Conference on Constitutive Laws for Engineering Material,1987:1-8.
    [110]Wu W,Kolymbas D.Numerical testing of the stability criterion for hypoplastic constitutive equations.Mechanics of Materials.1990,9(3):245-253.
    [111]Kolymbas D.Outline of hypoplasticity.Ingenieur-Archiv.1991,61(3):143-151.
    [112]Wu W,Bauer E,Niemunis A,et al.Visco-hypoplastic models for cohesive soils.Proceedings of the Workshop on Modern Approaches to Plasticity,Horton,Greece,1993:365-383.
    [113]Kolymbas D,Wu W.Introduction to hypoplasticity.Proceedings of the Workshop on Modern Approaches to Plasticity,Horton,Greece,1993:213-216.
    [114]Niemunis A.A visco-plastic model for clay and its FE implementations.Soils and Foundations.1996,36(1):39-43.
    [115]Wu W,Niemunis A.Failure criterion,flow rule and dissipation function derived from hypoplasticity.Mechanics of Cohesive-Frictional Materials.1996,1(2):145-163.
    [116]Niemunis A,Herle I.Hypoplastic model for cohesionless soils with elastic strain range.Mechanics of Cohesive-Frictional Materials.1997,2(4):279-299.
    [117]Wu W.Rational approach to anisotropy of sand.International Journal for Numerical and Analytical Methods in Geomechanics.1998,22(11):921-940.
    [118]Wu W,Kolymbas D.Hypoplasticity then and now.Constitutive Modeling of Granular Materials.Springer,Berlin,2000.
    [119]Lanier J,Caillerie D,Chambon R,et al.A general formulation of hypoplasticity.International Journal for Numerical and Analytical Methods in Geomechanics.2004,28(15):1461-1478.
    [120]Wu W,Bauer E.Simple hypoplastic constitutive model for sand.International Journal for Numerical and Analytical Methods in Geomeehanies.1994,18(12):833-862.
    [121]Gudehus G.Comprehensive constitutive equation for granular materials.Soils and Foundations.1996,36(1):1-12.
    [122]Bauer E.Calibration of a comprehensive hypoplastic model for granular materials.Soils and Foundations.1996,36(1):13-26.
    [123]Bauer E,Wu W.Hypoplastie constitutive model for cohesive powders.Powder Technology.1995,85(1):1-9.
    [124]Masin D.A hypoplastic constitutive model for clays.International Journal for Numerical and Analytical Methods in Geomechanics.2005,29(4):311-336.
    [125]Bauer E,Zhu Y M.Constitutive modeling of the influence of pressure,density and moisture content on the mechanical behavior of rockfill material.Proceedings of the 4th International Conference on Dam Engineering,2004:129-146.
    [126]岑威钧.堆石料亚塑性本构模型及面板堆石坝数值分析:(博士学位论文).南京:河海大学,2005.
    [127]栾茂田,吴兴征,李相崧.堆石料的亚塑性边界面模型及其验证.岩石力学与工程学报.2001,20(2):164-170.
    [128]吴兴征.堆石料的静动力本构模型及其在混凝土面板堆石坝应力变形分析中的应用:(博士学位论文).大连:大连理工大学,2001.
    [129]张丙印,吕明治,高莲士.粗粒料大型三轴试验中橡皮膜嵌入量对体变的影响及校正.水利水电技术.2003,34(2):30-33.
    [130]赖勇,宋雄伟,施建勇.土体小应变下的非线性特征试验研究.河海大学学报(自然科学版).2005,33(3):306-309.
    [131]卢廷浩,钱玉林,殷宗泽.宽级配砾石土的应力路径试验及其本构模型验证.河海大学学报.1996,24(2):74-79.
    [132]陈惠发著,余天庆,王勋文译.土木工程材料的本构方程(第一卷 弹性与建模).武汉:华中科技大学出版社,2001.
    [133]Truesdell C.Hypo-elasticity.Journal of Rational Mechanics and Analysis.1955,4(1):83-133.
    [134]屈智炯,刘开明.土的非线性K-G模型及其应用.第三届全国岩土力学数值分析与解析方法讨论会,杭州,1979.
    [135]曾以宁,屈智炯,刘开明.土的非线性K-G模型的试验研究.四川大学学报(工程科学版).1985,(4):143-149.
    [136]相彪,张宗亮,迟世春.堆石料等应力比路径三模量增量非线性模型.岩土工程学报.2008,30(9):1322-1326.
    [137]Xiang B,Chi S C,Lin G,et al.Rockfill model under the path of constant stress ratio and parameters determination based on particle swarm optimization.Proceedings of the Second International Forum on Advances in Structural Engineering,Dalian,China,2008:228-237.
    [138]殷建华.土的三模量增量非线性模型及其推广.岩土力学.2000,21(1):16-19.
    [139]Yin J H,Saadat F,Graham J.Constitutive modelling of a compacted sand-bentonite mixture using three-modulus hypoelasticity.Canadian Geotechnical Journal.1990,27(3):365-372.
    [140]殷建华,袁建新.增量非线性模型.岩土力学.1985,6(2):5-14.
    [141]李亮.智能优化算法在土坡稳定分析中的应用:(博士学位论文).大连:大连理工大学,2006.
    [142]贾宇峰.考虑颗粒破碎的粗粒土本构关系研究:(博士学位论文).大连:大连理工大学,2008.
    [143]李亮,迟世春,林皋.粒子群优化复合形法求解复杂土坡最小安全系数.岩土力学.2005,26(9):1393-1398.
    [144]Liu J,Xu W,Sun J.Quantum-behaved particle swarm optimization with mutation operator.The 17th IEEE International Conference on Tools with Artificial Intelligence,ICTAI'05,Hong Kong,China,2005:237-240.
    [145]曾建潮,崔志华.微粒群算法的统一模型及分析.计算机研究与发展.2006,43(1):96-100.
    [146]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,2001.
    [147]Kennedy J,Eberhart R.Particle swarm optimization.Proceedings of the 1995 IEEE International Conference on Neural Networks,Part 4(of 6),Perth,Aust,1995:1942-1948.
    [148]Eberhart R,Kennedy J.New optimizer using particle swarm theory.Proceedings of the 1995 6th International Symposium on Micro Machine and Human Science,Nagoya,Jpn,1995:39-43.
    [149]Kennedy J,Eberhart R.Discrete binary version of the particle swarm algorithm.Proceedings of the 1997 IEEE International Conference on Systems,Man,and Cybernetics,Part 5(of 5),Orlando,FL, USA,1997:4104-4108.
    [150]Shi Y,Eberhart R.Fuzzy adaptive particle swarm optimization.Proceedings of the IEEE Conference on Evolutionary Computation,ICEC,Seoul,Korea,2001:101-106.
    [151]张丙印,李全明,付建.堆石料邓肯E-B模型体变参数的修正.中国土木工程学会第九届土力学及岩土工程学术会议,北京,2003:25-28.
    [152]中国水电顾问集团昆明勘测设计研究院.糯扎渡高心墙坝坝料特性及结构优化研究.昆明,2006.
    [153]Ueng T S,Chen T J.Energy aspects of particle breakage in drained shear of sands.Geotechnique.2000,50(1):65-72.
    [154]Wu W,Bauer E,Kolymbas D.Hypoplastie constitutive model with critical state for granular materials.Mechanics of Materials.1996,23(1):45-69.
    [155]Wang C C.A new representation theorem for isotropie functions,parts 1 and 2.Journal for Rational Mechanics and Analysis.1970,36:166-223.
    [156]Wang C C.One representation of isotropic functions.Archive for Rational Mechanics and Analysis.1970,33:249-267.
    [157]Owen D R,Williams W O.On the concept of rate independence.The Quarterly of Applied Mathematics.1968,26:321-329.
    [158]陈惠发著,余天庆,王勋文译.土木工程材料的本构方程(第二卷 塑性与建模).武汉:华中科技大学出版社,2001.
    [159]龚晓南.土塑性力学.杭州:浙江大学出版社,2001.
    [160]Bauer E.Conditions for embedding Casagrande's critical states into hypoplasticity.Mechanics of Cohesive-Frictional Materials.2000,5(2):125-148.
    [161]史宏彦.无粘性土的应力矢量本构模型:(博士学位论文).西安:西安理工大学,2000.
    [162]史宏彦,谢定义,汪闻韶.确定无粘性土静止土压力系数的一个理论公式.水利学报.2001,(4):85-88.
    [163]Wu W,Bauer E.A hypoplastic model for barotropy and pyknotropy of granular soils.Proceedings of the International Workshop on Modern Approached to Plasticity,Elsevier,1993:225-245.
    [164]Von W P.Hypoplastic relation for granular materials with a predefined limit state surface.Mechanics of Cohesive-Frictional Materials.1996,1(3):251-271.
    [165]Sehofield A,Wroth C.Critical state soil mechanics.McGraw-Hill,London,1968.
    [166]Cornforth D.Prediction of drained strength of sands from relative density measurements.Evaluation of Relative Density and its Role in Geoteehnical Projects Involving Cohesionless Soils,Vol.STP-523,ASTM,1973.
    [167]Miura K,Maeda M,Toki S.Method of measurement for the angle of repose of sands.Soils and Foundations.1997,37(2):89-96.
    [168]Herrmann H.lntermittency and self-similarity in granular media.Powders and Grains,Behringer and Jenkins eds,Balkema,Rodderdam,1997.
    [169]Herle I,Gudehus G.Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies.Mechanics of Cohesive-Frictional Materials.1999,4(5):461-486.
    [170]王洪波,邵龙潭,熊保林.确定亚塑性模型参数n、h_s的一种改进方法.岩土工程学报.2006,28(9):1173-1176.
    [171]王洪波,邵龙潭,张学增.基于亚塑性理论的无粘性土压缩试验应力应变的研究.岩土工程学报.2006,28(6):780-783.
    [172]王洪波,张学增,熊保林.亚塑性理论简介.岩土力学.2007,28(12):2726-2732.
    [173]熊保林,邵龙潭.土亚塑性理论研究进展.中国土木工程学会第十届土力学及岩土工程学术会议,2007.
    [174]熊保林.无粘性土亚塑性本构模型研究:(博士学位论文).大连:大连理工大学,2007.
    [175]Youd T L.Compaction of sands by repeated shear straining.Journal of the Soil Mechanics and Foundation Division.1972,98(7):709-725.
    [176]Gudehus G.Attractors,percolation thresholds and phase limits of granular soils.Powders and Grains,Behringer and Jenkins eds,Balkema,Rodderdam,1997.
    [177]Kolbuszewski J..An experimental study of the maximum and minimum porosities of sands.Proc.2nd ICSMFE,Rodderdam,1948:158-165.
    [178]Mohamad R,Dobry R.Undrained monotonic and cyclic triaxial strength of sand.Journal of Geotechnical Engineering.1986,112(10):941-958.
    [179]Riemer M F,Seed R B.Factors affecting apparent position of steady-state line.Journal of Geotechnical and Geoenvironmental Engineering.1997,123(3):281-288.
    [180]岑威钧,王修信,Bauer Erich等.堆石料的亚塑性本构建模及其应用研究.岩石力学与工程学报.2007,26(2):312-322.
    [181]熊保林,邵龙潭,杨立祥.侧限压缩下亚塑性模型参数敏感性研究.第14届全国结构工程学术会议论文集,2005:347-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700