用户名: 密码: 验证码:
应力成形极限在板料成形分析中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板料塑性成形是重要的金属成形工艺之一,在航空航天、汽车及家电制造业中有着广泛的应用,是现代制造业中不可或缺的重要组成部分。成形极限分析判据是板料塑性成形过程中判断成形能否顺利进行的依据。基于极限应变的成形极限图(Forming Limit Diagram,FLD)是目前应用最为广泛且具实用价值的成形极限判据,也是评价不同板料成形性的工具。但是,由于FLD的应变路径相关性缺陷,因此具有应变加载路径无关特性的成形极限应力图(Forming Limit Stress Diagram,FLSD),成为复杂应变加载路径条件下成形极限分析新判据的研究热点。本文针对应力成形极限应用存在的关键问题开展深入系统的研究,为FLSD的应用奠定基础。
     本文完成的主要工作和取得的成果如下:
     (1)系统分析研究了基于应变极限的成形极限图在分析板料成形极限时存在的缺陷和面临的问题,分析了基于应力极限的成形极限图(FLSD)在复杂应变路径下成形极限分析的应用前景及在应用中急需解决的关键问题,提出了采用实验研究和理论分析相结合的方法来解决FLSD应用的关键问题的方案。
     (2)基于塑性成形理论综述分析了与板料成形极限研究相关的屈服准则及失稳理论。对几种比较典型的各向异性屈服函数进行了对比分析研究,归纳了各自的特点及适合的应用条件,同时还对几种典型的板料拉伸失稳准则进行了比较分析。依据分散扩散失稳理论推导了单向拉伸、双向拉伸条件下的极限应变预测公式。
     (3)在基本理论分析的基础上,根据板料成形极限试验标准,进行了体心立方晶格类型的低碳钢板(SPCEN、DC01、DC03、08AL四种牌号)及面心立方晶格的铝合金(LF21M)三种厚度系列(s=0.8mm,1.2mm,2.1mm)的板料进行了包括线性加载路径、单向拉伸预应变、双向拉伸预应变及平面预应变等在实际生产中典型的应变路径进行了全面系统的成形极限试验研究。通过试验研究,获得了不同板料在不同应变路径条件下的FLD,并分析比较了不同应变路径、不同板厚、预应变量等条件下的FLD特性。
     (4)在FLD实验的基础上,推导了不同屈服准则下的应力应变转换方程,依据转换方程求得的极限应力值,构建板料成形极限应力图(FLSD),得出了不同应变路径下的FLSD、不同屈服准则下的FLSD、不同晶格类型材料的FLSD及不同预应变量下的FLSD,并对其进行了比较分析。此外,还尝试用有限元仿真方法建立板料成形FLSD的方法,为FLSD的获得提供了一条方便途径。
     (5)进行了应用连续损伤力学原理建立FLSD的研究。综合文献资料推导了板料损伤的拉伸失稳预测模型,在以板材密度的变化作为损伤变量,测定板材损伤变量实验的基础上,根据模型求出特征点的极限应变值,再利用应力应变转换关系得出相应的FLSD。分析比较了用损伤力学原理得出的FLD与FLSD的特性,同时还与试验方法获得的FLSD进行了相应的比较分析,得出了基于损伤力学原理的预测模型的合理性的结论,为FLSD的进一步理论预测研究开拓了思路。
     (6)通过分析实验研究获得的成形极限应力、应变数据与变形条件之间的关系,并结合模糊数学和神经网络理论的优点,提出了采用模糊神经网路建立FLSD预测模型的设想。以试验数据及有限元仿真数据为样本,建立了板料成形FLSD的预测模型,提供了一种建立板料成形FLSD的新方法。同时对该模型的可靠性进行了测试,测试结果表明所建立的模糊神经网络模型预测精度高,具有良好的稳定性和抗干扰能力。
     (7)在实验研究及理论分析基础上,基于DYNAFORM板料有限元软件环境,在国内首次开发了用于多工步板料成形的工步之间的数据传递软件模块及以FLSD为成形极限判据的软件模块,实现了板料成形的FLSD判据的有限元分析,分析结果的准确性满足实际工程应用的需要。
     (8)进行了以FLSD为判据的板料成形的有限元分析结果的验证性现场试验研究。利用开发的软件模块在DYNAFORM软件环境中对轿车左后悬挂架多工步成形零件以FLSD为成形极限判据进行有限元模拟分析,并对分析结果在南汽集团跃进汽车有限公司的冲压车间进行了现场的冲压验证试验。试验结果与分析结果具有很好的一致性。
     本文的研究结果表明:FLSD具有应变加载路径的无关性特征,利用其分析复杂应变加载路径条件下的板料成形极限分析是有效的和可靠的。本文的研究工作为以后在板料成形模拟仿真中,使用成形极限应力图替代应变成形极限图作为极限判据奠定了基础。
Sheet metal forming is one of the most important metal shaping processes . It is extensively used throughout the major automotive, aeronautical and electrical appliance manufacturing industries and thus forms a vital part of the manufacturing industries of modern industries nations. In sheet metal forming analysis, it is indispensable to study forming limit and forming limit predict . The forming limit diagram (FLD), is a useful diagnostic tool for trouble shooting in sheet metal forming operations and is also an assessment method for determining the formability of different sheet materials. But FLD represented in strain coordinate system is strain path dependent and is therefore unable to give an accurate result in complicated deformation analysis, especially in analysis of multi-step deformation.
     This study is devoted to checking and verifying if the forming limit stress diagram (FLSD) could serve as a better criterion for limit analysis. This dissertation focuses on principal problem of FLSD in limit analysis application, correlative applied fundamental researches have been carried out.
     The main work and the results obtained in this dissertation are as follows:
     1. The shortcoming of FLD and the future of FLSD is discussed in sheet metal forming limit analysis complicated strain path are analyzed systemically, it is put forwarded that scheme using the combination of theoretical analysis with experiments to solve application of FLSD.
     2. The classic theory of plasticity interrelated with sheet metal forming was summarized, specially described different yield criterion and instable theory and its applied scope has been discussed. According to Swift instable theory , limit strain predicted derivation be carried out.
     3. Based on analysis of plasticity, according to“Sheet Metal Forming Property and Experimental Method”, the forming limit experiments are performed with five kind of materials (SPCEN,DC01,DC03,08AL,LF21M)and three thick metal sheet of s=0.8mm, 1.2mm, 2.1mm. testing plans include different strain path such as proportion loading, uniaxial pre-strain, equ-biaxial pre-strain and plane pre-strain. FLDs in different strain path been established by testing and characteristic are analyzed and compared.
     4. The transformation relation from FLD to FLSD been derived in diverse yield criterion, FLSDs in different strain path have been built on the basis of data FLD and characteristic are analyzed and compared. At the same time, it be implemented to establish FLSD by FEM.
     5. The instable predict model be deduced according to principle of Continuum Damage Mechanics, then testing study by regarding the change of sheet metal,s density as the damage variable was carried out, on sheet metal of SPCEN and LF21M. FLDs are established by predict model, then the from FLD transform to FLSD by transformation relation and characteristic are analyzed and compared with FLSD established by testing. The result indicates that FLSD by means of CDM predict model is evident independent of strain path.
     6. By analysis relation between limit strain, limit stress with deformation parameters and materials properties parameters,integrating the advantages of the fuzzy set and the artificial neural network theory,a FLSD predict model sheet metal deformation has been established according to the experimental results. Meanwhile,the prediction model be checked. The comparison of the prediction results with the experimental of the test samples shows that the prediction model is stable and reliable.
     7. It is developed that the finite element analysis program based on the stress forming limit criterion applicable to the sheet metal forming analysis, which selects the commercial finite element code DYNAFORM as its development environment. Also it analyzes the finite element numerical simulation results of two step deep drawing parts by the developed program module and realizes the prediction of sheet metal forming limit adopting the FLSD as criterion.
     8. It is carried out that stamping test of two step drawing part for checking in Nanjing carbuilder, this project develops the program module of using FLSD as criterion for sheet metal forming, uses which to conduct analysis on actual sheet metal deep drawing parts and verdicts that the simulation result is in better coincidence with the result obtained from practical production, so it is feasible to use FLSD as criterion for sheet metal formability analysis.
     The research results in this dissertation show that that forming limit stress diagram is independent of strain paths. And it gives a good new criterion for multi-step sheet metal forming in finite element numerical simulation analytic.
引文
[1] S. J. Hu, Z.Marciniak, J.L.Duncan.Mechanics of sheet metal forming.London. Butterworth Heinemann Press, 2002:14-15
    [2] Xuan Zhi Wang, S.H. Masood, M. Dingle. Numerical simulation and optimisation of sheet metal forming for auto-body panel using autoform software. Materials Science Forum , 2007, 561-565:1911-1914
    [3]周贤宾.塑性加工技术的发展-更精、更省、更净.中国机械工程,2003,14(1):85-87
    [4]胡世光,陈鹤峥.板料冷压成形的工程解析.北京:北京航空航天大学出版社,2004:310-312
    [5] K. C. Chan, L. Gao. On the susceptibility to localized necking of defect-free metal sheets under biaxial stretching. Journal of Materials Processing Technology, 1996, 58: 251-255
    [6] Thomas B. Stoughton,Jeong Whan Yoon. Sheet metal formability analysis for anisotropic materials under non-proportional loading. International Journal of Mechanical Sciences, 2005,47:1972-2002
    [7] H.W. Swift. Plastic instability under plane stress. Mech. Phys.,Solids, 1952, 1:1-18
    [8] R. Hill. On discontinuous plastic state, with special reference to localized necking in thin sheets. Mech. Phys.Solids, 1952,1:19-30
    [9] S. P. Keeler. Plastic instability and fracture in sheets stretched over rigid punches. Trans. ASM, 1963,56(1):105-110
    [10] Lee D, Backofen W. An experimental determination of the yield locus for titanium and titanium alloy sheet. Trans. Met. Soc.AIME.1966, 34:456-468
    [11] Goodwin in GM. Application of strain analysis to sheet metal forming problems in the press shop. SAE. Report 680093, 1968
    [12] Raghavan K.S. A simple technique to generate in-plane forming limit curve and selected applications. Met. Trans., 1995, 26A: 2075-2084
    [13] ESI group. Pam-view for PAMSTAMP-reference manual, verson2000, Pam system international, 2000
    [14]吴建军,周维贤.板料成形性基础.西安:西北工业大学出版社,2004:105-106
    [15]梁炳文,陈孝戴,王志恒.板金成形性能.北京:机械工业出版社,1999
    [16]林忠钦,李淑慧,于忠奇.车身覆盖件冲压成形仿真.北京:机械工业出版社,2005:129-132
    [17] S. Kohara. Forming limit curves of aluminum and aluminum alloy sheets and effects of strain path on the curves. Materials processing technology, 1993,38:723-735
    [18] C.L.Chow. Prediction of forming limit diagrams for Al6111-T4 under non-proportional loading. International Journal Of Mechanical Sciences, 2001, 43(1): 471-486
    [19] Graf AF, Hosford WF. Calculations of forming limit diagram for changing strain paths. Metallurgical Transactions A,1993,24:2497-2501
    [20] Kleemola HJ, Pelkkikangas MT. Effect of pre-deformation and strain path on the forming limits of steel copper and brass. Sheet Metal Industries, 1977, 63:591-599
    [21] L. Zhao R. Sowerby,M.P. Sklad. A theoretical and experimental investigation of limit strains in sheet metal forming. Int. J. Mech. Sci, 1996, 38:1307-1317
    [22] A. Needleman ,N. Triantafyllidis. Void growth and local necking in biaxially stretched sheets. Engineering Materials and Technology, 1978, 100:164-169
    [23] K.S. Chan. Marciniak-Kuczynski approach to calculating forming limit diagrams, in FORMING LIMIT DIAGRAM edited by R. H. Wagoner. TMS, 1989:235-239
    [24] S. Str?ren ,J.R. Rice. Localized necking in thin sheets. J. Mech. Phys. Solids, 1975, 23:421-441
    [25] Storen S, Rice J.R. Localized necking in thin sheets. J. Mech. Phys. Solids, 1975, 23: 421
    [26] Arrieux R, Bedrin C, Boivin M. Determination of an intrinsic forming limit stress diagram for isotropic metal sheets. Proceedings of the 12th Biennial Congress IDDRG,1982: 61-71
    [27] Lemaitre.J. A three-dimensional ductile damage model applied to deep-drawing forming limit. ICM4, 1983, 12: 105-121
    [28]陈光南.板料拉伸变形损伤、失稳与成形极限研究[博士学位论文].北京:北京航空航天大学,1991
    [29]董秋月,余心宏. 08F板料复杂应变路径下的成形极限研究.模具技术,1998(4):12-16
    [30]樊建平,邓泽贤,崔智邦.用损伤理论方法预测铝合金薄板成型极限.固体力学学报,2006,27(2):109-114
    [31] W.M. Sing,K.P. Rao. Study of sheet metal failure mechanisms based on stress-state conditions. Materials processing technology,1997, 67: 201-206.
    [32] Thomas. B. Stoughton. A general forming limit criterion for sheet metal forming. International Journal of Mechanical Sciences, 2000, 42: 1-27
    [33] Thomas. B. Stoughton, Xinhai Zhu. Review of theoretical models of the strain-based FLD and their relevance to the stress-based. International Journal of Plasticity, 2004, 20: 1463 - 1486
    [34]张京,周贤宾.板料成形极限应力图的研究.第七届全国锻压学术年会论文集,北京:航空工业出版社,1999:299-302
    [35]万敏,周贤宾.复杂加载路径下板料屈服强化与成形极限的研究进展.塑性工程学报, 2000,7(2):35-39
    [36]谢英,万敏,韩非.板料成形极限应力图研究.机械工程学报,2005,41(7):45-48
    [37]谢英,万敏,韩非.板料成形极限应变与极限应力的转换关系.塑性工程学报,2004,1(3):55-59
    [38] M. Stranno, Y. Aue-u-lan, L. Gao . Determination of the forming limits for tubular materials. Internal report, THF/ERC/NSM-00-R-29, 2000:125-132
    [39] S. Keeler. Forming limits for hydroforming and other simulations. Proceedings of AMERIPAM 2000, Detroit, USA, 2000:205-214
    [40]陈明和,高霖,左敦稳等.板料成形极限应力图及其应用研究进展.中国机械工程, 2005, 16(17): 92-96
    [41] C. L. Chow, X. J. Yang. Prediction of forming limit diagram with mixed anisotropic kinematic-isotropic hardening plastic constitutive model based on stress criteria. J.Materials processing technology, 2003, 133:304-310
    [42]刘全坤,祖方道,李萌盛等.材料成形基本原理.北京:机械工业出版,2005:344-363
    [43]苑世剑,何祝斌,板料成形性理论评价与深入研究.塑性工程学报,2003,10(3):6-11
    [44] Hill R. the mathematical theory of plasticity. Oxford Press, 1950
    [45] J.Lian,D.Zhou,B.Baudelet. Application of Hill’s new yield theory to sheet metal forming PartⅠ, Hill’s’1979 criterion and its application to predicting sheet forming limit. Int.J.Meeh. Sci., 1989,31: 237-255
    [46] Hill R. Constitutive modeling of orthotropic plasticity in sheet metals. J. Mech. Phys Solids, 1990,38 (3):405-417
    [47] Hill R. A user-friendly theory of orthotropic plasticity in sheet metals. Int J. Mech. Sci., 1993, 35(1):19-25
    [48] Graf, A.F., Hosford, W.F. Calculations of forming limit diagrams for changing strain paths. Met. Trans.A, 1993, 24, 2497-2501
    [49] Barlat F,Lian J. Plastic behavior and stretchability of sheet metals, PartⅠ:a yield function for orthotropic sheet under plane stress conditions. Int J Plasticity,1989, 5(1):51-66
    [50] Lege D J, Barlat F,Brem J C. Characterization and modeling of the mechenical behavior and formability of a 2008-T4 sheet sample. Int J Mech Sci., 1989, 31:549-563
    [51] Barlat F, Lege D J, Brem J C. A six-component yield function for anisotropic materials. Int J Plasticity, 1991,7: 693-712
    [52] Barlat F. Crystallographic textures, anisotropic yield surfaces and forming limits of sheet metals. Mater Sci Eng., 1987, 91:55-63
    [53]吴向东.不同加载路径下各向异性板料塑性变形行为的研究[博士学位论文].北京:北京航空航天大学,2004:27-29
    [54] Gotoh M. A theory of plastic anisotropy based on a yield function of fourth order (plane stress state). Int J Mech Sci., 1977, 19(8):505-562
    [55] Bassani JL. Yield characterization of metals with transversally isotropic plastic properties. Int J Mech Sci. 1977, 19 (11): 651-660
    [56]周维贤.正交异性非二次屈服函数探讨.西北工业大学学报,1989,7(4):401-411
    [57]周维贤.正交异性非二次三维应力屈服函数.中国有色金属学报,1992,2:56-62
    [58]汪大年.金属塑性成形原理.北京:机械工业出版社,1986
    [59]俞汉清,陈金德.金属塑性成形原理.北京:机械工业出版社,1999
    [60] Chu E,Shah K N,Pourboghrat F,etal. the development/application of sheet metal forming technology at Alcoa. SAE Trans of Materials & Manufacturing, 1993, No.930523:743-755
    [61]王仁,熊祝华,黄文彬.塑性力学基础.北京:科学出版社,1982
    [62]王祖唐,关廷栋,肖景容等.金属塑性成形理论.北京:机械工业出版社,1989
    [63] K. E. Sven, L.K. Gary. Review of failure analysis in sheet metal forming simulations. NUMISHEET'96, 270-279
    [64] F. Negroni, S. Kobayasi, E. G. Thomsen. Plastic instability in simple stretching of sheet metal. Trans ASME. Series B ,1968,2(90):387
    [65] J D Bressan,J A Williams. The use of a shear in stability criterion to predict local necking in sheet metal deformation. Int J Mech Sci,1 983,25(3):155-168
    [66] F. Negroni, E. G. Thomsen. On the plastic tensile instability criteria. Trans. ASME.Series B, 1969,3(91).
    [67] K. E. Sven, L.K. Gary. Review of failure analysis in sheet metal forming simulations, NUMISHEET'96, 270-279
    [68] R.Hill. On discontinuous plastic states with special reference to localized necking in thin Sheets. J.Mech.Phys.Solids,1952,1:l-19
    [69] Z.Mareiniak, K.Kuezynski. Limit strains in the processes of stretch forming sheet metal. Int.J.Mech.Sei, 1967,9:609-620
    [70] ISO2004. Metallic materials–Determination of forming limit curves. ISO/WD2004, 2005
    [71]邓陟,王先进,陈鹤峥.金属薄板成形技术.北京:兵器工业出版社,1993
    [72]吴向东.不同加载路径下各向异性板料塑性变形行为的研究[博士学位论文].北京:北京航空航天大学,2004
    [73]雷正保.汽车覆盖件冲压成形CAE技术.长沙:国防科技大学出版社,2003
    [74]胡世光,陈鹤峥.板料冷冲压成形的工程解析.北京:北京航空航天大学出版社,2004
    [75]楼源. ARAMIS光学应变测量系统说明书.香港:宝力机械有限公司,2005
    [76] Thomas B. Stoughton, Jeong Whan Yoon. Sheet metal formability analysis for anisotropic materials under non-proportional loading. International Journal of Mechanical Sciences,2005, 47:1972-2002
    [77]谢英,万敏,韩非.板料成形极限应变与极限应力的转换关系.塑性工程学报,2004, 11:55-58
    [78] S. Dumoulin, L. Tabourot, C. Chappuis. Determination of the equivalent stress-equivalent strain relationship of a copper sample under tensile loading. Journal of Materials Processing Technology, 2003, 133:79–83
    [79] Moshfegh R. Finite element analysis of the erichsen cupping-with special reference to necking, Dissertation No.590, Linkping University,1996
    [80] Chen Minghe, Gao Lin, Zuo Dunwen. Establishing the forming limit diagram based on FEM simulation, Proceedings of the 7th ICFDM2006, Guangzhou, 2006, 357-360
    [81] A. R. Ragab, Ch. A. R. Saleh. Effect of void growth on Predicting forming limit strains for Planar isotropic sheet metals. Mechanics of Materials, 2000(32): 71-84
    [82] Mediavilla Varas, Jesus. Continuous and discontinuous modeling of ductile fracture. Technische Universiteit Eindhoven, The Netherlands, 2005:3-4
    [83] L.M.Kaehanov. Time of the rupture process under creep condition. lzv. AkadNauk.U.S.S.R Otd.Tekhn.Nauk,1958.8:26-31
    [84] J. Lemaitre. A three- dimensional ductile damage model applied to deep drawing forming limits. Proc. ICM-4,1983:1-7
    [85]李灏.形变失稳的各向异性损伤准则及其在金属薄板成形极限中的应用.华中工学院学报,1985(13):1-14
    [86]任伟新.用连续损伤力学原理建立板料的成形极限曲线.长沙铁道学院学报,1989,7:93-98
    [87]张以增.塑性应变对微空洞的形核以及对微空洞长大的不同贡献.机械工程学报,1987,23(1):9-17
    [88]黄婧.基于连续损伤力学的金属板材成形极限研究[博士学位论文].武汉:武汉理工大学,2006
    [89]李灏.损伤力学基础.济南:山东科学技术出版社,1992
    [90] J. Lemaitre. A course on damage mechanics. New York: Springer-Verlag,1992
    [91] J.P.Cordebois, F. Sidoroff. Anisotropic damage in elasticity and plasticity. In analysis methods for non-linear behavior of solids, J. Mecanique, 1982, No.6
    [92] J. Lemaitre. A continuous damage mechanics model for ductile fracture, Trans. ASME, J. Engng. Materials and Tech., 1985, 107:83-89
    [93]梁炳文,胡世光.弹塑性稳定理论.北京:国防工业出版社,1983
    [94]熊爱明.钛合金锻造过程变形一传热一微观组织演化的耦合模拟[博士学位论文].西安:西北工业大学,2003
    [95]朱喜林.模糊神经网络选择机械加工参数[博士学位论文].长春:吉林大学,2006
    [96] M.H. Chen, J. H. Li, D.W. Zuo. An artificial neural network approach to model and predict the relationship between the processing parameters and properties of TC21 titanium alloy. the ICIT&MPT 2007 conference proceedings,TECOS, Slovenian Tool and Die Development Centre, 2007: 205-209
    [97] M.H. Chen, Z.S. Zhu, D.W. Zuo, M. Wang. Parameters in the calescent superplastic bulge forming of Ti-6Al-4V Alloys sheet based on fuzzy neural network. Advances in Materials Manufacturing Science and Technology. Materials Science Forum,2004,471-472:596-602
    [98] Kosko B. A dynamical systems approach to machine intelligence. Neural Networks and Fuzzy Systems, Englewood Cliffs: Prentice Hall, 1992
    [99]李晓忠,汪培庄,罗承忠.模糊神经网络.贵阳:贵州科技出版社,1994
    [100] Naskas. N. An adaptive power amplifier lineariser based on a multilayer perceptron. IEEE Vehicular Technology Conference, 2003,57(2):1331-1334
    [101]李孝安.神经网络与神经计算机导论.西安:西北工业大学出版社,1995
    [102]刘增良.模糊技术与神经网络技术选编.北京:北京航空航天大学出版社,1999
    [103]朱剑英.应用模糊聚类法应注意的若干关键问题.模糊系统与数学,1987,1:1-4
    [104]丛爽.面向MATLAB工具箱的神经网络理论与应用.合肥:中国科技大学出版社,1998
    [105]王士同.问题求解的人工智能—神经网路方法.北京:气象出版社,1995
    [106]王士同.神经模糊系统及其应用.北京:北京航空航天大学出版社,1998
    [107] Lee. HM. A fuzzy neural network model for revising imperfect fuzzy rules. Int. J. Fuzzy Sets and Systems,1995,76(1):213-219
    [108] Gupta. K. K, Meek. J. L. a brief history of the beginning of the finite element method. International Journal for Numerical Methods in Engineering,1996, 39:3761-3774
    [109]钟志华,李光耀.薄板冲压成形过程的计算机仿真与应用.北京:北京理工大学出版社,1998
    [110] LIVERMORE SOFTWARE TECHONOLOGY CORPORATION. LS-DYNA Database Binary Output Files, www.lstc.com, 2002.5: 1-23
    [111] Yang. D. Y, Jung. D. W, Song I S et al, Comparative investigation into implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes, In: Proc of NUMISSHEET,93Numerrical Simulation of 3-D Sheet Metal Forming Processes -Verification of Simulation with Experiment,Tokyo,1993:39-53
    [112]李靖谊,李凡,胡宇群.钣金件多工步成形计算机模拟数据处理研究.小型微型计算机系统,2003,24(7):1397-1400
    [113] Belytschko. T, Tsay C.S. Explicit algorithms for nonlinear dynamics of shells. ASME, 1981, AMD(48):209-231
    [114]莫江涛,王静文.基于MATLAB与Visual C++实现主应力的编程求解.湖南工程学院学报,2005,15(3):23-26
    [115]张志涌.精通MATLAB 6.5.北京:北京航空航天大学出版社,2003
    [116]庞承宗,李宝树,王晓云.用MATLAB和Visual C++混合编程及应用.电力科学与工程,2003,1:59-61
    [117]马光志.C++程序设计实践教程.武汉:华中科技大学出版社,2001:10-11
    [118]吕延庆,朱坚民,周福章等.基于Visual C++和MATLAB的联合编程方法的研究.计算机应用研究,2000,(11):101-103
    [119]和平鸽工作室.OpenGL三维图形系统开发与实用技术(基础编程篇).重庆:重庆大学出版社,2003
    [120]黄维通,Visual C++面向对象预可视化程序设计.北京:清华大学出版社,2000
    [121] J.Y. Zhang. D3PLOT READER - Developer Guide 1.0a, 2005:1-29
    [122]郝红伟.Origin6.0实例教程.北京:中国电力出版社,2000
    [123]薛玉雷.基于成形极限应力图判据的DYNAFORM的应用程序开发[硕士学位论文].南京:南京航空航天大学,2006
    [124]吴斌,毕丽蕴.OpenGL编程实例与技巧.北京:人民邮电出版社,1999
    [125] M.H. Chen , J.H. Li, D.W. Zuo. Development and application of the finite element analysis program of the stress-based forming limit criterion for sheet metal forming. Materials Science Forum, 2007, 561-565:1995-1998
    [126]王喜.成形极限应力图及其在多道次拉深成形中的应用研究[硕士学位论文].南京:南京航空航天大学,2006
    [127] M.H. Chen, L .Gao, D.W. Zuo. Application of the forming limit stress diagram to forming limit prediction for the multi-step forming of auto panels. Journal of Material Processing technology, 2007, 187–188:173–177
    [128] G.Hussain, N.U.Dar, L.Gao, M.H. Chen. A comparative study on the forming limits of an aluminum sheet-metal in negative incremental forming.Journal of Materials Processing Technology,2007,187-188:94-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700