用户名: 密码: 验证码:
旋转叶片动应变FBG分布式检测及振动估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以航空发动机为代表的叶片类旋转机械是工业领域一类重要装备,随着科学的发展、技术的进步、效率的提高,此类装备不断向大型化、高速化、柔性化发展。叶片作为功能转化的核心,所承受的单位负载不断增加,设计安全系数甚至达到1。这种情况下,对旋转叶片实时、在线的检测、监测手段成为提高装备性能、可靠性的关键。
     光纤光栅(FBG)是一种新型光学应变传感器,具有质量轻、体积小、一线多点、分布式测量、抗电磁干扰、光信号可在空气中传输的特点。利用FBG传感器的这些特点,可对旋转叶片的动应变及相关参量进行测量,可满足旋转叶片在空间狭小、高速旋转、高温、高压等苛刻工况条件下的测量要求,对加深高速旋转叶片力学行为的认识,提高我国叶片类旋转机械的研究、设计、分析、加工、制造水平都具有重要意义。
     同时,旋转也是工业装备的普遍特征,此项研究也可推广至通用装备的旋转部件测量,提高对所有具备旋转特征的工业装备的认识,对提高这些工业装备的研究、设计、分析、加工、制造水平都具有重要意义。
     本文首先建立了航空发动机旋转叶片动应变测量的方法。介绍了FBG应变测量的原理,利用FBG光信号可在空气中传输的特性,分析了旋转叶片上FBG应变测量信号传输的几种方法,在此基础上选择C-LENS透镜法进行了深入分析,并基于分析的结果利用两个C-LENS透镜进行了实验。实验结果表明,C-LENS透镜法可在旋转轴端跳动最大0.8mm的工况下传输光信号。但C-LENS透镜法对旋转轴夹角的变化非常敏感,最终实验装置在最大4000r/min下实现了旋转部件动应变FBG检测光信号的传输。
     随后,通过分析动应变与振动间的关系,提出通过旋转叶片动应变估计旋转叶片振动的方法。由弹性力学、动力学的基本理论,任意结构的强迫振动方程均可利用假设模态法近似求解,各阶模态可视为强迫振动方程解空间的基,则不同位置振动可用振动体各阶模态的组合或振动方程解空间的基来逼近,而不同模态在不同位置的名义应变是唯一的,从而通过动应变可估计旋转叶片的振动情况;然后,将变截面、变厚度、预扭曲的旋转叶片简化为旋转等截面梁,将旋转等截面梁简化为静态等截面梁,依次求解等截面悬臂梁、旋转等截面悬臂梁、旋转叶片动应变→振动的方程。
     以动应变→振动理论分析和旋转信号传输的实验工作为基础,分别测试了等截面悬臂梁、旋转等截面悬臂梁、某型发动机二级动叶片旋转态的动应变,并分析了实验结果,估计了实验对象的振动。其中针对某型发动机二级动叶片旋转态的动应变的测试结果表明,存在一个频率簇,此频率簇对发动机的动态响应特性有非常大的影响,应在设计中予以充分的考虑。
     在研究单个旋转叶片的动应变后,得益于FBG一线多点、分布式测量的优点,测量了两个叶片8个点的动应变。从多个叶片/轮毂组成的系统的角度出发,实验研究了旋转态叶片——轮毂系统的振动特性,指出由于加工误差、安装误差、磨损程度的不一致,叶片——轮毂系统不可简单视为循环对称结构,从循环对称的特征出发建立模型将导致计算结果的偏差,错误的估计安全系数,导致重大安全隐患。
Blade-like rotating mechanical is the core equipment in the field of industry. Along with the development of science, advancement of technologies and improvement of efficiency, this kind of equipment is developed continuously with a trend toward large scale, high speed and flexibility. The blade, as the core component of equipment, bored enormous unit load and the design safety factor even reaches1. In this case, the real-time and online detection and monitoring means of rotating blade becomes the key to improve equipment performance and reliability.
     The optical fiber bragg grating (FBG) is a kind of optical sensor and a strain measurement sensor characteristic of light weight, small volume, one line with multiple points, distributed measurement, electromagnetic interference resistance, optical signal transmission in the air. These characteristics of the FBG sensor could be utilized in measuring the dynamic strain and related parameters of rotating blades, meeting the requirements of rotating blade measurement under the extreme conditions like narrow space, high-speed, high temperature and high pressure, which is significant for understanding the mechanical behavior of the high-speed rotating blade and improving China's blade-like rotating equipment research, design, analysis, processing and manufacturing level.
     In the meanwhile, rotating is a common feature of industrial equipment. This study can also be extended to the measurement of rotating parts of common equipment and improve knowledge of all industrial equipment with rotating feature, which is significant for improving the research, design, analysis, processing and manufacturing level of the industrial equipment.
     Firstly, the measurement method of rotating blade's dynamic strain of jet engine is established.Based on the characteristics of optical signal can transmit in the air, the author analyzes several transmission methods of FBG signal on the rotating blade, and select the C-LENS lens method as further analysis, and design experiments by using two C-LENS lens based on the analysis results. The results show that the optical signal could be transmitted under the condition of maximum rotating shaft end run-out of0.8mm by using the C-LENS lens method. However, the C-LENS lens method is very sensitive to the variation of the included angle of rotating shaft. The result shows the dynamic strain of rotating component can transmit under the condition of4000RPM. A patent is applied for based on these studies.
     Subsequently, the relationship between the dynamic strain and vibration is analyzed in this paper. The equation of rotating blade's dynamic strain→vibration is established. According to the basic theories of the elastic mechanics and dynamics, approximation solution of the forced vibration equation of any structure can be obtained by using the assumed mode method. Dynamic strain at different positions can be regarded as the solution of forced vibration equation at this point; each mode can be regarded as the base of solution space of forced vibration equation; then, dynamic strain at different positions can be approximated by the modal combinations of vibrating body or the bases of solution space of vibration equation so as to estimate the vibration status of the rotating blade. Then follow the route from complexity to simplicity/from simplicity to complexity to simplify the pre-twisted rotating blade of variable cross section and variable thickness to the constant cross-section rotating beam and simplify the constant cross-section rotating beam to the constant cross-section static beam, which solve the equations of constant cross-section cantilever beam, constant cross-section rotating beam and rotating blade dynamic strain→vibration in theory. Dynamic strain of constant cross-section cantilever beam, constant cross-section rotating beam and secondary rotating blade of some model of jet engine under rotating status is tested respectively on the basis of theoretical analysis of the dynamic strain→vibration and experiments of rotating signal transmission, and experimental results are analyzed to estimate the experimental subject. Among which, the result of testing the dynamic strain of secondary rotating blade of some model of engine under rotating status indicates that a frequency cluster exists and this frequency cluster has significant influence on the dynamic characteristics of the engine and should be fully taken into account in the design.
     After the study on the dynamic strain of single rotating blade, dynamic strain at eight points of two blades are measured by utilizing FBG's advantage of one line with multiple points and distributed measurement. The vibration characteristics of the rotating blade/hub system are studied through experiment from the point of a system consisting of multiple blades/hubs. It points out that the blade/hub system could not be regarded as a cyclic symmetric structure simply due to the inconsistency of machining error, installation error and degree of wear. Model building based on the cyclic symmetric feature will result in deviation of the calculation results, erroneous estimation of the safety factor and significant security hazards.
引文
[1]随文涛.滚动轴承表面损伤故障的特征提取与诊断方法研究[D].济南:山东大学,2011.
    [2]李蕊,陈建平,周继年.噪声检测技术在齿轮箱故障诊断中的应用[J].矿煤机械,2008,5(29)209-211.
    [3]朱革.齿轮噪声解调分析新方法及其音质主观评价体系的研究[D].重庆:重庆大学,2003.
    [4]李伟.航空发动机叶片失效分析中的共性问题[J].燃气涡轮实验研究,2002,15(2):28-31.
    [5]黄忠藩,杨龙兴,胡小林.电站汽轮机大叶片制造技术综述[J].汽轮机综述,1996,38(5):274-282
    [6]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子·激光,2002,4(13):420430
    [7]徐小力,梁福平,许宝杰,等.旋转机械状态监测及预测技术的发展与研究[J].北京机械学院学报,2003,6(12):568-573.
    [8]彭应宁,何友,孟祥伟.多传感器分布式检测中新的反馈方案及其最优融合[J].电子学报,2003,6(12):568-573.
    [9]Srinivasan A V. Vibrations of Bladed-disk Assemblies—A Selected Survey [J]. ASME Journal of Vibration, Acoustics,Stress,and Reliability in Design,1984 (106):165-168.
    [10]Cifone A. Keynote Address.10th National Turbine Engine High cyclic Fatigue conference [C]. New Orleansr:Louisiana,2005.
    [11]Srinivasan A V. Flutter and Resonant Vibration Characteristics of Engine Blades [J]. ASME Journal of Engineering for Gas Turbines and Power,1997(119):742-775.
    [12]Thomson D. US HCF Program Overview [C].10th National Turbine Engine High Cyclic Fatigue Conference. New Orleans, Louisiana.2005.
    [13]邵忍平,郭万林,沈允文.机械传动系统损伤监测的研究现状和展望[J].振动、测试与诊断,2002,22(3):179-185.
    [14]Wiercigroch M, Deans W F. Novel dynamic fatigue-testing device:design and measurements[J]. Measurement Science & Technology,2006,17(8):2218-2226.
    [15]Caucheteur C, Lhomme F, Chan K, et al. Simultaneous strain and temperature sensor based on the numerical reconstruction of polarization maintaining fiber Bragg grating [J]. Optics and Lasers in Engineering,2006,44(5):411-422.
    [16]Kyungmok Kim, Jong Min Lee, Yoha Hwang. Determination of engineering strain distribution in a rotor blade with fibre Bragg grating array and a rotary optic coupler [J]. Optics and Lasers in Engineering,2008(46):758-762.
    [17]李德葆,实验应变/应力模态分析若干问题的进展评述[J].振动与冲击,1996,15(1):13-17.
    [18]孙丽,梁德志,李宏男.等强度梁标定FBG传感器的误差分析与修正[J].光电子·激光,2007,18(7):776-779.
    [19]罗映祥,蒋行达.等强度悬臂梁FBG调谐特性研究[J].四川师范大学学报(自然科学版),2006,29(1):86-88.
    [20]梁磊,罗裴,周雪芳,等.光纤Bragg光栅传感技术用于应变模态检测[J].河南科技大学学报(自然科学版),2003,24(3):54-57.
    [21]陈伟民,朱永,封君,黄尚廉.光纤法珀应变传感器系统的实验研究[J].土木工程学报,2002,35(4):36-39.
    [22]Al-Bedoor, B.O. Discussion of the available methods for blade vibration measurement [J]. American Society of Mechanic Engineers,2002 (447):53-61.
    [23]李晓波,王强,李鹏.FBG传感器在结构应变检测中的应用研究[J].工程质量,2008(5):40-43.
    [24]孙丽.李宏男.FBG应变传感器的动态特性及应用范围[J].振动与冲击,2006(3):29-34.
    [25]Yu XiuJuan,Yu YouLong,Zhang Min, et al. Strain and temperature sensing characteristics of FBG packaged by the titanium alloy slice [J]. Journal of Optoelectronics·Laser(光电子·光),2006,17(5):564-567.
    [26]Sun Li. Research of fiber Bragg grating sensing technology and engineering application[D]. Dalian: Dalian University of Technology,2006.
    [27]Thomson D. US HCF Program Overview[C].10th National Turbine Engine High Cyclic Fatigue Conference, New Orleans:Louisiana,2005.
    [28]V Donato, et al. Measuring blade vibration of large low pressure steam turbine [J], Journal of Power Engineering,1981,85(3):68-71.
    [29]韩中合,祝晓燕,丁常富.汽轮机叶片动态检测技术的研究和发展[J].汽轮机技术,2002,44(3):129-131.
    [30]И.E.萨勃洛斯基,等.涡轮机叶片振动的非接触检测[M].吴士祥,郑叔琛译.北京:国防工业出版社,1986.
    [31]Robert L, Leon, et al. Monitoring systems for steam turbine blade faults [J]. Sound and vibration, 1990,24(2):12-15.
    [32]M Majumder, T Kumar, A K Chakraborty, et al. FibreBragg gratings as strain sensors—present status and applications [J]. Sensors Actuate,2008(147):150-164.
    [33]Kwang Y. Lee, John P. Velas, Byoung-Hee Kim. Development of an Intelligent Monitoring System with High Temperature Distributed Fiber-optic Sensor for Fossil-Fuel Power Plants[C].2004 IEEE Power Engineering Society General Meeting, Jun 6-102004, Denver, CO, United States, v 2, p 1989-1994
    [34]T.H. Loutas, A. Panopoulou, D. Roulias, et al. Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements [J]. Expert Systems with Applications,2012(39):8412-8422.
    [35]Changhwan Kim, Kwansoo Kim, Hyungyu Kim, et al. A method to estimate bending moments acting on a Wind Turbine blade specimen using FBG sensors [J]. International Jonal of precision engineering and manufacturing,2012,13(7):1247-1250.
    [36]A. Cusano, A. Cutolo, J. Nasser,et al. Dynamic strain measurements by fibre Bragg grating sensor [J]. Sensors and Actuators,2004(110):276-281.
    [37]Honglei Guo, Gaozhi Xiao, Nezih Mrad, et al. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms[J]. Sensors,2011(11):3687-3705.
    [38]李德葆,诸葛鸿程,王波.实验应变模态分析原理和方法[J].清华大学学报,1990,2(30):106-112.
    [39]陆秋海,李德葆.模态理论的进展[J].力学进展,1996,26(4):464-472.
    [40]村井,等.动态设计分析研究(第二报)[J].小松技报,1979,25(2):73.
    [41]Hillary B, Ewins D J. The use of strain gauges in force determination and frequency response function measurements [C]. Proc. of 2nd IMAC(1984):627-634.
    [42]Staker CH. Modal analysis efficiency improved via strain frequency response functions [C]. Livonia, MI, USA:Proc. Of 3rd IMAC(1985):612-617.
    [43]李德葆,陆秋海著.实验模态分析及其应用[M].北京:科学出版社,2001
    [44]Li D B, Zhang H C, Wang B. The principle and techniques of experimental strain modal analysis[C]. Proc. of 7th IMAC, Los Angeles,1989:1285-1289.
    [45]Bernasconi O, Ewins DJ. Application of strain modal testing to real structures [C]. Proc. of 7th IMAC, Los Angeles,1989:1453-1464.
    [46]Tsang, WF. Use of dynamic strain measurements for the modeling of structures [C]. Proc. of 8th IMAC. NY.1990:1246-1251.
    [47]李德葆,张元润,罗京.动态应变/应力场分析模态方法[C].第六届模态分析与试验学术交流会论文集,1992(4):15-22.
    [48]邓众,严普强.桥梁结构损伤的振动模态检测[J].振动、测试与诊断,1999,19(3):157-163.
    [49]孙世基,雷继锋.结构故障的应变模态诊断方法[J].武汉水运工程学院学报,1992,16(1):59-65.
    [50]张开银,冯文琴.梁结构裂纹位置估计的应变模态折线图法[J].武汉水运工程学院学报,1991,15(3):263-267.
    [51]张开银.框架结构裂纹故障诊断[J].湖北工学院学报,1992,7(34):63-68
    [52]张开银,唐湘晋,李景成.柱桩结构裂缝故障诊断的研究[J].武汉水运工程学院学报,1993,17(3):363-368.
    [53]涂志华,张忠,赵立中,等.铝合金板低温动态特性及力学参数的实验研究[J].低温工程,1995,84(2):9-13.
    [54]瞿伟廉,陈伟.多层及高层框架结构地震损伤诊断的神经网络方法闭[J].地震工程与工程振动,2002,22(1):4348.
    [55]瞿伟廉,陈超,魏文辉.基于应变模态的钢结构构件焊缝损伤定位方法的研究[J].世界地震工程,2002,18(2):1-8.
    [56]瞿伟廉,黄东梅.高耸塔架结构节点损伤基于神经网络的两步诊断法[J].地震工程与工程振动,2003,23(2):143-149.
    [57]K. Kim, K. F. Eman, S. M. Wu. In-process control of cylindricity in boring operations [J]. Journal of Engineering for Industry,1987(109):291-296.
    [58]E. O. Doebelin.Measurement Systems Application and Design [M]. New York:McGraw-Hill,2004.
    [59]G. Pavic. Measurement of vibrations by strain gauges, Part Ⅰ:theoretical basis [J]. Journal of Sound and vibration,1985(102):153-163.
    [60]G. Pavic. Measurement of vibrations by strain gauges, Part Ⅱ:selection of measurement parameters [J]. Journal of Sound and vibration.1985(102):165-188.
    [61]L. Meirovitch. Analytical Methods in vibrations [M]. New York:Macmillan,1967.
    [62]Tobias S A, Arnold R N. The Influence of Dynamical Imperfection on the Vibration of Rotating Disks [J]. Proceeding of the Institution of Mechanical Engineers,1957(171):669-690.
    [63]Whitehead D S. Torsional Flutter of Unstalled Cascade Blades at Zero Deflection. R&M 3429,1964, University of Cambridge, Cambridge, England.
    [64]Wagner J T. Coupling of Turbomachine Blade Vibrations through the Rotor [J]. ASME Journal of Engineering for Power,1967,89(4):502-512.
    [65]Dye R C F, Henry T A. Vibration Amplitudes of Compressor Blades Resulting From Scatter in Blade Natural Frequencies [J]. ASME Journal of Engineering for Power,1969,91(3):182-188.
    [66]Ewins D J. The Effects of Detuning Upon the Forced Vibrations of Bladed Disks [J]. Journal of Sound and Vibration,1969,9(1):65-79.
    [67]Ewins D J. A Study of Resonance Coincidence in Bladed Discs [J]. Journal of Mechanical Engineering and Science,1970,12(5):305-312.
    [68]Anderson P W. Absence of Diffusion in Certain Random Lattices [J]. Physics Review,1958, 109(5):1492-1505.
    [69]Hodges C H. Confinement of Vibration by Structural Irregularity [J]. Journal of Sound and Vibration, 1982 (82):411-424.
    [70]Hodges C H, Woodhouse J. Vibration isolation from Irregularity in a Nearly Periodic Structure: Theory and Measurement [J]. Journal of the Acoustical Society of America,1983,74(3):894-905.
    [71]李凤明,汪越胜,黄文虎,等.失谐周期结构中振动局部化问题的研究进展[J].力学进展,2005,35(4):498-512.
    [72]Pierre C, Dowell E H. Localization of Vibration by Structural Irregularity [J]. Journal of Sound and Vibration,1987,114(3):549-564.
    [73]Pierre C. Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures [J]. Journal of Sound and Vibration,1988,126(3):485-502.
    [74]Pierre C, Murthy D V. Aero-elastic Modal Characteristics of Mistuned Blade Assemblies:Mode Localization and Loss of Eigenstructure [J]. AIAA,1992,30(10):2483-2496.
    [75]Pierre C, Dowell EH. Localization of vibrations by structural irregularity [J]. Sound Vibration,1987, 114(3):549-564.
    [76]Pierre C, Tang DM, Dowell EH. Localized vibrations in disordered multispan beams:theory and experiment [J]. AIAA,1987(25):1249-1257.
    [77]Cha PD, Pierre C. Vibration Localization by disorder in assemblies of monocoupled, multimode component systems [J]. Appl Mech,1991(58):1072-1081.
    [78]Castanier MP, Pierre C. Individual and interactive mechanisms for localization and dissipation in a mono-coupled nearly periodic structure [J]. J Sound Vibration,1993(168):479-505.
    [79]Castanier MP, Pierre C. Lyapunov exponents and localization phenomena in multi-coupled nearly periodic systems[J]. J Sound Vibration,1995,183(3):493-515.
    [80]Castanier MP, Pierre C. Predicting localization via Lyapunov exponent statistics [J]. J Sound Vibration, 1997,203(1):151-7.
    [81]Cha PD, Pierre C. A Statistical investigation of the forced response of (?)nite nearly periodic assemblies [J]. J Sound Vibration,1997,203(1):158-68.
    [82]Pierre C. Localized free and forced vibrations of nearly periodic disordered structures[C]. In: AIAA/ASME/ASCE/AHS 28th Structures, Structural Dynamics and Materials Conf. Monterey, CA, April 1987:AIAA Paper 87-0774.
    [83]Wei S T, Pierre C. Localization Phenomena in Mistuned Assemblies with Cyclic Symmetry Part 1:Free Vibrations[J]. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design,1988 (110):429-438.
    [84]Wei S.T, Pierre C. Localization Phenomena in Mistuned Assemblies with Cyclic Symmetry Part II: Forced Vibrations [J]. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1988(110):439-449.
    [85]Happawana G S, Bajaj A K, Nwokah O D I. A Singular Perturbation Perspective on Mode Localization[J]. Journal of Sound and Vibration,1991,147(2):361-365.
    [86]Happawana G S, Bajaj A K, Nwokah O D I. On the Dynamics of Perturbed Symmetric Systems [C]. In:Proc 13th ASME Conf Mech Vibr Noise, Miami, FL,1991.
    [87]Happawana G S, Bajaj A K, Nwokah O D I. A Singular Perturbation analysis of Eigenvalue Veering and Model Sensitivity in Perturbed Linear Periodic Systems [J]. Journal of Sound and Vibration,1993, 160(2):225-242.
    [88]Happawana G S, Nwokah O D I, Bajaj A K, et al. Free and Forced Response of Mistuned Linear Cyclic Systems:A Singular Perturbation Approach [J]. Journal of Sound and Vibration,1998, 211(5):761-789.
    [89]李永强,王文亮.真实叶片系统主模态局部化的分析[J].复旦大学学报,1992,13(1):7-11.
    [90]叶先磊,王建军,朱梓根,等.大小叶盘结构连续参数模型和振动模态[J].航空动力学报,2005,20(1):66-72.
    [91]Xie W C, Ariaratnam S T. Vibration mode Localization in Disordered Cyclic Structures. Ⅰ:Single Substructure mode [J]. Journal Sound and Vibration,1996,189(5):625-645.
    [92]Xie W C, Ariaratnam S T. Vibration mode Localization in Disordered Cyclic Structures Ⅱ:Multiple Substructure mode [J]. Journal Sound and Vibration,1996,189(5):647-660.
    [93]Marugabandhu P, Grin J H. A Reduced Order Model for Evaluating the Effect of Rotational Speed on the Natural Frequencies and Mode Shapes of Blades [J]. ASME Paper2000-GT 611, ASME Turbo Expo 2000, Munich Germany.
    [94]罗惟德,王皓.失谐结构的模态分析[J].复旦大学学报,1992,31(3):318-325.
    [95]Wang Wenliang. Combined Method for Calculating Eigenvector Derivatives with Repeated Eigenvalues [J]. AIAA Journal,98-62.
    [96]张锦,刘晓平.叶轮机振动模态分析理论及数值方法[M].北京:国防工业出版社,2001.
    [97]姚宗健,于桂兰.失谐循环周期结构振动模态局部化问题的研究[J].科学技术与工程,2005,21(5):1616-1622.
    [98]Pierre C. Weak and Strong Vibration Localization in Disordered Structure:A Statistical Investigation [J]. Journal of Sound and Vibration,1990,139(1):111-132.
    [99]Ibrahim R A. Structural Dynamics with Parameter Uncertainties [J]. Applied Mechanics Reviews, 1987,40(4):309-328.
    [100]孙久厚,朱德惫.动力学参数修改的耦合模态子空间摄动法[J].南京航空航天大学学报.1995,27(4):480-486.
    [101]刘济科,赵令诚,方同.非线性系统模态分叉与模态局部化现象[J].西北工业大学学报,1995,27(5):614-618.
    [102]Vakakis A F. Nonlinear Mode Localization in Systems Governed by Partial Differential Equations[J]. Applied Mechanics Reviews,1996,49(2):87-99.
    [103]Pierre C, Shaw S W. Mode Localization due to.Symmetry-breaking Nonlinearities [J]. International Journal of Bifurcation and Chaos,1991, 1(2):471-475.
    [104]Kenyon J A, Griffin J H, Kim N E. Sensitivity of Tuned Bladed Disk Response to Frequency Veering [J]. ASME Journal of Engineering for Gas Turbines and Power,2005(127):835-842.
    [105]Baik S, Castanier M P, Pierre C. Mistuning Sensitivity Prediction of Bladed Eigenvalue Curve Veerings,9th National Turbine Engine High Cyclic Fatigue, Pinehurst,2004[C]. N. Carolina Disks Using Conference.
    [106]Petrov E P, Ewins D J. Method for Analysis of Nonlinear Multiharmonic Vibrations of Mistimed Bladed Disks with Scatter of Contact Interface Characteristics [J]. ASME Journal of Turbomachinery, 2005(127):128-136.
    [107]Capiez-lemout E, Soize C. Nonparametric Modeling of Random Uncertainties for Dynamic Response of Mistuned Bladed Disks[J]. ASME Journal of Engineering for Gas Turbines and Power, 2004(126):610-618.
    [108]Myhre M. Moyroud F M. Fransson T H. Numerical Investigation of the Sensitivity of Forced Response Characteristics of Bladed Disks to Mistuning[J]. In:Proceedings of ASME TURBO EXPO, 2003, GT2003-38007.
    [109]Kielb R, Barter J. Flutter of Low Pressure Turbine Blades with Cyclic Symmetric Modes:A Preliminary Design Method[J]. ASME Journal of Turbo-machinery,2004 (126):307-309.
    [110]廖延彪.光纤光学[M].北京:清华大学出版社,2003,9.
    [111]苑立波,Farhad Ansari光纤光栅原理与应用(一)—光纤光栅原理[J].光通信技术,1998,1(22):70-78.
    [112]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995.
    [113]Kersey A.D. Multiplexed interferometer fiber sensors. Proceedings of seventh international conference on optical fiber sensors [C]. Sydney.1995,313-319
    [114]Joseph C.Palais. Fiber coupling using graded index rod lenses [J]. Applied Optics,1980, 19(12):2011-2018.
    [115]国分泰雄,光波工程[M].北京:科学出版社,2002.
    [116]Michael L, Patrick T, Joseph T R, et al. A single mode optical rotary joint utilizing expanded ream optics [J]. Proceedings of SPIE,1986(722):179-186.
    [117]Pete Keeler, Alignment is the fiber-optic connector's main job-but accuracy starts with fibers [J].Electronic Design,1978(22):104-108.
    [118]Chu T C, Mccormick A R. Measurements of loss due to offset, end separation and angular misalignment in graded index fibers excited by incoherent source [J]. The Bell System Technical Journal,1978,57(3):695-602.
    [119]Warren H.Lewis, Michael B.Miller. Single mode fiber optic rotary joint for aircraft application [J]. Proceedings of SPIE,1990(1369):79-86.
    [120]Shi Y C, Klafter L, Harstead E E. A dual-fiber optical rotary joint [J]. Journal of Lightwave Technology,1985,3(5):999-1004.
    [121]胡卫生,曾庆济.自聚焦透镜准直系统的装配误差引起的附加耦合损耗分析[J].中国激光,1999,26(3):221-224.
    [122]Kane T R,Ryan R R&Banerjee A K.Dynamics of a Cantilever Beam Attached to a Moving Base.Journal of Guidance.Control and Dynamics.1987,10(2):139-151
    [123]邹凡.大变形刚—柔耦合系统的动力学仿真和实验研究[D].上海:上海交通大学,2011
    [124]Pradhan S C, Murmu T. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method [J], Journal of Sound and Vibration,2008(282): 509-516.
    [125]Dokainish M A, Rawtani S. Vibration analysis of rotating cantilever plates [J]. International Journal for Numerical Methodsin Engineering,1971 (3):233-248.
    [126]Karmakar A, Sinha P K. Finite element free vibration analysis of rotating laminated composite pretwisted cantilever plates [J]. Journal of Reinforced Plastics and Composites, 1997(16):1461-1490.
    [127]Ramamurti V, Kielb R. Natural frequencies of twisted rotating plates[J].Journal of Sound and Vibration,1984(97):429-449.
    [128]Yoo H H, Kim S K. Free vibration analysis of rotating cantilever plates [J]. AIAA Journal,2002(40):2188-2196.
    [129]Yoo H H, Pierre C.Modal characteristic of a rotating rectangular cantilever plate[J], Journal of Sound and Vibration,2003(259):81-96.
    [130]Hill G W. On the part of motion of the lunar perigee which is a function of the mean motions of the sun and moon [J]. J Acta Math,1886(8):1-28.
    [131]Floquet G. Sur les Equations Differentielles Lineaires a Cofficients Periodiques[J]. Ann Scientifiques EcoleNorm Sup,1883(12):47-89.
    [132]Bloch F. Ober die Quantenmechanik der Electronen in Kristallgittern[J]. Z Phys,1928(53):555-60.
    [133]Hodges CH. Confinement of vibration by structural irregularity [J].J Sound Vibration, 1982,82(3):411-24.
    [134]Hodges C H, Woodhouse J. Vibration isolation from irregularity in a nearly periodic structure:theory and measurements [J]. J Acoust Soc Am,1983,74(3):894-905.
    [135]Bendiksen O O. Aeroelastic stabilization by disorder and imperfections[C]. In:XVIth IUTAM Congress of Theoretical and Applied Mechanics, Lyngby, Denmark, August 1984:Paper No.583P.
    [136]Von Flotow A H. Disturbance propagation in structural networks [J]. J Sound Vibration, 1986,106(3):433-50.
    [137]Valero N A, Bendiksen O O. Vibration characteristics of mistuned shrouded blade assemblies [J]. ASME J Gas Turbines Power,1986,108(2):293-9.
    [138]Pierre C, Dowell E H. Localization of vibrations by structural irregularity [J]. J Sound Vibration,1987,114(3):549-64.
    [139]Bendiksen O O. Mode localization in large space structures [J]. AIAA J,1987(25):1241-8.
    [140]Pierre C, Tang DM, Dowell EH. Localized vibrations in disordered multispan beams:theory and experiment [J]. AIAA J,1987(25):1249-57.
    [141]Bendiksen OO, Valero NA. Localization of natural modes of vibration in bladed disks[C]. In:ASME International Gas Turbine Conference and Exhibit, June 1987:87-46.
    [142]Kissel GJ. Localization in disordered periodic structures [D].America:Massachusetts Institute of Technology,1988.
    [143]Wei S-T, Pierre C. Localization phenomena is mistuned assemblies with cyclic symmetry, Parts I and II [J]. ASME J Vibration Stress Reliability Des,1988(110):429-49.
    [144]Cornwell PJ, Bendiksen OO. Localization of vibrations in large space reectors [J]. AIAA J, 1989(27):219-26.
    [145]Cha PD, Pierre C. Vibration Localization by disorder in assemblies of monocoupled, multimode component systems [J]. J Appl Mech,1991 (58):1072-81.
    [146]Cai G Q, Lin Y K. Localization of wave propagation in disordered periodic structures [J]. AIAA J,1991(29):450-56.
    [147]Cornwell PJ, Bendiksen O O. Numerical study of vibration localization in disordered cyclic structures [J]. AIAA J,1992,30(2):473-81.
    [148]Levine M, Salama M. Mode localization experiments on a ribbed antenna. AIAA Paper 92-2453[C]. In:Proc AIAA/ASME/ASCE/AHS/ASC 33rd Structures, Structural Dynamics and Materials Conf, Dallas, TX,13-15 April 1992:2038-47.
    [149]Cornwell P J, Bendiksen OO. Impulse response of space re-ectors with localized modes [J]. AIAA J Spacecraft Rockets,1992,29(4):484-90.
    [150]Lust S D, Friedmann P P, Bendiksen O O. Mode localization in multi-span beams [J]. AIAA J,1993,31(2):348-55.
    [151]Castanier M P, Pierre C. Individual and interactive mechanisms for localization and dissipation in a mono-coupled nearlyperiodic structure [J]. J Sound Vibration,1993(168):479-505.
    [152]Lust S D, Friedmann P P, Bendiksen O O. Free and forced response of multi-span beams and multi-bay trusses with localized modes [J]. J Sound Vibration,1995,180(2):313-32.
    [153]Castanier M P, Pierre C. Lyapunov exponents and localization phenomena in multi-coupled nearly periodic systems [J]. J Sound Vibration,1995;183(3):493-515.
    [154]Castanier M P, Pierre C. Predicting localization via Lyapunov exponent statistics [J]. J Sound Vibration,1997,203(1):151-7.
    [155]Cha P D, Pierre C. A Statistical investigation of the forced response of (?)nite nearly periodic assemblies [J]. J Sound Vibration,1997,203(1):158-68.
    [156]Lee S Y, Mote C D. Traveling wave dynamics in translating string coupled to stationary constraints: energy transfer and mode localization [J]. J Sound Vibration,1998,212(1):1-22.
    [157]Vakakis A F. Normal mode and localization in nonlinear systems [M]. New York:Wiley,1996.
    [158]Whitehead D S. E.ect of mistuning on the vibration of turbomachinery blades induced by wakes [J]. J Mech Eng Sci,1966,8(1):15-21.
    [159]Dye R C F, Henry T A. Vibration amplitudes of compressor blades resulting from scatter in blade natural frequencies [J]. ASME J Eng Power,1969(91):182-8.
    [160]El-Bayoumy LE, Srinivasan AV. Influence of mistuning on rotor-blade vibrations [J]. AIAA J,1975, 13(4):460-4.
    [161]Thompson J M T. Champneys A R[J]. Proc R Soc London A 1996(452):117-38.
    [162]El Naschie MS. Al Athel S [J]. Z Naturf,1989(449):645-50.
    [163]Mielke A, Holmes P. Arch Rational Mech Anal 1988;
    [164]Mead DJ. Wave propagation and natural modes in periodic systems:Ⅱ Multi-coupled systems with and without damping [J]. J Sound Vibration,1975,40(1):19-39.
    [165]Mead DJ. New method of analyzing wave propagation in periodic structures:applications to periodic Timoshenko beams and stiffened plates [J]. J Sound Vibration,1986,104(1):9-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700