用户名: 密码: 验证码:
钙质砂基本力学性质及颗粒破碎影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙质砂是分布于热带海洋中的一种特殊岩土介质,由于其成因和组构上的特点导致其物理力学性质与常规的陆源砂有所区别。钙质砂质脆,与石英砂比较起来,在较低应力水平下就会产生颗粒破碎。而海洋工程得益些构筑物往往十分庞大,作为地基的钙质砂承受的应力水平很高,因此常伴有大量的颗粒破碎产生。实践证明,颗粒破碎是影响钙质砂力学性质的主要因素,因此对钙质砂在高应力水平下的颗粒破碎研究就显得十分重要。目前,国内对钙质砂的研究主要集中在低应力水平下的静、动力学性质上,对高应力水平下的工作开展甚少,而对颗粒破碎的研究则更不多见。本文在大量力学性质试验的基础上,结合前人的研究成果,对钙质砂基本物理力学性质进行了阐述。钙质砂颗粒容易发生破碎是缘于其颗粒的低强度,基于此笔者对钙质砂的颗粒强度进行了测试,结合一维压缩试验,对钙质砂特殊的压缩机理进行了探讨,并就颗粒破碎的影响进行了详细分析。这对于进一步发展和完善钙质砂力学性质研究,指导处于海洋环境中钙质砂的实际工程设计、施工与安全性检查,促进颗粒破碎的研究水平,都具有重要的意义。主要工作如下:
     首先,在综述钙质砂研究历程的基础上,对本次试验所用钙质砂的基本物理性质及试验过程进行了阐述。根据试验目的和要求,设计研制了颗粒强度测试装置,并对不同粒径的钙质砂颗粒强度进行了测试。运用Weibull提出的脆性材料强度的统计公式对实验数据进行了处理。试验结果表明,钙质砂颗粒强度符合Weibull分布特征,并且随着颗粒粒径的增大而逐渐降低。
     在对钙质砂大量不同终止压力下一维和等向压缩试验的基础上,阐述了钙质砂的压缩特性;结合不同粒径的钙质砂一维压缩试验与相对应的钙质砂颗粒的强度,对其压缩机理进行了探讨;在大量剪切试验的基础上对钙质砂的剪切和强度特性进行了分析。
     颗粒破碎是本文研究的另一个重点,笔者对所有试验后的试样进行了颗粒大小分析试验,运用Hardin提出的相对破碎对压缩和剪切作用下的破碎特性进行了描述,并就相对破碎与应力水平、应变关系进行了探讨;就颗粒破碎对钙质砂宏观力学性质的影响进行了分析,对颗粒破碎与塑性功、剪胀、应力应变、强度之间的关系进行了研究。
     最后,对本文的研究成果进行了总结,并就钙质砂研究方向作出展望。
Calcareous sand is a special marine geotechnical medium, which has unexpected physical and mechanical property due to its origin and fabric. And calcareous sand generally consists of the remains of marine organisms, which tend to crush relatively easily under load, compared to terrigenous materials. While the offshore constructing structures are often very large and the stress in the foundation is very high. In such case, the particle crushing of sand is very significant. It is demonstrated that the particle crushing is a main factor affecting the property of calcareous sand. So it is very important to study the particle crushing of calcareous sand under high stress levels. Currently, in our country the study on the calcareous sand has been concentrated on the basic static and dynamic characteristics at low pressure, while the research under high pressure and particle crushing is not so much. In this study, serials of compression and shear laboratory tests over a wide range of pressures were carried out on calcareous sand taken from the South China Sea, and the fundamental mechanical characteristics and the influence of particle crushing were also presented thoroughly. In fact, the low strength of particle is the reason of its tending to crush easily under load. According to this, the author proceeded a serials of strength tests on the calcareous sand particles with various sizes. It is very significant to develop and perfect the mechanical behavior investigation of calcareous soils, guide design, construction and assessing the stability of practical projects in marine condition and promote research level of particle crushing. The main work can be concluded as follows.
     Firstly, based on the overview of the research history of calcareous sand, the details of the testing procedures and the main physical property of testing material were presented. The testing device of individual particle strength was designed and individual calcareous sand particles with various sizes were tested. Using the Weibull distribution function,the author analyzed the testing data. The results indicate that the particle strength of calcareous sand,as measured by compression between flat platens, decreases as the particle size increases. It is demonstrated that particle strength of calcareous sand exhibits Weibullian behavior.
     Based on a serials of one-dimensional and isotropic compression tests with varies stress levels, the author then analyzed the compression behavior of calcareous sand in detailed. Through the combination of the particle strength and one-dimensional compression behavior with different particle size, the author tried to reveal the mechanism of special compression behavior of calcareous sand. The behavior of shear and strength of calcareous sand over a wide range of stress levels was also discussed in the thesis.
     The particle crushing is another research point in this thesis, so all the samples were sieved after test and the crushability of calcareous sand was quantified using Hardin model. The influence of particle crushing on the mechanical behavior was analyzed in the thesis. The relation of the relative breakage、plastic work and dilatancy was also discussed.
     Finally, the achievements of this thesis were summarized, and the research direction of the calcareous sand was also presented.
引文
[1] 吴京平,楼志刚. 钙质土的基本特性. 第七届土力学及基础工程学术会议论文集. 中国建筑工业出版社,1994.10,267~271
    [2] 刘崇权,杨志强,汪稔. 钙质土力学性质研究现状与进展. 岩土力学,1995,16(4):74~83
    [3] 汪稔等. 南砂群岛珊瑚礁工程地质调查研究. 中国科学院武汉岩土力学研究所地基室,1995
    [4] 吴京平,楼志刚. 海洋桩基工程中的钙质土. 海洋工程,1996,14(3):74~81
    [5] 刘崇权,汪稔. 钙质砂物理力学性质初探. 岩土力学,1998,19(3):32~37
    [6] 汪稔,宋朝景,赵焕庭等.南沙群岛珊瑚礁工程地质. 北京:科学出版社,1997
    [7] 中国科学院南砂综合科学考察队著. 南砂群岛永暑礁第四纪珊瑚礁地质. 北京:海洋出版社,1992
    [8] Coop.M.R.. The mechanics of uncemented carbonate sands. Geotechnique,1990,40(4):607~626
    [9] Datta M.,Gulhati S.K.,Rao G.V.. Crushing of calcareous sands during shear. 1979, OTC 3525:1459~1467
    [10] Poulos H.G. & Davis E.H.. Pile foundation analysis and design. New York, Wiley & Sons,150~163
    [11] Fahey M.. The response of calcareous soil in static and cyclic triaxial test. Engineering for calcareous sediments, Jewell & Khorshided, P.61~68
    [12] 刘崇权. 钙质土土力学理论及其工程应用. 武汉:中国科学院博士学位论文,1999
    [13] Terzaghi, K., Peck,R.B.. Soil Mechanics in engineering practice. New York: Wiley,1948
    [14] M.M.Hagerty,D.R. Hite,C.R. Ullrich,D.J. Hagerty. One dimensional high pressure compression of granular media. Journal of geotechnical engineering, 1993,113(1):1~18
    [15] DeBeer,E.E.. The scale effect in the transposition of the results of deep sounding tests on the ultimate bearing capacity of piles and caisson foundations. Geotechnique, 1963,13(1):39~75
    [16] Kjaernsli,B.& Sande,A.. Compressibility of some coarse-grained materials. Proc. EuropeanConf. Soil Mech. & Found. Engrg.,Weisbaden, German, 1963,245~251
    [17] Marsal R.J.. Large scale testing of rockfill materials. Journal of the Soil Mechanics and Foundations Division,1967,93(SM2):27~43
    [18] Lee K.L., Farhoomand I.. Compressibility and crushing of granular soils in anisotropic triaxial compression. Can. Geotech.1967,Vol4, 68~86
    [19] Vesic & Clough. Behavior of granular materials under high stresses. J. Soil Mech. and Found. Engrg. Div., ASCE,1968,94(3):661~688
    [20] Norihiko Miura & Sukeo O-hara. Particle crushing of a decomposed granite soil under shear stresses. Soils and Foundations,JSSMFE, 1979,19(3):1~14
    [21] Hardin B.O.. Crushing of Soil Particles. Journal of Geotechnical Engineering, 1985, 111(10): 1177~1192
    [22] McDowell G.R., Boltom M.D., Roberston D.. The fractal crushing of granular materials. J. Mech. Solids, 1996,44(12),2079~2102
    [23] 蒙进、屈智炯.高压下冰碛土的颗粒破碎及应力应变关系.成都科技大学学报,1989,43(1):17~22
    [24] 马巍、吴紫汪、常小晓、王家澄.围压作用下冻结砂土微结构变化的电镜分析.冰川冻土,1995,17(2):152~158
    [25] 郭熙灵、胡辉等.堆石料颗粒破碎对剪胀性及抗剪强度的影响.岩土工程学报,1997,19(3):83~88
    [26] 温彦锋、蔡红、边京红.强风化岩防渗土料的压实及渗透特性.水力发电学报,2002,69(2):17~24
    [27] 孙吉主,汪稔. 围压对钙质砂变形特性和声发射模式的影响.岩石力学与工程学报, 2001,20(增刊):1173~1176
    [28] 汪稔、孙吉主.钙质砂不排水性状的损伤-滑移耦全作用分析.水利学报,2002 第 7期:75~78
    [29] 吴京平,褚瑶,楼志刚.颗粒破碎对钙质砂变形及强度特性的影响.岩土工程学报.1997,19(5):49~55
    [30] 吕海波,汪稔,孔令伟.钙质土破碎原因的细观分析初探.岩石力学与工程学报,2001,20(增刊):890~892
    [31] 单华刚,珊瑚礁钙质土中桩基工程承载性状研究. 武汉:中国科学院博士学位论文.2000
    [32] 张家铭,汪稔,张阳明,陈复兵. 土体颗粒破碎研究进展. 岩土力学,2004,24(增):661~665
    [33] 刘崇权、汪稔.钙质砂在三轴剪切颗粒破碎评价及其能量公式.工程地质学报,1999,7(4):366~371
    [34] Coop, M.R. & Atkinson, J.H.. The mechanics of cemented carbonate sands. Geotechnique, 43(1):53~67
    [35] Morrison, M.J., McIntyre, P.D., Sauls, D.P. and Oosthuizen, M. Laboratory test for carbonate soils from offshore Afric. Proceedings, International Conference on Calcareous Sediments, Perth,1988:109~118
    [36] 中华人民共和国国家标准. 土工试验方法标准,GB/T 50123-1999. 北京:中国计划出版社,1999
    [37] 陈仲颐,周景星,王洪瑾. 土力学.北京:清华大学出版社, 1994
    [38] Brian Vickers. Laboratory work in soil mechanics,second edition. London Toronto Sydney, New York,1983
    [39] Billam, J. Some aspects of the behaviour of granular materials at high pressures. Proc. of the Rocscoe Memorial Symp.,1972: 69~80
    [40] Bolton. M.D.. The strength and dilatancy of sands. Geotechnique, 1986,36(1):65~78
    [41] Y. Hiramatsu & Y. Oka. Determination of the tensile strength of rock by a compression test of an irregular test piece. Int. J. Rock Mech. Sci., 1966(3): 89~99
    [42] Jaeger,J.C. Failure of rocks under tensile conditions. Int. J. Rock. Min. Sci.,1967, Vol.4: 219~227
    [43] Weibull, W..A statistical distribution function of wide applicability. J. Appl. Mech., 1951, Vol.18: 293~297
    [44] Jayatilaka, Ayal de S. Fracture of engineering brittle materials. London: Applied science publishers LTD, 1979
    [45] Shipway, P.H. & Hutchings, I.M.. Fracture of brittle spheres under compression and impact loading, I. Elastic stress distribution. Phil. Mag. A, 1993,67(6):1389~1404
    [46] G.R. McDowell & A.Amon. The application of weibull statistics to fracture of soil particles. Soils and Foundation, 2000,40(5):133~141
    [47] Yukio Nakata,Yoshinori Kato,Masayuki Hyodo,Adrian F.L.Hyde & Hidekazu Murata.One dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils and Foundations, 2001,41(2):39~51
    [48] Nakata, Y., Hyde, A.F.L., Hyodo, M. & Murata, H.. A probabilistic approach to sand particle crushing in the triaxial test. Geotechnique,1999, 49(5):567~583
    [49] Ashby,M.F. & Jones, D.R.H.. Engineering Materials2, An Introduction to Microstructures, Processing and Design. Pergmon Press, Oxford,1986
    [50] McDowell G.R. & Bolton M.D.. On the micromechanics of crushable aggregates. Geotechnique, 1998,48(5),667~679
    [51] G.R. McDowell. Micromechanics of clastic soil. Proc. International workshop on soil crushability, Yamaguchi, Japan, 1999
    [52] M.D. Bolton. The role of micro-mechanics in soil mechanics. Proc. International workshop on soil crushability, Yamaguchi, Japan, 1999
    [53] Masataka Takei, Osamu Kusakabe & Taketo Hayashi. Time-dependent behavior of crushable materials in one-dimensional compression tests. Soils and Foundations, 2001,41(1):97~121
    [54] McDowell, G.R., Nakata, Y. & Hyodo. M.. On the plastic hardening of sand. Geotechnique, 2002, 52(5):349~358
    [55] Kwag, J.M., Ochiai, H. & Yasafuku, N. Yielding stresss characteristics of carbonate sand in relation to individual particle fragmentation strength. Engineering for calcareous sediments, Bahrain, Alshafei(ed.),Balkema, Rotterdam, (1), 79~86
    [56] 鄢泰宁,曹鸿国,乌效鸣. 检测技术及勘察工程仪表. 武汉:中国地质大学出版社,1996
    [57] 吴正毅. 测试技术与测试信号处理. 北京:清华大学出版社,1992
    [58] 冯凯昉. 工程测试技术. 西安:西北工业大学出版社,1994
    [59] 刘惠彬. 测试技术. 北京:北京航空航天大学出版社,1989
    [60] Deitel, H.M., Deitel, P.J.著,薛万鹏等译. C++程序设计教程. 北京:机械工业出版社,2000
    [61] Kruglinski, D.J., Wingo,S., Shepherd, G.著,希望图书创作室译. Programming Visual C++6.0 技术内幕(第五版),北京:北京希望电子出版社,1999
    [62] 刘同怀等编著. 模拟电子线路. 合肥:中国科学技术大学出版社,1999
    [63] 徐伯勋等编著. 信号处理及应用. 北京:地质出版社,1997
    [64] 彭容修主编. 数字电子技术基础. 武汉:武汉理工大学出版社,2001
    [65] 林友德,郭亨礼. 传感器及其应用技术. 上海:上海科技出版社,1992
    [66] Yamamuro,J.A.,Bopp,P.A., & Lade, P.V.. One dimensional compression of sands at high pressures. J.Geotech.Engrg.,ASCE. 1996, 122(7): 147~154
    [67] 黄文熙. 土的工程性质. 北京:水利水电出版社,1983
    [68] Pestana J.M. & Whittle A.J.. Compression model for cohesionless soils. Geotechnique, 1995,45(4):611~631
    [69] Butterfield R.. A natural compression law for soils(an advance on e-logP). Geotechnique, 1979,29(3):469~480
    [70] Janbu, N.. Soil compressibility as determined by oedometer and triaxial test. Proc. 3rd Eur. Conf. Soil Mech., Wiesbaden 1, 19~25
    [71] Hardin B.O.. 1-D strain in normally consolidated cohesionless soils. Journal of Geotechnical Engineering, ASCE, 1987,113(12):1449~1467
    [72] Carter J.P., Kaggwa W.S., Johnston I.W., Novello E.A., Fahey M. and Chapman G.A.. Triaxial testing of North Rankin calcarenite. Engng for Calcareous Sediments,(2):515~530
    [73] H.A. Joer, M.D.Bolton & M.F.Randoph. Compression and crushing behaviour of calcareous soils. Proc. International workshop on soil crushability. Yamaguchi,Japan, 1999
    [74] 屈智炯. 土的塑性力学. 成都:成都科技大学出版社,1987
    [75] Coop. M.R. The influence of particle breakage and state on the behaviour of sands. Proc. International workshop on soil crushability. Yamaguchi, Japan, 1999
    [76] Yukio Nakata, Masayuki Hyodo, Adrian F.L. Hyde, Yoshinori Kato & Hidekazu Murata. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils and Foundations, 2001,41(1):69~82
    [77] 易嘉钰. 珊瑚礁盘上建筑特的基础处理. 海军工程技术,1994,No.32:10~16
    [78] 陈开奕. 关于珊瑚礁地基上钢板桩码头的设计与施工. 海军工程质术,1992,No.28: 1~6
    [79] Yamamuro,J.A. & Lade,P.V.. Drained sand behavior in axisymmetric tests at high pressures. J.Geotech.Engrg., ASCE.1996,122(2):109~119
    [80] Lee,I.K. & Coop, M.R..The intrinsic behaviour of a decomposed granite Soil. Geotechnique , 1995,45(1):117~130
    [81] Lee, K.L. & Seed, H.B.. Drained strength characteristics of sand. Proc. ASCE, JSMFD, 1967, 93(SM6)
    [82] Kenneth L. Lee & H. Bolton Seed. Drained strength characteristics of sands. Journal of the soil mechanics and foundations division, ASCE, 1967,93(SM6):117~141
    [83] 孙岳菘,濮家骝,李广信.不同应力路径对砂土应力-应变关系影响. 岩土工程学报,1987,9(6):78~87
    [84] 孙岳菘. 砂土的不排水三轴试验研究. 土石坝工程,1988,No.1:67~77
    [85] H. Bolton Seed & Kenneth L. Lee. Undrained strength characteristics of cohesionless soils. Journal of the soil mechanics and foundations division, ASCE, 1967,93(SM6):333~360
    [86] Lade,P.V. & Yamamuro,J.A.. Undrained sand behavior in axisymmetric tests at high pressures. J.Geotech.Engrg., ASCE.1996,122(2):120~129
    [87] 刘祖德,陆士强,包承纲,马时冬,王幼麟. 土的抗剪强度特性. 岩土工程学报, 1986,8(1):6~17
    [88] 刘祖德. 砂土的抗剪强度. 老河口市土的抗剪强度与本构关系学术讲座会发展水平报告文集,1985
    [89] 刘祖德. 土的抗剪强度的取值标准问题. 岩土工程学报,1987,9(2):11~19
    [90] 张斌,屈智炯. 冰碛土的应力~应变~强度特性研究. 成都科技大学学报. 1991,No.3:57~64
    [91] Roscoe,K.H., Schofield, A.N.& Thurairajar,A.. Yielding of clays in states wetter than critical. Geotechnique,1963,13(3):211~240
    [92] Fukumoto,T.. Particle breakage characteristics in granular soils. Soils Founds,1992,32(1):26~40
    [93] Guyon E.,Troadec J.-P.. Du sac de billes au tas de sable, Editions Odile JACOB Sciences, 1994
    [94] Lade P.V., Yamamuro J.. Significance of particle crushing in granular materials. Journal of Geotechnical Engineering,1996,122(4):309~316
    [95] Nobari,E.S. & Ducan,J.M.. Effect of reservoir filling on stresses and movements in earth and rockfill dams. Rep. No. S-72-2, Ofc. of Res, Services, Univ. of California, Berkeley,Calif,1972
    [96] Jeng,C.J. & Li,J.C.. Fabric of the hydraulic filled sand with flat particles and its variation after shearing. Proc. 7th Conf. Current Res. Geotech. Engng Taiwan, Taipei,1997, 1,1~8
    [97] Bishop, A.W.. Discussion of “shear characteristics of a saturated silt, measured in triaxial compression”.Geotechnique,1954, 4(1): 43~45
    [98] Rowe, P.W.. The stress-dilatancy relation for the static equilibrium of an assembly of particles in contact. Proc. R. Soc. A269, 500~527, 1962
    [99] G. De Josselin De Jong. Rowe’s stress-dilatancy relation based on friction. Geotechnique, 1976,26(3)
    [100] Oda,M.. The mechanism of fabric changes during compressional deformation of sand. Soils and Foundations, 1972,12(2)
    [101] Ueng, T.-S. & Chen T.-J.. Energy aspects of particle breakage in drained shear of sands. Geotechnique, 2000, 50(1):65~72
    [102] 龚晓南.土塑性力学.杭州:浙江大学出版杜,1999.
    [103] 胡中雄.土力学与环境工程学.上海: 同济大学出版社,1997
    [104] 胡辉.颗粒破碎对粗粒料抗剪强度的影响.长江科学院研究生学位论文,1995
    [105] Been,K.,Jefferies,M.G.& Hachey,J.. The critical state of sands. Geotechnique, 1991,41(3):365~381
    [106] J.A.R. Ortigao. Soil mechanics in the light of critical state theories. Printed in the Netherlands,1993
    [107] Oda, M.. Co-ordination number and its relation to shear strength of granular material. Soils and Foundations, 1977,17(2):29~42
    [108] Tien Hsing Wu, Soil mechanics, (second edition). 1977
    [109] Miura,N.,Murata, H. & Yasufuku, N.. Stress-strain characteristics of sand in a particle crushing region. Soils and Foundations, 1984,24(1):77~89
    [110] Miura, N., Murata, H. & Yasufuku, N.. Stress-strain characteristics of sand in a particle crushing region. Soils and Foundations, 1984,24(1):77~89
    [111] Joer H.A., Ismail M. & Randolph M.F.. Compressibility and crushability of calcareous soils. Proc. 15th Australasian Conf. on the Mechanics of structures and Materials. Melbourne, Australia,8~10 December, 1997,519~524
    [112] Masayuki Hyodo, Norimasa Yoshimoto, Yukio Nakata, Keiji Kuwajima. Undrained shear and particle crushing of sand under low and high confining stresses. 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering,Cambridge, Massachusetts, USA ,June 22 - 26, 2003:577~581
    [113] D.W. Airey. Triaxial testing of naturally cemented carbonate soil. Journal of Geotechnical Engineering, 1993, 119(9):1379~1398
    [114] Kaggwa, W.S., Poulos, H.G. & Carter, J.P. Response of carbonate sediments under cyclic triaxial test conditions. Proc. International conference on calcareous sediments, Perth, 1988
    [115] Airey D.W., Randolph M.F. & Hyden A.M.. The strength and stiffness of two calcareous sands. Engineering for calcareous sediments, Jewell & Khorshided., P.43~50
    [116] Marsal.R.J..土石坝工程第四章.水利出版社,1979
    [117] Golightly, C.R. & Hyde, A.F.L.. Some fundamental properties of carbonate sands. Proc. International conference on calcareous sediments, Perth, 1988, P.69~78
    [118] Akili, W.. Some properties of remoulded carbonate soils. The 10th Int. Conference of soil and foundation. 1981, Vol.1:537~542
    [119] Rowe, P.W..The relationship between the shear strength of sands in triaxial compression , plane strain and direct shear. Geotechnique, 1969,19(1)
    [120] Cheng, Y.P., Nakata, Y. & Bolton, M.D.. Discrete element simulation of crushable soil. Geotechnique, 53(7):633~641
    [121] McDowell, G.R. & Bolton, M.D.. A micro mechanical model for isotropic cyclic loading of isotropically clastically compressed soil. Granular Matter 1, No.4,183~193
    [122] 钱家欢,殷宗泽.土工原理与计算.水利电力出版社,1994
    [123] Kaggwa, W.S., Poulos, H.G..Comparasion of the behavior of dense carbonate sediments and silica sand in cyclic triaxial tests. Engineering properties of calcareous sediments research report, University of Sydney, Australia, 1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700