用户名: 密码: 验证码:
控制Cr5钢冷轧辊坯质量的锻造变形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对Cr5钢电渣锭锻前组织中存在的液析碳化物、孔隙性缺陷、成分偏析以及网状碳化物等一系列冶金缺陷的改善或消除问题,在与实验、实践相结合的基础上,应用数值模拟技术,对控制辊坯质量的锻造变形工艺进行了综合研究。通过建立相应的模型,展开了一系列的计算分析,从而揭示出锻造工艺参数对辊坯质量的影响实质及影响规律,为制定提高辊坯质量的锻造工艺提供了理论基础和设计方法,具有重要的实际意义。
     对电解法萃取的碳化物进行XRD物相分析的结果表明,Cr5钢电渣锭中的液析碳化物以M7C3型为主。电渣锭及锻后成品Cr5钢中液析碳化物的形态及数量随保温时间变化的统计结果表明,液析碳化物在成品Cr5钢中的扩散难于电渣锭。因此,应尽可能通过锻前高温扩散处理来减少或消除液析碳化物这种缺陷。
     Cr5钢电渣锭中存在一定量的孔隙性缺陷,且心部的数量多于边部,其截面形状以圆形为主。基于此,本文采用DEFORM软件模拟了Cr5钢电渣锭内部孔隙性缺陷的闭合过程,讨论不同工艺参数对孔洞压实效果的影响;据此进一步探索孔隙性缺陷闭合的本质。通过采用X射线衍射测定γ残相残余应变的方法,来获得描述应变场分布规律的解析函数。由此得出单工步锻造变形过程中,无孔模型沿压下方向的应变εz可由Gaussian函数拟合给出;有孔模型εz的分布则采用间断的Gaussian函数拟合给出,间断函数的截止限通过等面积法得到。在此基础上,从应变函数的角度提出了一种求解孔洞闭合问题的新的研究方法。通过应变函数的数学逻辑推导,得到了孔洞的临界闭合条件,给出了孔洞闭合过程规律性的本质描述。对于Cr5钢而言,提出了一种评判其内部Φ2 mm球形孔洞闭合的准则:εz0(z1)≥>0.65。实际生产工艺中,采用该闭合准则所确定的锻合区域来表达Cr5钢内部任意位置处孔洞的闭合,实现了有孔模型的简化。同时,锻合区域的给出,也将某一个或几个位置孔洞闭合情况的具体问题的研究,转化为孔洞闭合的一般性问题的研究。这就为针对性地消除锻坯内部的孔洞缺陷,提供了一条具有广泛应用前景的新途径。
     多工步锻造变形过程中,应变沿轴向的分布可以由多个Gaussian函数线性叠加表达。通过应变函数的解析求解得出保证Cr5钢锭料中心锻透条件下且变形均匀的最佳送进量175.309 mm,以达到坯料心部孔洞均匀压实的目的。
     退火态Cr5钢电渣锭的基体以珠光体类组织为主。在晶粒内部存在成分偏析。为此,本文分别对锻后高温扩散及未变形而直接高温扩散的Cr5钢电渣锭中Cr元素的分布进行了测试,在此基础上,从菲克第一定律的分析和讨论对其机理展开了研究。通过建立不同变形条件下的扩散模型,采用解析求解与数值求解联合求解的方法,分别从几何形状变化和锻后再结晶晶界两个方面计算了变形前、后Cr原子扩散的定量差别。结果表明,变形对扩散的影响为几何形状变化及扩散系数增大对扩散影响作用的线性叠加,为锻后Cr原子扩散加快的实验事实提供了定量的理论解释。另外,还给出了Cr原子平均扩散浓度△p1与压下率之间关系的经验公式,这对于锻造生产工艺的制定具有重要的指导意义。
     为避免产生过烧现象,实际生产过程中Cr5钢的始锻温度不宜超过1200℃,据此设定Cr5钢的始锻温度为1150℃。通过对电渣锭锻造变形过程温度场的有限元模拟,给出了钢锭断面的温度场分布;并采用点跟踪的方式,分析钢锭表面及心部在锻造变形过程中温度的变化情况,解决了实际生产中无法测定钢锭内部温度变化情况的困难。另一方面,终锻温度下钢锭断面的温度场分布为锻后冷却过程的温度场计算提供了初始条件。该模拟结果表明:变形结束后,钢锭表面的温度降为900℃,而心部的温度则基本保持在1150℃。在此基础上,得出辊坯断面不同位置在冷却过程中冷却速度的变化,将其与该温度下抑制网状碳化物析出的临界冷却速度相比较,实现了对辊坯内网状碳化物分布状况的预测。在当前的冷却条件下(即环境温度为55℃的情况),距离辊身直径为Φ460 mm的辊坯外表面约30 mm厚度的尺度范围内不会出现明显的网状碳化物。
According to elimination of a series of metallurgical defects in Cr5 electroslag remelt (ESR) ingot, such as liquation carbide, void defects, composition segregation and network carbide etc, a comprehensive research on forging process controlling the quality of cold roll blank, which is based on experiments, practice and simulation technology, is carried out in this paper. By establishing the corresponding model, performing calculation and analysis, the essential features of effect of forging parameters on the quality are disclosed. It provides the theoretical basis and design method for making forging process to improve roll blank quality, which is of important practical value.
     The carbide is extracted by electrolysis process and analyzed by XRD. The results show that liquation carbide is mainly M7C3 in Cr5 ESR ingot. Also, the morphology and quantity of liquation carbide changing with the holding time are counted. It shows that the diffusion of liquation carbide in Cr5 finished steel is more slowly than that in the ESR ingot. Therefore, liquation carbide, this kind of metallurgical defect, should be removed during the homogenization treatment before forging as much as possible.
     There are some void defects in Cr5 ESR ingot, and voids section shape is mainly roundness. However, any internal void from the initial cast ingot needs to be eliminated. On this basis, simulation software (DEFORM-3D) is used for the analysis of the evolution of void defects in Cr5 ESR ingot during the forging operation, and the effects of parameters on void closure are discussed. Then, the essence of void closure is further explored on the basis of simulated results. Limited by conditions of high temperature and high pressure, the x-ray diffraction method for determining residual strain of retained austenite is adopted to obtain the distributions of strain in the ingot. It shows that during single-pass forging, for models without void, distribution ofεz along the vertical direction can be given by Gaussian function fitting; for models with void, while distribution ofεz can be given by discontinuous Gaussian function fitting, cutoff bound of the discontinuous function is determined by equal-area method. Hereby, a kind of new researching method for solving void closure is proposed from the view of strain function. Then, the critical condition of void closure is presented by derivation and calculation of the strain function, which gives the essential description of void closing. For Cr5 steel, the criterion for spherical void closure is proposed, i.e.,εz0(z1)≥0.65. In the practical process, the region of void closure determined by the criterion is developed to express the closure of void located at any position, which simplifies the models with void. Also, with the region of void closure, a specific problem of the closing of void located at one or other position is transformed into a general one. It provides a new approach with extensive application prospect in terms of elimination of void defects in the ingot.
     During multiple-pass forging, the distributions of strain in the axial forging zones can be expressed by linearly superposition of the Gaussian functions. The optimal value of feed, i.e., x0=175.309 mm, which can assure uniform strain distributions in the center of forgings, is determined by analytic solution of the strain function. Hereby, an efficient forging process is presented to improve the void closing and to achieve the uniform forging effect.
     Pearlite is the dominant microstructure in the matrix of annealed Cr5 ESR ingot. And there is composition segregation inside the grains. Therefore, distribution of chromium in Cr5 ESR ingot under two different states (i.e., the homogenization treatment after forging and the homogenization treatment with no deformation) is measured in the present paper. On the basis of the experimental data, the mechanism is studied from the view of the Fick's first law. By establishing the diffusion model with different deformation conditions, using combined solution of the analytic and numerical solution, the quantitative differences of diffusivity of Cr pre and post deformation are calculated from the two aspects, the geometry change and recrystallization grain boundary. It shows effect of forging on diffusion is made of linear superposition of effect of the geometry change and recrystallization grain boundary, which proposes quantitative and theoretical explanation of forging enhancing the diffusion. In addition, an empirical formula to describe the relationship between the average diffusion concentration of Cr and the relative draft is presented, which has guiding significance for making the forging process.
     In order to avoid overburning, the initial forging temperature of Cr5 steel should not exceed 1200℃, hereby, it is set at 1150℃. The temperature field distribution of cross section is given by numerical simulation of temperature field of the ESR ingot forging process; by the mode of point tracking, the temperature variation on the surface and inner of the ingot are analyzed, and the difficulties that the temperature variation on the inner of the ingot can't be measured in the practical process are solved. On the other hand, the temperature field distribution of cross section at the final forging temperature provides initial conditions for calculating the temperature field of cooling after forging. The simulation results show that ingot surface temperature is decreased to 900℃, and the temperature at the core almost remains in 1150℃after forging. On this basis, the variation of cooling rate in different site of cross section is obtained. By comparing with the critical cooling rate restraining network carbide precipitation at that temperature, prediction for the distributions of network carbide is implemented. At current cooling conditions(i.e., with the environmental temperature of 55℃), there is no obvious network carbide precipitation within about 30 mm scale range apart from the surface of roll blank with the roll diameter 460 mm.
引文
[1]薛灵虎.面对轧辊市场全球化的战略思考[J].有色金属,2002,(10):35-37.
    [2]刘均贤,韩静涛.冶金工业的发展及其对冶金轧辊的需求[J].大型铸锻件,2006,31(4):41-44,48.
    [3]王桂兰,刘志琴,申飞平.高性能冷轧辊的研究和选用[J].大型铸锻件,2002,(1):30-33.
    [4]杨昱东,聂仲毅,韩静涛.锻钢冷轧辊坯内裂缺陷控制研究[J].大型铸锻件,2006,(1):1-4.
    [5]姚泽坤.锻造工艺学与模具设计[M].西安:西北工业大学出版社,2001.
    [6]郭会光,田继红.大型锻造的质量控制和研究方略[J].大型铸锻件,2007,(2):45-46.
    [7]郭会光,许树勤,吕建斌,刘建生.大型锻造的微观模拟与质量控制[J].大型铸锻件,1994,(4):44-46.
    [8]H. Dyja, G. Banaszek. The influence of main parameters of the process of forging on the internal quality of forging[C]. Proceedings of the International Scientific Conference on the Occasion of the 50th Anniversary of Founding the Faculty of Mechanical Engineering, Ostrava, September,2000, p.199-205.
    [9]陈慧琴,张巧丽,郭会光.大锻件热成形可控机制的研究[J].大型铸锻件,2001,(1):2-5.
    [10]G. Banaszek, H. Dyja, S. Berski. Choosing the forging parameters and tool shape from the point of view of quality improvement of forging[J]. Metalurgija,2003,42(4):239-244.
    [11]何祝斌,初冠南,张吉,王仲仁.锻造技术的发展—从前8届国际塑性加工会议看锻造技术的发展[J].塑性工程学报,2008,15(4):13-18.
    [12]W. Shiro. Development of a new forging process to manufacture sound heavy forgings[C]. International Forging Conference, Dusseldorf,1994, p.4-9.
    [13]Du.F.S, Wang.M.T, Li.X.T. Research on deformation and macrostructure evolution during forging of large-scale parts[J] Journal of Materials Processing Technology,2007,16 (3):127-138.
    [14]王天义,曹建芳,饶建华.轧辊材料及其热处理工艺发展的现状与趋势[J].钻掘工程与工程机械,2005,(7):122-123.
    [15]王志新,李朝华,孙雪翠.冷轧辊新材质BGS钢的研究[J].大型铸锻件,2003,101(3):21-24.
    [16]刘东海,于培勋,吴长浩,张永生.冷轧辊双感应器感应淬火热处理工艺[J].大型铸锻件,2006,2:24-25.
    [17]胡春宝,张海.新型冷轧辊热处理工艺的优化选择[J].大型铸锻件,2004,(4):40-43.
    [18]康红梅,莫一,孙明.冷轧辊的选材及热处理工艺[J].湖北工业大学学报,2005,20(3):18-20.
    [19]沈一鸣.宽带钢锻钢冷轧辊的材质与使用[J].轧钢,2005,22(3):43-44.
    [20]赵新,李文平,刘德富.冷轧辊材料及制造技术的发展[J].大型铸锻件,2004,(3):38-48.
    [21]章大健.锻造半高速中间辊的研究[J].江苏冶金,2002,30(3):17-19.
    [22]陈国浩.轧辊锻件用钢的现状和发展[J].钢铁,1996,31(3):75-80.
    [23]符寒光.高速钢轧辊研究的现状及展望[J].钢铁,2000,35(5):67-73.
    [24]陈作波.更新换代的高铬辊[J].鞍钢技术,1999,(3):4-8.
    [25]章大健.冷轧辊材质的现状与发展趋势浅谈[J].江苏冶金,2007,35(3):14-16.
    [26]文铁铮,郭玉珍.冶金轧辊技术特性概论[M].石家庄:河北科学技术出版社,1995.
    [27]刘笑莲,张洪奎.锻钢冷轧辊辊坯制造技术[J].热处理,2008,23(1):16-19.
    [28]曹维东,王清久.MC5冷轧辊辊坯试制[J].黑龙江冶金,2003,(2):3-5.
    [29]齐增生,张志刚,乔治库.锻钢轧辊质量控制[J].邢台职业技术学院学报,2006,23(3):57-59.
    [30]Shuichi Iwadoh, Toshikazu Mori. Effect of work roll materials and progress of manufacturing technology on cold rolling and future developments in Japan[J]. ISIJ International,1992,32 (11):1131.
    [31]姜周华,董艳伍,贾建平.电渣重熔大型冷轧辊用钢的工艺研究[J].中国冶金,2006,16(12):9-12.
    [32]陈建礼.Cr5型冷轧辊锻造辊坯研制[J].锻压技术,2006,12(2):10-12.
    [33]杜修华,孟焕紫,于同路.Cr5冷轧辊坯的锻制[J].锻造与冲压,2004,5:12-14.
    [34]邢国海,付斌.浅析合理确定锻造温度范围[J].特钢技术,2009,15(59):28-29,14.
    [35]于瑞芝,岳喜军.Cr3、Cr5系列锻制电渣钢辊坯质量的控制[J].特钢技术,2010,16(63):42-44,66.
    [36]于瑞芝,王秀兰,于瑞明.MC5钢冷轧工作辊热处理工艺研究[J].黑龙江冶金,2001,(1):1-4.
    [37]于瑞芝.MC5冷轧辊钢球化退火工艺研究[J].大型铸锻件,2002,(1):14-16.
    [38]赵俊伟,陈学文,史宇麟,张琪.大型锻件锻造工艺及缺陷控制技术的研究现状及发展趋势[J].CMET锻压装备与制造技术,2009,(4):23-28.
    [39]孙海燕.锻造工艺参数对改善超声波探伤缺陷的影响[J].大型铸锻件,2000,(2):15-17.
    [40]J.G. Wistreich. Theoretical analysis of bloom and billet forging[J].Iron Steel Inst,1999, 12:163-176.
    [41]龚惠昌.轧辊锻造工艺的研究与应用[J].金属加工,2008,(19):51-72.
    [42]吕炎.锻件缺陷分析与对策[M].北京:机械工业出版社,1999.
    [43]T. Pardoen, J.W. Hutchinson. An extended model for void growth and coalescence[J]. Journal of the Mechanics and Physics of Solids,2000,48:2467-2512.
    [44]Z.H. Li, C. Wang, C.Y. Chen.The evolution of voids in the plastic strain hardening gradient materials[J]. International Journal of Plasticity,2003,19:213-234.
    [45]Xiao-Xun Zhang, Zhen-Shan Cui, Wen Chen, Yan Li. A criterion for void closure in large ingots during hot forging[J]. Journal of Materials Processing Technology,2009, 209:1950-1959.
    [46]C.Y. PARK, D.Y. YANG. Modeling of void crushing for large-ingot hot forging[J]. Journal of Materials Processing Technology,1999,67 (1-3):195-200.
    [47]张艳妹.大锻件空洞锻合的光塑性研究与数值模拟[D].燕山大学硕士学位论文,2002.
    [48]卢志辉,赖曾美.大锻什坯料拔长锻造时的应变分析[J].锻压技术,2001,(1):10-12.
    [49]王祖唐,刘庄,任猛.大钢锭内部空洞性缺陷锻合过程的实验研究[J].机械工程学报,1989,25(4):47-53.
    [50]A.E.M. Pertence, P.R. Cetlin.Analysis of a new model material for the physical simulation of metal forming[J]. Journal of Materials Processing Technology,1998, (84):261-267.
    [51]任广升,黄朝晖,白志斌.镦粗过程中孔洞应变分布的光塑性研究[J].机械工程学报,1995,31(2):93-98.
    [52]Hideki Takamor,Yoshiaki Suzuki,Takaya Kawai. Manufacture of a shaft with flange using the upsetter[C]. Proceedings of the 14th international forgemaster meeting, Wiesbaden,2000, p. 73-78.
    [53]J.L. Henot. Recent contributions to the finite element modeling of mental forming process[J]. Journal of Materials Processing Technology,2000, (34):9-18.
    [54]M.A. Chaaban, J.M. Alexander. A study of the closure of cavities in swing forging[C] Proceedings of the 17th international machine and tool design research conference, Birmingham, September,1976, p.633-645.
    [55]崔振山,徐秉业,任广升,徐春国,刘桂华.圆柱体内部空洞热锻闭合过程的数值模拟.塑性工程学报[J].2002,9(1):49-52.
    [56]K.N. Shah, B.V. Kiefer. Finite element simulation of void closure in open-die press forging[J]. Advanced Manufacturing Processes,1999, (1):501-516.
    [57]蒋智,刘桂华,徐春国,任广升.热锻件内部空洞闭合的数值模拟[C].2002年中国材料研讨会会议论文集,北京,2002.
    [58]崔振山,徐秉业,刘才.金属成形过程的综合数值模拟[J].工程力学,2002,19(1):42-46.
    [59]高艳涛.大型锻件孔隙性缺陷修复的力学条件及冷却自愈合研究[D].燕山大学硕士学位论文,2007.
    [60]任运来,聂绍珉,陈颖等.大型锻件中疏松缺陷压实条件研究[J].机械工程学报,2003,39(3):126-129.
    [61]蒋智.三维变形过程中空洞闭合的模拟研究[D].北京机械科学研究院,2003.
    [62]U.Stahlberg, H.Keife. A study of hole closure in hot rolling as influenced by forced cooling[J]. Journal of Materials Processing Technology,1992,30(1):131-135.
    [63]M. Tanaka, S. Ono, M. Tsuneno. A numerical analysis on void crushing during side compression of round bar by flat dies[J]. Journal of the Japan Society for Technology of Plasticity,1987,28(314):238-244.
    [64]朱明,金泉林.大型锻件内部孔隙缺陷闭合过程的理论探讨[C].第二次全国塑性力学学术交流会论文,北京,1988.
    [65]任运来.大型锻件内部缺陷修复条件和修复方法研究[D].燕山大学博士学位论文,2003.
    [66]张效迅.大锻件锻造成形过程中内部空洞刑缺陷演化规律的研究[D].上海交通大学博士学位论文,2009.
    [67]Sun Jie-Xian, Guo Huiguang. Analysis of the closing and consolidation of internal cavities in heavy rotor forgings by finite element method[J].Advanced Technology of Plasticity,1987, (2):1059-1064.
    [68]任猛.大型钢锭内部空洞性缺陷锻合过程的数值模拟和实验研究[D].清华大学博士学位论文,1986.
    [69]金宁.大锻件孔隙性缺陷的压合与焊合规律的研究及高温栅的研究[D].清华大学博士学位论文,1990.
    [71]M. Tanaka, S. Ono, M.Tsuneno. Factors contributing to crushing of voids during forging[J]. Journal of the Japan Society for Technology of Plasticity,1986,27(306):852-859.
    [73]任运来,聂绍珉.大型锻件内部空洞缺陷修复的力学条件[J].机械工程学报,2006,42(8):215-219.
    [74]张效迅,崔振山.大锻件内部空洞热锻闭合的Z-C判据及其应用[J].机械工程学报,2009,45(1):148-153.
    [75]胡汉起.金属凝固[M].北京:冶金工业出版社,1985.
    [76]刘鑫刚,聂绍珉,任运来.高温扩散对2.25Cr-1Mo-0.25V钢锭组织与性能的影响[J].金属热处理,2007,32(12):81-84.
    [77]C.Cicutti, R.Boeri. Analysis of solute distribution during the solidification of low alloyed steels[J]. Steel Research,2006,77(3):194-201.
    [78]Fu Hanguang, Xiao Qiang, Xing Jiandong. A study of segregation mechanism in centrifugalcast high speed steel rolls[J]. Materials Science and Engineering A,2008, 479:253-260.
    [79]彭坤,杨弋涛,张洪奎,金曼,邵光杰.合金钢锭铬元素高温均质化过程的动力学分析[J].材料热处理学报,2010,31(5):87-91.
    [80]马兹·希拉特,赖和怡,刘国勋.合金扩散和热力学[M].北京:冶金工业出版社,1984.
    [81]M.W. Wu, K.S. Huang, H.S. Huang. Improvements in microstructure homogenization and mechanical properties of diffusion-alloyed steel compact by the addition of Cr-containing powders[J]. Metallurgical and Materials Transaction A,2006,37(8):2559-2568.
    [82]刘鑫刚,聂绍珉,任运来.Cr-Mo系低合金钢锻前高温扩散工艺的实验研究[J].塑性工程学报,2007,14(5):142-144.
    [83]刘鑫刚.大型锻件高温扩散的理论与实验研究[D].燕山大学机械工程学院,2004.
    [84]W.Liu, K.M.Liang, Y.K.Zheng. Influence of homogenization treatment in an electric field on the workability of 1420 Al-Li alloy during hot rolling[J]. Journal of Materials Science Letters, 1996,15:1918-1920.
    [85]R.A.Nogueira, A.F.Padilha.The Influence of cold working and recrystallization on the homogenization of as-cast Cu-50wt%Ni alloy[J]. Z.Metallkd,1997,88:204-208.
    [86]葛永胜,王成辉,朱国芳等.冷辊坯网状碳化物的控制[J].大型铸锻件,2005,(4):20-22.
    [87]赵杰,席良军.GCr15钢液析缺陷控制工艺的探讨与改进[J].中国冶金,2007,17(2):12-13.
    [88]王刚,张小华,许正周.降低轴承钢液析级别的技术措施[J].江苏冶金,2008,36(4):69-70.
    [89]李朝华,刘英武,谢奎龙.MC5冷轧辊辊坯工艺改进研究[J].大型铸锻件,2005,(3):14-15.
    [90]刘玉斌,叶志海,矫宏伟.轴承钢液析缺陷产生原因及预防措施[J].黑龙江冶金,2005,(3):5-7.
    [91]H.Φ.拉施柯等.钢和合金的物理-化学相分析[M].北京:国防工业出版社,1982.
    [92]闵永安,刘湘江,毛远建.应用JMatPro软件对比研究两种抽油杆钢的合金化特点[J].上海大学学报(自然科学版),2008,14(5):503-508.
    [93]宋雯雯,闵永安,吴晓春.H13钢中的碳化物分析及其演变规律研究[J].材料热处理学报,2009,30(5):122-126.
    [94]姚泽坤.锻造工艺学[M].西安:西北工业大学出版社,1998.
    [95]U. Stahlberg, H. Keife, A. Lundberg. A study of void closure during plastic deformation[J]. Journal of Mechanical Working Technology,1980,4:51-63.
    [96]袁朝龙,钟约先,马庆贤.大型锻件内部孔隙性缺陷修复规律的研究[J].锻压技术,2002,(3):3-6.
    [97]任运来,聂绍珉,牛龙江.大型锻件内部空洞缺陷修复条件[J].机械工程学报,2008,44(2):248-252.
    [98]S. Hamzah, U. Stahlberg. A new pore closure concept for the manufacturing of heavy rings[J]. Journal of Materials Processing Technology.2001,110:324-333.
    [99]G.Banaszek, A.Stefanik. Theoretical and laboratory modeling of the closure of metallurgical defects during forming of a forging[J]. Journal of Materials Processing Technology,2006, 177:238-242.
    [100]M.Arentoft. Prevention of defects in forging by numerical and physical simulation[D].PHD Dissertation of Technical University of Denmark, October,1999.
    [101]王祖唐,刘庄,任猛.大钢锭内部空洞锻合过程的数值模拟[J].机械工程学报,1989,25(3):51-55.
    [102]S. Hamzah, U. Stahlberg. A study of pore closure in the manufacturing of heavy rings[J]. Journal of Materials Processing Technology,1998,84(1-3):25-37.
    [103]A.Wang, P.F. Thomson, P.D. Hodgson. A study of pore closure and welding in hot rolling process[J]. Journal of Materials Processing Technology,1996,60:95-102.
    [104]崔振山,徐秉业,任广升,徐春国,刘桂华.圆柱体内部空洞的热闭合条件[J].清华大学学报(自然科学版),2003,43(2):49-52.
    [105]任广升,谭红,李运兴.镦粗过程中锻件内孔洞缺陷邻域应变分布的模拟研究[J].塑性工程学报,1994,1(3):14-19.
    [106]蒋智,任广升.圆柱体热锻件内部单空洞闭合的模拟分析[J].塑性工程学报,2005,12(1):47-49,57.
    [107]王勇.锻件内部孔洞缺陷闭合的研究[D].沈阳理工大学硕十学位论文,2008.
    [108]YoungDeak Kim, JongRaeCho, WonByungBae.Efficient forging process to improve the closing effect of the inner void on an ultra-large ingot[J]. Journal of Materials Processing Technology,2011,211(6):1005-1013.
    [109]李传民,王向丽,闫华军DEFORM5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [110]张杉,张洪奎.5%Cr系钢锻造冷轧辊坯中的缺陷及其预防[J].热处理,2011,26(3):25-28.
    [111]Morihiko Nakasaki, Ichiro Takasu, Hiroshi Utsunomiya. Application of hydrostatic integration parameter for free-forging and rolling[J].Journal of Materials Processing Technology,2006,177:195-200.
    [112]杨伯源,张义同.工程弹塑性力学[M].北京:机械工业出版社,2003.
    [113]王仲仁,苑世剑,胡连喜.弹性与塑性力学基础[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [114]李同林.应用弹塑性力学[M].武汉:中国地质大学出版社,2002.
    [115]铁摩辛柯,古地尔.弹性理论(第3版)[M].北京:清华大学出版社,2004.
    [116]任猛.大型钢锭内部孔洞性缺陷锻合过程的数值模拟和实验研究[J].大型铸锻件,1987,(4):6-24.
    [117]U. Stahlberg. Influence of spread and stress on the closure of a central longitudinal hole in the hot rolling of steel[J]. Journal of Mechanical Working Technology,1986,13(1):65-81.
    [118]M. Tanaka, S. Ono, M. Tsuneno. Factors contributing to crushing of voids during forging[J]. Journal of the Japan Society for Technology of Plasticity,1986,27(306):852-859.
    [119]S. I. Ono, K. Minami, E. Murai, T. Iwadate. Three-dimensional simulation on the internal void closure in an ultra-large ingot using a pre-cooling ingot forging process[J].Journal of the Japan Society for Technology of Plasticity,1994,35:1201-1206.
    [120]Y. S. Lee, S. U. Lee, C. J. VanTyne, B. D. Joo, Y. H. Moon. Internal void closure during the forging of large cast ingots using a simulation approach[J]. Journal of Materials Processing Technology,2011,211:1136-1145.
    [121]W.F. Hosford, R.M. Caddell. Metal Forming, Mechanics and Metallurgy, third ed[M]. Cambridge:Cambridge University Press,2007.
    [122]M.C. Queen, H.J.N.D Ryan.Constitutive analysis in hot working[J]. Journal of Materials Processing Technology,2002,322(1-2):42-63.
    [123]H.S. Valberg. Applied Metal Forming[M].Trondheim:Norwegian University of Science and Technology,2010.
    [124]P. Hartley, I. Pillinger. Numerical simulation of the forging process[J]. Computational Methods Applied on Mechanical Engineering,2006,195:6676-6690.
    [125]崔振山,陈文,陈飞,张效迅.大锻件控性锻造过程的计算机模拟技术[J].机械工程学报,2010,46(11):2-10.
    [126]马庆贤,曹起骧,钟约先.大型锻件的模拟技术及内部质量控制研究[J].中国机械工程,1999,10(9):1021-1023.
    [127]陈学文,陈军,左四雨.基于有限元分析的锻造工艺优化技术研究现状与趋势[J].锻压装备与制造技术,2004,39(5):14-18.
    [128]俞汉青,陈金德.金属塑性成形原理[M].北京:机械工业出版社,1999.
    [129]张定铨.残余应力测定的基本知识第二讲X射线应力测定的基本原理[J].理化检验-物
    理分册,2007,43(5):263-265.
    [130]李树棠.金属x射线衍射与电子显微分析技术[M].北京:冶金工业出版社,1980.
    [131]范雄.金属x射线学[M].北京:机械工业出版社,1988.
    [132]崔振山,任广升,徐秉业,徐春国,刘桂华.大锻件空洞的局部效应与锻合压下率研究[J].工程力学,2003,20(2):55-59.
    [133]吕炎.锻压成形理论与工艺[M].北京:机械工业出版社,1991.
    [134]Liu Zhubai, et al. Theory of stretching a blank with rectangular cross section between flat tools[C]. Proceedings of the 12th international forgemasters meeting, Chicago,1994, p.1-5.
    [135]Wang Leigang, et al. Three dimensional finite-element simulation of stretching technological parameters w/h and b/h of heavy forgings[C]. Proceedings of the 14th international forgemasters meeting, Wiesbaden,2000, p.475-478.
    [136]S.Ono. Analysis on distribution of deformation during hot forging[J]. Advanced Technology of Plasticity,2001,2:132-139.
    [137]J. Sinczak, Z. Malinowski, S. Szczepaniak. No homogeneity deformation during forging[J]. Metallurgy Foundry Engineering,1992,18:35-45.
    [138]G. Banaszek, P. Szota. A comprehensive numerical analysis of the effect of relative feed during the operation of stretch forging of large ingots in profiled anvils[J]. Journal of Materials Processing Technology,2005,169:437-444.
    [139]王祖唐,任猛.大型锻件锻合内部空洞性缺陷及优化工艺规程的研究[J].机械工程,1991,2(6):7-9.
    [140]崔振山,徐秉业,任广升,徐春国,刘桂华.大锻件内部空洞的锻合压下率[J].塑性工程学报,2002,9(3):6-8.
    [141]GC. Li, X.W. Ling, H. Shen. On the mechanism of void growth and the effect of straining mode in ductile materials[J]. International Journal of Plasticity,2000,16:39-58.
    [142]C.C. Antonio, C.F. Castro, L.C. Sousa. Optimization of metal forming process[J]. Computers and Structures,2004,82:1425-1433.
    [143]M.C. Flemings. Solidification Processing[M]. NewYork:McGraw-Hill,1974.
    [144]M.Solari,H.J.Biloni.Microsegregation in Celluar and Celluar Dendritic Growth[J] Journal of Crystal Growth,1980,49:451-457.
    [145]刘鑫刚,聂绍珉.锻前高温扩散对低合金钢力学性能影响的试验研究[J].塑性工程学报,2007,14(2):64-68.
    [146]田玉亮,王玲,董建新.均匀化处理过程中Waspaloy合金铸锭中元素分配规律的研究[J].稀有金属材料与工程,2006,35(9):1412-1417.
    [147]H.E. Lippard, C.E. Campbell, U. Borggren. Microstructure behavior during solidification and homogenization of AerMet100 steel[J]. Metallurgical and Materials Transaction B,1998, 29:205-210.
    [148]胡勇,胡满红,范志康.锻造处理对CuCr合金组织和性能的影响[J].太原重型机械学院学报,2004,25(4):275-278.
    [149]刘鑫刚,聂绍珉,任运来.预变形高温扩散对合金元素分布和组织的影响[J].塑性工程学报,2007,14(6):49-53.
    [150]M.E.Glicksman. Diffusion in Solids:Field Theory, Solid-state Principles, and Applications[M]. John Wiley and Sons, Inc, Canada,2000.
    [151]M.W.Wu, K.S.Huang, H.S.Huang. Improvements in microstructure homogenization and mechanical properties of diffusion-alloyed steel compact by the addition of Cr-containing powders[J]. Metallurgical and Materials Transactions A,2006,37(8):2559-2568
    [152]胡赓祥,蔡殉,戎咏华.材料科学基础(第三版)[M].上海:上海交通大学出版社,2010.
    [153]K.Bacilek, J.Kucera, P. Michalicka, A.Rek, K. Stransky. Carbon diffusion and thermodynamic characteristics in chromium steels[J]. Z. Metallkd,1995,86 (10):706-712.
    [154]Kang Seong-Hoon, In Yong-Taek. Finite element investigation of multi-phase transformation within carburized carbon steel [J] Journal of Materials Processing Technology,2007,183(2): 241-248.
    [155]Sylvain Gouttebroze, Michel Bellet, Herve Combeau.3D macrosegregation simulation with anisotropic remeshing [J]. C. R. Mecanique,2007,335:269-279.
    [156]I.L. Ferreira, V.R. Voller, B. Nestler, A. Garcia. Two dimensional numerical model for the analysis of macrosegregation during solidification[J]. Computational Materials Science, 2009,46:358-366.
    [157]A. Milenin, T. Rec. A coupled fem model of macrosegregation and stress-strain state formation in ingot during continuous casting with mechanical soft reduction[J]. Steel Research. International,2008, (2):603-610.
    [158]J. Crank. The Mathematics of Diffusion,2nd Edition[M]. Oxford:Oxford University Press, 1975.
    [159]Wang Z B, Lu J, Lu K. Chromizing behaviors of a low carbon steel processed by means of surface mechanical attrition treatment[J]. Acta Materialia,2005,53:2081-2089.
    [160]Wang Z B, Tao N R, Tong W P. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment[J]. Acta Materialia,2003,51:4319-4329.
    [161]Lu S D, Wang Z B, Lu K. Enhanced chromizing kinetics of tool steel by means of surface mechanical attrition treatment[J]. Materials Science and Engineering A,2010, 527:995-1002.
    [162]X. Si, B.N. Lu, Z.B. Wang. Aluminizing low carbon steel at lower temperatures[J]. Journal of Materials Science and Technology,2009,25(4):433-436.
    [163]崔兰,霍立新,张玉凤.摩擦焊接头热影响区晶粒特征的研究[J].材料工程,1998,8:24-27.
    [164]毛信孚,刘小文,王玉.碳素结构钢与高速工具钢摩擦焊与闪光焊接头的组织和性能[J].材料工程,2006,12:28-31.
    [165]A.L. Patterson. The Scherrer formula for X-Ray particle size determination[J].Phys. Rev. 1939,56(10):978-982.
    [166]陈锟,杨弋涛,邵光杰.再结晶晶界对合金钢锭Cr元素均匀化扩散的影响[J].材料热处理学报,2011,32(5):82-86.
    [167]P.G. Shewmon. Diffusion in solids[M]. New York:McGraw-Hill,1963.
    [168]詹艳然,吴乐尧,王仲仁.金属体积成形过程中温度场的分析[J].塑性工程学报,2001,8(4):13-16.
    [169]张志文.锻造工艺学(第二版)[M].北京:机械工业出版社,1988.
    [170]蔺云峰.防止锻造加热缺陷产生的对策[J].科技情报开发与经济,2009,19(1):213-214.
    [171]李顺杰,彭坤,金曼,张洪奎,杨弋涛,邵光杰.Cr5钢过烧温度的试验分析[J].金属热处理,2010,35(12):98-101.
    [172]S.A.Helm.防止锻钢轧辊的过热和过烧[J].轧钢,1991(2):11-17.
    [173]孙象明.“形变过烧”--一个值得探讨的课题[J].热处理,2006,21(4):61.
    [174]张菊水.钢的过热与过烧[M].上海:上海科学技术出版社,1984.
    [175]陈惠芬.金属学与热处理[M].北京:冶金工业出版社,2009.
    [176]仇亚军,叶健熠,张娟娟.GCr15钢网状碳化物对其冲击性能的影响[J].轴承,2008,(4):28-31.
    [177]巩玄君,杨弋涛,张洪奎,邵光杰.冷轧辊坯正火冷却过程温度场和组织关系的模拟预测[J].上海金属,2009,31(4):46-50.
    [178]孙艳坤,吴迪.应用超快速冷却技术消除GCr15钢网状碳化物[J].轴承,2008,(9):25-26,46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700