用户名: 密码: 验证码:
TiNi相变柱壳的轴向静动态屈曲特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变对材料和结构的力学响应可造成重大影响,是固体力学和材料科学的基本问题和重点研究领域之一。形状记忆合金(SMA)是典型的相变材料,因此,SMA柱壳的冲击力学行为的研究必须涉及相变对其影响的研究。
     本文针对工程中广泛使用的基本构件一圆柱薄壳结构作为研究对象,从实验和数值模拟两个方面,对处于伪弹性状态(PE)的具有相变特性的TiNi合金柱壳的准静态及轴向冲击响应进行了较为系统的研究,发现了一些新现象和新规律,对不同尺寸,不同边界条件下相变柱壳静压屈曲特性以及相变铰的形成与发展规律、以及单脉冲加载下相变柱壳的动屈曲响应响应和吸能特性获得了较深入的认识,得到一些有意义的结果,可为其工程应用提供依据。
     PE态相变柱壳的静压屈曲特性明显不同于弹塑性柱壳,与马氏体相变和相变铰的行为相关,卸载后可恢复原状。相变柱壳的径厚比D/t和长径比L/D两大尺寸要素与相变屈曲模式之间关系密切。在相同的长径比下,随着径厚比增大,相变柱壳的周向折屈边数增多,即周向折屈辦数增加。
     相变柱壳的静压比能S_e与相变柱壳的几何尺寸,屈曲模态关系密切,长径比较小时相变柱壳的比能随着径厚比增大而减小。三辦的相变屈曲模式静压比能S_e最大,二辦与混合模式次之,四辦屈曲模式最小。其中长径比为2.5,径厚比为30时的三辦屈曲模式,其静压比能S_e最大,达到2257.62J·Kg~(-1)。
     采用简化的理想伪弹性本构模型,从理论上分析了TiNi相变柱壳周向相变铰处微元段在轴压失稳条件下截面变形行为,揭示了壳体截面上相变区的发展演化以及相边界的运动规律,给出相应的解析表达式,并给出轴压失稳下整个壳截面在完整的加载卸载循环下由于相变滞回所耗散的能量。
     我们改进了原有的分离式Hopkinson压杆装置,使得只产生单脉冲加载,对不同长径比和边界条件下的PE相变柱壳进行了较为系统的单脉冲轴向加载冲击实验。实验中发现:不同边界条件和不同长径比呈现出不同的屈曲模态。相变柱壳中的相变铰具有以下特点:①可回复性;②出现相变铰的时间尺度为微秒量级,与波动效应耦合在一起,变形呈现波动性:③多相变铰形成。动态载荷下名义应力应变曲线滞回面积远大于准静态压缩下的滞回面积,吸能效率更高。
     对半无限长相变柱壳受阶跃载荷冲击的数值模拟表明,当载荷幅值低于相变起始应力σ_(MS)时,壳体中末发生相变,仅有弹性纵波传播,未出现屈曲。当载荷幅值高于σ_(MS)时,理论上应出现弹性波和相变沖击波的双波结构,计算表明在弹性波后方对应于相变冲击波的范围出现了轴对称的屈曲波纹,屈曲边界的传播速度在460-500m/s之间.计算分析还表明,由于突加冲击下横向惯性效应产生的弯曲扰动,相变区材料模量的突然软化以及较高的轴向应力载荷是引起相变柱壳冲击屈曲的物理机制。
     对具体冲击实验的数值模拟结果表明:相变柱壳的卸载恢复过程在柱壳结构中是不均匀的,伴随着壳体局部应力释放和局部应力集中,可以分为以下四个阶段:1、柱壳中部发生弯曲变形的壳体应力首先释放,2、靠近入射杆端的壳体应力继续释放,3、靠近透射杆端的壳体应力释放,第一层与第二层相变屈曲皱褶消失,4、柱壳整体弹性振动。计算表明,铰点处相变含量沿壁厚方向的分布以周向相变铰分布最不均匀,轴向相变铰次之,斜向相变铰较为均匀。
Phase transformation(PT) can greatly affect the mechanical responses of materials and structures.It is one of the basic problems and major research fields of solid mechanics and material science.Study of the mechanical behavior of shape memory alloy(SMA) cylindrical shells under impact inevitably involves the study of the effect of phase transformation on the structures because SMA is a typical phase transformation material.
     In this paper,the quasi-static axial compression and impact response of the pseudo-elastic phase transformation cylindrical shells(PTCS) are systematically investigated experimentally and numerically.Some interesting phenomena and regularities are found and in-depth understanding is gained:(ⅰ).static buckling instability properties of the PTCS with different sizes under different boundary conditions;(ⅱ).the formation and development regularities of the phase transformation hinges(PTHs);(ⅲ).dynamic buckling response and energy absorbing ability of the PTCS under single loading.The conclusions can provide the basis for its engineering applications.
     Static buckling instability characteristics of PTCS are related to martensitic transformation,the behavior of phase transformation hinges,and recovery upon unloading which is significantly different from elastic-plastic cylindrical shells (EPCS).The diameter-thickness ratio(DTR) and length-diameter ratio(LDR) of the PTCS is closely related to its buckling mode.With the same length-diameter ratio,the number of its circumferential folds increases with the increasing diameter-thickness ratio.
     The static specific energy S_c of the PTCS has a relationship with its geometry and buckling mode,and decreases with the increasing DTR as the LDR is smaller.The static specific energy S_e is the largest with the buckling mode of three hinges,the next is that with the buckling mode of two hinges or mixed-mode,and the smallest is that with the buckling mode of four hinges at the same axial height.As the LDR of the PTCS is 2.5,the DTR is 30,and the buckling mode is three hinges at the same axial height,the static specific energy is the largest and reaches 2257.62J.Kg~(-1).
     Using a simplified ideal PE constitutive model,the behavior of circumferential phase transformation hinges(CPTH) of the PTCS section is theoretically analyzed. Regularity of PT zone development and evolvement as well as of phase boundaries motion is disclosed,and corresponding analytic expression is given.The energy dissipation due to PT of the shell section during a complete loading-unloading cycle is given.
     Experimental investigation was conducted on PTCSs with different LDR and boundary conditions under single pulse loading using a modified split Hopkinson pressure bar(SHPB) apparatus.It is found that PTCSs with different LDR and boundary conditions have different buckling modes.The PTH of the PTCS is characterized by the following:1.Recoverability;2.the phase-change hinge appears on the microsecond time scale that is coupled with the fluctuation effect and its deformation increase is fluctuant;3.there are a number of PTHs in the PTCS under impact loading.The area of the dynamic hysteresis curve is much larger than that of the static compression,so energy absorption efficiency can be much higher.
     Numerical simulation on the semi-infinite PTCSs subject to step loading is studied.When the step loading amplitude is lower than the initial stress inducing martensite transformation(σ_(MS)),there is only transmission of an elastic P-wave and no phase transition buckling in the shell.When the step loading is aboveσ_(MS), two-wave structure of elastic P-wave and PT shock wave occur according to theoretical analysis and numerical simulation indicates axial symmetry bucking ripples occur at the zone corresponding to the PT shock wave after the elastic wave. Propagating speed of buckling boundary is about 460-500m/s.Bending disturbances produced by the influence of lateral inertia,sudden softening of material module in the PT zone and higher axial load under rapid impact loading are the physical mechanisms that induce phase transformation buckling of PTCS.
     Simulation result of the experiment shows that unloading and recovery process of PTCS is not consistent with the local stress redistribution and concentration.It can be divided into four phases:1.local stress unloads first in the middle of PTCS;2. stress continues to unload near the incident bar.3.Stress continues to unload near the transmission bar,the first and second layer PT buckling rumple disappear;4.the whole PTCS vibrates elastically.Martensite fraction distribution along the wall thickness of CPTH is the most non-uniformly,that of axial phase transformation hinge takes second place,and that of the phase transformation diagonal hinge is the most uniform.
引文
[1]Jones N.Structural impact[M].Cambridge,New York:Cambridge University Press,1989.
    [2]结构冲击.蒋平译.成都:四川教育出版社,1994.
    [3]杜星文,宋宏伟.圆柱壳冲击动力学及耐撞性设计[M].科学出版社,2004.
    [4]王仁.冲击载荷下结构塑性稳定性的研究.“冲击动力学进展”.王礼立、余同希、李永池编,中国科学技术大学出版社,1992.
    [5]杨桂通,王德禹,结构的冲击屈曲问题,同上.
    [6]余同希.结构塑性动力响应的研究进展,同上.
    [7]Lu G,Yu T X.Energy Absorption of Structures and Materials,Woodhead,Cambridge,UK,2003.(中文版,化工出版社,2006).
    [8]NiTi alloy characteristics testing report[R],NTN technology Co,LTD of Shenzhen,China,2000.
    [9]Hambeeck J V.Non-medical application of shape memory alloys[J].Material Science and Engineering,1999,A273-275:134-48.
    [10]Indirli M,Castellano M G,Clemente P,et al.Demo-application of shape memory alloy devices[J]:the rehabilitation of the S.Giorgio Church Bell-Tower.Proceedings of SPIE,2001,4330:262-272.
    [11]DesRoches R,Delemont M.Seismic retrofit of simply supported bridges using shape memory alloys[J].Engineering Structure,2002,24,325-332.
    [12]Davoodi Hamid,Saffar All.Just Frederick Aet al.2001-01-09.Building system using shape memory alloy members,USA,US6170202[P].
    [13]Liang C,Rogers C A.Design of shape memory alloys prings with applications in vibration control[J].J Vibration A-coustics,1993,115(1):135.
    [14]Baz A,Iman K,Mccoy J.Active vibration control of flexible beams using shape memory actuators[J].J Sound Vibration,1990,140(3):437.
    [15]Bidaux,J-E;Manson,J-A E;Gotthardt,R.Active stiffening of composite materials by embedded shape-memory-alloy fibres.Materials for Smart Systems Ⅱ;Boston,Massachusetts;USA;2-5 Dec.1996.pp.107-117.1997.
    [16]SSaadat,M Noori,H Davoodi,et al,Using TiNi SMA tendons for vibration control of coastal structures[J].Smart Mater Struct,2001,10(4):695.
    [17]邓宗才,李庆斌.形状记忆合金对混凝土梁驱动效应分析[J].土木工程学报,2002,35(2):41.
    [18]Krumme Robbert C,Hodgson Darele E.Hysteretic damping apparent and methods[P].WO9627055A 1,1996.
    [19]Mauro D,Cardone D.Mechanical behavior of shape memory alloys for seismic applications-2,austenite TiNi wires subjected to tension[J].Inter J Mech Sci,2001,43:657.
    [20]倪立峰,韩玉林,李爱群.基于形状记忆超弹性拉索耗能器的框架振动控制研究[J].工程抗震,2003.(3):26.
    [21]李惠.2003-1-24.剪刀型形状记忆合金被动耗能器.中国,032111673[P].
    [22]毛晨曦.2003-1-24.拉伸型形状记忆合金被动耗能器.中国,03211168[P].
    [23]李爱群,倪立峰,左晓宝.2003-3-04.工程结构形状记忆合金拉压型超弹性阻尼器.中国,03220204.0[P].
    [24]彭刚,姜袁.利用SMA开发耗能阻尼器的实验研究[J].工程力学,2004,21(2):183.
    [25]姜袁.2003-1.碟式竖向隔震耗能阻尼器:中国,03235264[P].
    [26]SCHNEIDER TERRY L.1999.04.29.Golf club head with improved energy transfer and vibration dampening.USA,WO9920358A 1[P].
    [27]Hamid D,Frederik A J,Ali S.2001-01-09.Building system using shape memory alloy members.USA,US6170202[P].
    [28]董寅生,熊九郎,李爱群.用TiNi合金环作耗能元件的被动减振装置性能评价.Journal of Southeast University(English Edition),Vol.21,No.3,pp.310-313.
    [29]薛素铎.2004-4-30.水平多向隔震、竖向抗拔形状记忆合金-橡胶复合支座.中国,200420050456.0[P].
    [30]Browne A,Johnson N and Kramarczyk M.2005.Tunable,Healable vehicle impact devices.US,2005104391.
    [31]Barvosa C W,Johnson NL,Browne AL etal.2006-09-14.Reversibly expandable energy absorbing assembly utilizing shape memory foams for impact management and methods for operating the same.USA,US2006202492[P].
    [32]李忠献,陈海泉,刘建涛.应用SMA复合橡胶支座的桥梁结构隔震[J].地震工程与工程振动,2002,22(2):143.
    [33]Rejzner J,Lexcellent C,Raniecki B.Pseudoelastic behaviour of shape memory alloy beams under pure bending:experiments and modeling[J].International Journal of Mechanical Sciences,2002,44:665-686.
    [34]Rahman M A,Qiu J,Tani J.Buckling and Postbuckling Characteristics of the Superelastic SMA Columns[J].International Journal of Solids and Structures,2001,38:9253-9265.
    [35]Purohit PK,Bhattacharya K.On beams made of phase-transforming materials[J].International Journal of Solids and Structures,2002,39(13-14):3907-3929.
    [36]彭刚,李黎,唐家祥.形状记忆合金受弯杆的力学性能分析[J].武汉大学学报,2004,37(4):59-64.
    [37]Zurek A K,Hixson R S,Anderson W W,et al.Elastic response of U-Nb(6%) alloy[J].J.Phys.Ⅳ,2000,10:677-682.
    [38]Guo Y B,Tang Z P,Zhang X H,et al.Phase transition Taylor test.Impact Loading of Lightweight Structures[J].Vol.WIT Transactions on Engineering Science Volume 49,pp.241-255.2005.
    [39]徐薇薇,唐志平,张兴华.有限杆中不可逆相边界的传播规律及其应用[J].高压物理学报,2006,20(4):365-371.
    [40]唐志平.相变梁、杆的冲击力学特性研究,国家基金(10672158),2007-2009.
    [41]唐志平,卢艰春,张兴华.TiNi相变悬臂粱的横向冲击特性实验研究[J].爆炸与冲击,2007,27(4):289-295.
    [42]张兴华,唐志平,李丹.冲击载荷下伪弹性TiNi合金矩形悬臂梁结构响应的实验研究[J].实验力学,2008,23(1):43-52.
    [43]张兴华.2008.TiNi相变悬臂梁的冲击响应研究[D]:[博士].合肥:中国科学技术大学,50-137.
    [44]Sun Q P,Li Z Q.Phase transformation in super-elastic NiTi polycrystalline micro-tubes under tension and torsion-from localization to homogeneous deformation[J].International Journal of Solids and Structures,2002,39:3797-3809.
    [45]Li Z Q,Sun Q P.The initiation and growth of macroscopic martensite band in nano-grained N iTi micro-tube under tension[J].International Journal of Plasticity,2002,18:1481-1498.
    [46]Sun Q P,Feng P.Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi micro-tubing under mechanical force[J].Journal of the Mechanics and Physics of Solids,2006,54:1568-1603.
    [47]Wang YF,Yue ZF,Wang J.Experimental and numerical study of the super-elastic behavior on NiTi thin-walled tube under biaxial loading[J].Computational Materials Science,2007,40,246-254.
    [48]Sia Nemat-Nasser,Jeom Yong Choi,Jon B.Isaacs.Quasi-Static and Dynamic Buckling of Thin Cylindrical Shape-Memory Shells[J].Journal of Applied Mechanics,SEPTEMBER 2006,Vol.73 / 825.
    [49]Mahmoud Reza Amini and Sia Nemat-Nasser.Dynamic Buckling and Recovery of Thin Cylindrical Shape Memory Shells[J].Smart Structures and MaterialsVol.5761.450-453.
    [50]Rivin E l,Sayal G."Giant Super-elasticity Effect" in NiTi Super-elastic Materials and Its Applications[J].JOURNAL OF MATERIALS IN CIVIL ENGINEERING,2006 / 851.Journal of Material in Civil Engineering,2006,18:66,851-857.
    [51]Lagoudas D C,Chen Y C,Ravi-Chandar K.Fabrication,Modeling and Characterization of Porous Shape Memory Alloys,2001(私人通讯).
    [52]Zhu F,Lu G.A Review of Blast and Impact of Metallic and Sandwich Structures[J].EJSE Special Issue:Loading on Structures 2007,92-101.
    [53]王仁,茹重庆.圆柱壳受冲击载荷作用的动态屈曲能量准则[C].第十六届国际理论与应用力学大会中国学者论文集锦,中国力学学会主编,大连:大连工学院出版社,1986:25-263.
    [54]茹重庆.1988年.冲击载荷下结构的塑性动力屈曲问题[D]:[博士].北京:北京大学,10-115.
    [55]HSU C C.dynamic stability of elastic bodies with prescribed initial condition[J].Int.J.Eng.Sci.,1966,4:1-21.
    [56]HSU C S.Stability of shallow arches against snap-through under time wise step loads[J].JAM,1968,35:31-39.
    [57]Simitses G J.Suddenly-loaded structural configuration[J].Eng.Mech.,ASCE,1984,110(9):1320-1334.
    [58]Simitses G J.Effect of static preloading on the dynamic stability of structure[J].AIAA.1983,21(8):1174-1180.
    [59]Goodier J N.Dynamic plastic buckling In:Herrmann G ed.Dynamic stability of structure,1967:189-211.
    [60]Budiansky B Roth R S.Axisymmetric dynamic buckling of clamped shallow spherical shells[R].NASA Technical Note-1510,1962:597-609.
    [61]Lee L H N.On dynamic stability and quasi-bifurcation[J].Int.J.Nonlinear Mech.,1981,16:79-87.
    [62]Lee L H N.Dynamic buckling of inelastic column[J].Int.J.Solid and Struct.,1981,17:271-279.
    [63]Lee,L H N.Quasi-bifurcation in dynamics of elastic-plastic continua[J]J Appl Mech,1977;44(3):413-417.
    [64]朱兆祥.应力波引起的弹性结构屈曲准则[A].塑性力学和地球动力学文集[C].北京:北京大学出版社,1990,56-70.
    [65]魏勇,朱兆祥,李永池.轴向冲击下载荷作用下直杆弹性动态屈曲研究[J].实验力学,1988,3(3):258-263.
    [66]汤立群,朱兆祥.弹性直杆动态屈曲和后屈曲的实验研究[J].爆炸与冲击,1998,18(2):97-102.
    [67]马宏伟,韩强,张善元,等.受轴向冲击有限长弹性直杆中应用波引起的分叉问题[J].爆炸与冲击,1995,15(4):300-305.
    [68]韩强,武际可,张善元,等.直杆中应力波传播引起分叉问题[J].力学学报,1998,30(4):414-422.
    [69]韩强,胡海岩,杨桂通.轴向弹塑性应力波作用下直杆中的分叉问题[J].应用数学和力学,1999,20(6):569-578.
    [70]Coppa A P.On the mechanism of buckling of a circular cylindrical shell under longitudinal impact[J].General Electric Report R60SD494,Presented at Teath Int.Congress of Appl.Mech.Stresa,Italy,1960.
    [71]Almroth B O,Holmes A M C and Brush D O.An experimental study of the buckling of cylinders under axial compression[J].Exp.Mech.,1964,4:263-270.
    [72]Lindberg H E,Hert R E.Dynamic buckling of a thin cylindrical shell under axial impact[J].Appl.Mech.,1966,32(3):105-112.
    [73]徐新生,苏先樾,王仁.轴向应力波与弹塑性材料圆柱壳的动力屈曲[J].中国科 学,1995,25(2):166-173.
    [74]徐新生,刘书田,刘凯欣.在轴向应力波传播和反射过程中弹性有限长圆柱壳非对称动态屈曲[J].计算力学学报,1997,14(4);420:425.
    [75]Zimcik D G and Tennyson R C.Stability of circular cylindrical shells under transient axial impulsive loading[J],AIAA J.,1980,18(6):691-699.
    [76]Simitses G J and Sheinman I.Dynamic buckling of shell structures:concepts and applications.Acta Astronautic[J],1982,9(3):179-182.
    [77]Florence AL,Dynamic plastic buckling of cylindrical shells in sustained axial compressive flow[J].J Appl Mech,1968,35:80-86.
    [78]Vaughan H,The response of a plastic cylindrical shells to axial impact[J].ZAMP 20 1969,20:321-328.
    [79]Jones N,Papageorgiou,E A.Dynamic axial plastic buckling of stringer stiffed cylindrical[J].Int.J.Mech.Sci.,1982,24:1-20.
    [80]Gordienko B A.Buckling of inelastic cylindrical shells under axial impact[J].Arch.Mech.,1972,24:383-394.
    [81]王仁,韩铭宝,黄筑平.受轴向冲击的圆柱壳塑性动力屈曲实验研究[J],力学学报,1983,15(5):509-514.
    [82]Li Ming,Wang Ren,Han Mingbao.An experimental investigation of the dynamic axial buckling of cylindrical shells using a Kolsky bar[J].Acta Mech Sinica 1994;10:260-266.
    [83]Wang R,Han M B,Huang Z P and Yang Q C.An experimental study on the dynamic axial plastic buckling of cylndrical shells[J].Int.J.Impact Eng.,1983,1(3):249-256.
    [84]Yan Q,Han M B,Wang R,An experimental study on stability of stability cylindrical shell colliding with the rigid target[J].Journal of Solid Mechanics,1985,(2):170-181.
    [85]Han M B,Huang Z P,Wang R,Second critical velocity of axial plastic dynamic instability of cylindrical shell[J],J.Strengh and environment.,1988(4),30-36.
    [86]Han M B,Yang Q C,Wang R.On non-uniform and non-axisymmetric plastic buckling of cylindrical shells under axial impact[J].Proc.Int.Sym.Intense Dynamic Loading and Its Effects,Chengdu,1992:524-528.
    [87]Chen C A,Su X Y,Han M B and Wang R.An experimental investigation on the relation between the elastic-plastic dynamic buckling and the stress wave in cylindrical shells subjected to axial impact[J].Proc.Int.Sym.Intense Dynamic Loading and Its Effects,Chengdu,1992:543-546.
    [88]Ma H W,Cheng G Q,Zhang S Y.Experimental studies on dynamic plastic buckling of circular cylindrical shells under axial impact[J],Acta Mechanica Sinica,1999,15(3):275-282.
    [89]余同希,w.J.斯壮.塑性结构的动力学模型[M].北京:北京大学出版社,2002.
    [90]杨桂通,熊祝华.塑性动力学[M].北京:高等教育出版社,2000.
    [91]Symond PS,Frye CW G.On the relation between rigid-plastic and elastic-plastic predictions of response to pulse loading[J].International journal of impact engineering,1988(17):22,139-149.
    [92]Cowper GR,Symond PS.Strain hardening and strain rate effects in the impact loading of cantilever beams[J],Brown Univ,App.Math.Report,1958.
    [93]Duffey TA,Krieg R.The Effects of Strain-Hardening and Strain-Rate Sensitivity on the Transient Response of Elastic-plastic rings and cylinders[J].Int J of Mech.,1969(11):825-844.
    [94]K MARSH The effect of strain rate on the post-yield flow of mild steel[J].-J.Mech.Phys Solids,1963(11):49-63.
    [95]Alexander J M.An approximate analysis of the collapse of thin cylindrical shells under axial loading[J].Q J Mech,1960,13(1):10-15.
    [96]Wierzbicki T,Bhat S U.A moving hinge solution for axi-symmetric crushing of tubes [J].International Journal of Mechanic and Science,1985,28(3):135-151.
    [97]Wierzbicki T,Bhat S U,Abramowicz,D.A two folding elements model of progressive crushing of tubes[J].International Journal of Solids and Structures,1992,28(24):3269-3288.
    [98]Singace A.A.,Elsobky H.Further experimental investigation on the eccentricity factor in the progressive crushing of tubes[J].International Journal of Solids and Structures,1996,24(33):3517-3538.
    [99]Singace A.A.,Elsobky H,Reddy.T.Y.On the eccentricity factor in the progressive crushing of tubes.International Journal of Solids and Structures[J],Volume 32,Issue 24,December 1995,Pages 3589-3602.
    [100]Marsoleka,J.Reimerdes H.G.Energy absorption of metallic cylindrical shells with induced non-axisymmetric folding patterns[J].International Journal of Impact Engineering,2004,30:1209-1223.
    [101]Karagiozova D.,Jones N.,Dynamic elastic-plastic buckling of circular cylindrical shells under axial impact[J],Int.J.Solids and Struct.2000(37):2005-2034.
    [102]Karagiozov D,Alves M,Jones N.Inertia effects in axisymmetrically deformed cylindrical shells under axial impac[J]t,Int.J.Impact Eng.2000(24):1083-1115.
    [103]Karagiozov D,Jones N.Dynamic effects on buckling and energy absorption of cylindrical shells under axial impact[J].Thin-Walled Structures,2001,39:583-610.
    [104]Karagiozova D.,Jones N.,Influence of stress waves on the dynamic plastic and dynamic progressive buckling of cylindrical shells under axial impact[J].Int.J.Solids Struct.38.2001(38):6723-6749.
    [105]Karagiozova D.,Jones N.,On dynamic buckling phenomena in axially loaded elastic-plastic cylindrical shells[J].International Journal of Non-Linear Mechanics 2002(37):1223 - 1238.
    [106]Karagiozov D.Dynamic buckling of elastic-plastic square tubes under axial impact-Ⅰ:stress wave propagation phenomenon[J].International Journal of Impact Engineering,2004,30:43-166.
    [107]Karagiozov D,Jones N.Dynamic buckling of elastic-plastic square tubes under axial impact-Ⅱ:structural response[J].International Journal of Impact Engineering,2004,30:167-192.
    [108]Karagiozov D,Nurick G N,Yuen S C K.Energy absorption of aluminium alloy circular and square tubes under an axial explosive load[J].Thin-Walled Structures.2005,43:956-982.
    [109]王安稳.轴向压应力波下圆柱壳弹性动力失稳的判据与机理[J].同体力学报,2001,22(2):185-191.
    [110]王安稳.轴向冲击载荷下圆柱壳的塑性动力屈曲[J].海军工程大学学报,2004,1(6):1-8.
    [111]刘理,刘土光,李天匀.圆柱壳在轴压冲击载荷下的非对称屈曲分析[J].华中理工大学学报,1999,27(4):95-97.
    [112]刘理,刘土光,李天匀.轴向冲击载荷下圆柱壳的弹塑性屈曲分析[J].爆炸与冲击,2000,20(2):168-174.
    [113]Shaw J A.Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy[J].International Journal of Plasticity,2000,16:541-562.
    [114]杜晓伟.2004.SMA线性化模型及塑料拉伸曲线CAE计算模型研究[D]:[博士]上海:上海交通大学,20-125.
    [115]Brinson L C.One-dimensional constitutive behavior of shape memory alloys:thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J].J.Intelligent Mat.Syst.Struct.,1993,4:229-242.
    [116]Lagoudas D C,Bo Z,Qidwai M A.A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites[J].Mechanics of Advanced Materials and Structures,1996,3(2):153-179.
    [117]Qidwai M A,Entchev P B,Lagoudas D C,etal.Modeling of the thermomechanical behavior of porous shape memory alloys[J].International Journal of Solids and Structures,2001,38:8653-8671.
    [118]Thamburaja P.Anand L.Superelastic behavior in tension-torsion of an initially-textured Ti-Ni shape-memory alloy[J].International Journal of Plasticity 2002(18):1607-1617.
    [119]Gall,K.,Lim,T.,McDowell,D,et al.The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi[J].International Journal of Plasticity 2000(16),1189-1214.
    [120]Gall,K,Sehitoglu,H.The role of texture in tension-compression asymmetry in polycrystalline niti[J].International Journal of Plasticity,1999(15),69-92.
    [121]Wang X M,Frotscher M,Wang Y F.Finite element analysis Of pseudo-elastic behavior of NiTi shape memory alloy with thin-wall tube under extension-torsion loading[J],J Mater Sci,2007(42):2443-2449.
    [122]Wang Y F,Yue Z.F,Wang.J.Experimental and numerical study of the super-elastic behavior on NiTi thin-walled tube under biaxial loading[J].Computational Materials Science,2007(40):246-254.
    [123]Auricchio F,Taylor R L.Shape-memory alloys:modelling and numerical simulations of the finite-strainsuperelastic behavior[J].Comput.Methods Appl.Mech.Engrg.1997,143:175-194.
    [124]Auricchio F,Taylor R L,Lubliner J.Shape-memory alloys:macromodelling and numerical simulations of the superelastic behavior[J].Comput.Methods Appl.Mech.Engrg.,1997,146:281-312.
    [125]张兴华.2008.TiNi相变悬臂梁的冲击响应研究[D]:[博士].合肥:中国科学技术大学,162-17.
    [1]Tvon Karman,Dunn L G,Tsien H S.The influence of curvature on the buckling characteristics of structures[J].Journal of the Aeronautical Sciences,1940,7:276-289
    [2]Tvon Karman T,Tsien H S.The Buckling of Thin Cylindrical Shells under Axial Compression [J].J Aeronaut Sci 1941,8:303-312
    [3]Koiter W T.On the stability of elastic equilibrium[D].De[ft:H.J.Paris,1945
    [4]Andrews K,Ohani E.Classification of the axial collapse of cylindrical tubes under quasi-static loading[J].International Journal of Mechanics Science,1983(25):6874696.
    [5]S.R.Guillow,G.Lu.Quasi-static axial compression of thin-walled circular aluminium tubes[J].International Journal of Mechanical Sciences 2001(43):2103-2123.
    [6]Eugene I.Rivin,Gautam Sayal,Prithvi Raj Singh Johal."Giant super-elasticity effect" in NiTi super-elastic materials and its Applications[J].Journal of material in civil engineering,2006(12):851-857.
    [7]Sia Nemat-Nasser,Jeom Yong Choi,Jon B.Isaacs.Quasi-Static and Dynamic Buckling of Thin Cylindrical Shape-Memory Shells[J].Journal of Applied Mechanics,2006,73:825.
    [8]庸志平,卢艰春,张兴华.TiNi相变:悬臂梁的横向冲击特性实验研究[J].爆炸与冲击,2007,27[4],289-295.
    [9]宋璐.2006.轴压金属管的失效模式和吸能特性[D]:[硕士].杭州:浙江大学,34.
    [10]张兴华.2008.TiNi相变悬臂梁的冲击响应研究[D]:[博士].合肥:中国科学技术大学,93.
    [11]Auricchio F,Sacco E.A superelastic shape memory alloy beam.Journal of Intelligent Material Systems and Structures,1997,8:489-501.
    [12]Auricchio F,Sacco E.A temperature-dependent beam for shape-memory alloys:constitutive modelling,finite-element implementation and numerical simulations.Comput.Methods Appl.Mech.Engrg.,1999,174:171-190.
    [1]Sia Nemat-Nasser,Jeom Yong Choi,Jon B.Isaacs.Quasi-Static and Dynamic Buckling of Thin Cylindrical Shape-Memory Shells[J].Journal of Applied Mechanics,2006,73:825- 833.
    [2]Sia Nemat-Nasser,Isaacs J B,Starrett J E.Hopkinson techniques for dynamic recovery experiments[A].Mathematical and Physical Sciences London.1991:371-391.
    [3]Sia Nemat-Nasser,Isaacs JB.Direct measurement of Isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys[J].Acta Mater.1997,45:907.
    [4]Song B,ChenW.Loading and unloading split hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops[J].Experimental Mechanics.2004,44:622-628.
    [5]Li Y L,Ramesh K T,Chin E S C.Viscoplastic deformation and compressive damage in an A359/SiCp metal-matrix composite[J].Acta Materialla.2000,48:1536-1573.
    [6]陈荣.私人通讯.
    [7]Sia Nemat-Nasse,Isaacs J.B,Starrett J E.Hopkinson techniques for dynamic recovery experiments[A].Mathematical and Physical Sciences London.1991:371-391.
    [8]唐志平,卢艰春,张兴华.TiNi相变悬臂梁的横向冲击特性实验研究[J].爆炸与冲击,2007,27[4],289-295.
    [9]郭扬波.2005.TiNi合金的冲击相变特性和相变本构研究[D]:[博士].合肥:中国科学技术大学,:52-75.
    [10]李丹,唐志平,张会杰.TiNi合金圆柱薄壳静压屈曲失稳特性的实验研究[J]实验力学,2008,23[4].
    [1]滕宁钧,苏先樾.半无限长弹性直杆受轴向冲击戴荷作用的分叉问题[J].力学学报,1989,21(5):591-595.
    [2]魏勇,朱兆样,李永池.轴向冲击载荷作用下直杆弹性动态屈曲的研究[J].实验力学,1988(3):238-264.
    [3]王仁.冲击载荷下结构塑性稳定性的研究[C].冲击动力学进展.合肥:中国科学技术大学出版社,1992:157-176.
    [4]徐新生,苏先樾,王仁.轴向应力波与弹塑性材料圆柱壳的动力屈曲[J].中国科学(A 辑),1995,25(2):166-173.
    [5]徐新生,刘书田.弹性圆柱壳在轴向应力波传播过程中的非对称屈曲[J].爆炸与冲击,1997,17(3):249-253.
    [6]Karagiozova D,Jones N.Influence of stress waves on dynamic progressive and dynamic plastic buckling of cylindrical shells[J].International Journal of Solids and Structures,2001,38:6723-6749.
    [7]郑波,王安稳.轴向应力波作用下圆柱壳塑性轴对称动力屈曲[J].爆炸与冲击,2008,28(3):271-275.
    [8]Kolsky,H.An investigation of the mechanical properties of meterials at very high rates of loading,Proc.Royal Coc.Lond,B,Vol.62.,1949,pp.679-700.
    [9]Sia Nemat-Nasser,Wei-Guo Guo.Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures[J].Mechanics of Materials,2006,38:463-467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700