用户名: 密码: 验证码:
块体电沉积纳米晶镍及镍钴合金的微观结构和力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用直流电沉积方法,通过科学地提纯镀液及合理地调节添加剂含量和电流密度,成功制备出多种含有不同晶粒尺寸、高纯的、块体的纳米晶Ni及Ni合金材料:晶粒尺寸宽分布(10~160 nm)的纳米晶Ni,一组晶粒尺寸从257 nm(超细晶)到16 nm的Ni,18 nm的Ni-24.7% Co合金和晶粒尺寸为16 nm的超厚大块Ni(7~8 mm)。拉伸实验表明,晶粒尺寸宽分布纳米晶Ni具有高强度和高塑性;还发现纳米晶Ni存在一个最佳晶粒尺寸区域(28~41 nm),在这个尺寸区域的纳米晶Ni拥有高强度和高塑性;Co元素的加入不仅进一步提高了强度,同时改善了临界区域纳米晶Ni的塑性。另外,宽分布纳米晶Ni及Ni-24.7%Co合金的力学性能还展现了强烈的应变速率依赖性。对超厚大块纳米晶Ni的压缩实验揭示了晶粒生长方向对其力学性能有显著的影响:沿着晶粒生长方向压缩时,纳米晶Ni具有高的抗压强度和延伸率;垂直于晶粒生长方向压缩时,其强度和塑性明显下降。通过特殊拉伸模式?间歇拉伸应力释放循环变形模式配合常规持续拉伸变形模式揭示了纳米晶Ni的晶界发射位错,位错扫过晶粒并被对面晶界吸收的特有变形机理。而且,在拉伸过程中通过这种间歇应力释放还显著提高了纳米晶Ni的塑性,这种提高塑性的方法可以被应用到其它纳米晶金属及合金中。
Nanocrystalline (nc) materials have been a focus of research in the field of materials science due to their special physical, chemical and mechanical properties different from the conventional coarse-grained (CG) counterparts. In term of the mechanical property, nc materials hold extreme high strength and hardness, resulting in a promising structural application. Unfortunately, nc materials often exhibits a very low ductility (typically less than 4%), which in a way limits their valuable application. Except for their low ductility, nc materials also exhibits a special phenomena, such as high strain rate sensitivity and inverse Hall-Petch relation, which implies nc materials can hold a deformation mechanism different from CG counterparts. However, to now, the deformation mechanism of nc materials is not well understood. So, optimizing the mechanical properties of nc materials and understanding their deformation mechanical become very important for actual application and scientific study.
     Experimental studies demonstrates some extrinsic factors including the immature technology, impurity and the nonstandard dimension can disturb the true evaluation on the mechanical properties of nc materials. To avoid these effects, in present work, we fabricate some high purity and bulk nc Nis with different mean grain size and a Ni-Co alloy in an electrolyte that is scientifically purified by reasonably controlling the content of additives and current density. The max dimension of specimen is up to about 7~8 mm in thickness. Microstructures and mechanical properties of these nc Ni and Ni-Co alloy were extensively studied by X-ray diffractmeter (XRD), transmission electron microscope (TEM), MTS tensile testing system and scanning electron microscope (SEM) etc. The main results are shown as follows:
     1. An electrodeposited nc Ni with a broad grain size distribution from 10-160 nm and slightly (200) crystallography texture was made. The tensile tests revealed that nc Ni holds high strength of 1440~1916 MPa in ultimate tensile strength (σUTS) and good ductility of 6.2%~11.3% in elongation to failure (δETF), which strongly depended on the strain rate. With decreasing the strain rate, the strength decreases and the ductility increases. This nc Ni exhibits two distinguished strain rate sensitivity (m) and activity volume (v). Compared with the normal and high strain rates, nc Ni holds a higher m and lower v at the low strain rates, which implies a change from the single dislocation-based deformation to the dislocation and grain boundary (GB)-mediated deformation. The fracture surface morphology changes from the dimple structure at high strain rate to the hunch structure at low strain rate, which further confirm the change of deformation mechanism. At the low strain rate, the high ductility of nc Ni is attributed to the dislocation and GB-based harmonious action.
     2. Six electrodeposited Nis with a different average grain sizes from 256 nm to 16 nm were fabricated by adjusting the content of saccharine and density. With decreasing grain size, the growth orientation of the deposits changed from a preferred (200) crystallographic texture to the random. There exists an optimized grain size region of 28~41 nm where nc Ni holds highσUTS of 1440~1916 MPa and goodδETF of 6.2%~11.3%. In such a grain size area, the good ductility is attributed to the intrinsic dislocation-based deformation and themselves inhomogeneous microstructure, which induces some extra strain hardening ability. When the grain size of nc Ni is reduced to 22 nm and 16 nm, the strength and ductility both decrease, which is followed by the change in the fracture surface morphology from the typical dimples to the“cup”and“cone”structure. The low ductility is attributed to the restrained dislocation activity and insufficient GB activity in such a small size area.
     3. An electrodeposited nc Ni-24.7%Co alloy with a mean grain size of 15 nm and a face centered cubic (fcc) structure is fabricated. Unlike pure nc Nis whose grain size locates the critical region, tensile tests shows the present nc Ni-Co exhibits not only high strength of 1813~2232 MPa inσUTS but also good ductility of 6~9.6% inδETF. The addition of element Co decreases the stacking fault energy (SFE) of nc Ni, which improves the strain hardening ability and thus the ductility. The high strength is attributed to the fine small grain size and solid solution hardening effect. Based on the attained m (0.029) and v (13b3), the dislocation motion should be responsible fro the plastic deformation of the nc Ni-Co alloy.
     4. Bulk electrodeposited nc Ni with a thick of about 7~8 mm is fabricated. XRD analysis and TEM observation imply nc Ni holds an evident anisotropy in grain growth. Compressive tests demonstrate the grain orientation markedly affect the mechanical property of nc Ni. When the loading axis is perpendicular to the growth direction, nc Ni exhibits a high yield strength (σY) of 1875~2315 MPa and aδETF of 3.5%~7%. However, when the load was applied along the growth direction, the totalδETF is increased to 7%~18.5% and theσY is increased to 1974~2545 MPa. The improved ductility and strength is attributed to the active GB sliding and efficient dislocations motion, which accords with the attained higher m and lower v when the load axis is parallel to the growth direction. Under two loading modes, the nc Ni specimens fail approximately 45°to the loading direction and their fracture surface morphology are consist of the dimples area and lacerated area. When the load was applied along the growth direction, the proportion of dimples area is evidently improved, which is relative to the active GB sliding and efficient dislocations motion.
     5. The continuous tensile (CT) test and intermittent tensile-relaxation cycle (TRC) test were performed on nc Ni (27 nm) and a CG Ni (2μm) to explore the deformation behavior of nc Ni. When deformed by the TRC test, the ductility of nc Ni is markedly increased from the 6.5%~10% attained under the CT test to 10.7~12% and its strength almost keep consistent. While for CG Ni, under the same two tensile modes, its strength and ductility both have no changes. The large time-dependent decay in flow stress during relaxation and the reloading tensile track deviating from the origin one demonstrates the nc Ni has not a permanent dislocation network. The improved ductility for nc Ni is attributed to the release of large internal stress and the regained new strain hardening ability upon reloading.
引文
[1] GLEITER H. Nanocrystalline materials [J]. Prog. Mater. Sci., 1989, 33: 223-315.
    [2] BIRRINGER R. Nanocrystalline materials [J]. Mater. Sci. Eng. A, 1989, 117: 33-43.
    [3] HENGLEIN A. Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles [J]. Chem. Rev.,1989, 89: 1861-1873.
    [4] KLABUNDE K J, STARK J, KOPER O, PART C G, DECKER S, JIANG Y, LAGADIC I, ZHANG D. Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry [J]. J. Phys. Chem., 1996, 100: 12142-12153.
    [5] PING Y, HDJINANAYIS G C, Magnetic-properties of fine cobalt particles prepared by metal atom reduction [J]. Appl. Phys., 1990, 67: 4502-4504.
    [6] AWSCHALOM D D, MCCORD M A, GRINSTEIN G. Observation of macroscopic spin phenomena in nanometer-scale magnets [J]. Phys. Rev. Lett., 1990, 65: 783-786.
    [7] GLEITER H. Nanostructured materials: state of the art and perspectives [J]. Nanostruct. Mater., 1995, 6: 3-14.
    [8] GLEITER H. Nanostructured materials: basic concepts and microstructure [J]. Acta. Mater., 2000, 48: 1-29.
    [9] CAHN R W. Nanostructured materials [J]. Nature, 1990, 348: 389-390.
    [10] HERR U, JING J, BIRRINGER R, GONSER U, GLEITER H. Investigation of nanocrystalline iron materials by M?ssbauer spectroscopy [J]. Appl. Phys. Lett., 1987, 50: 472-474.
    [11] ZHU X, BIRRINGER R, HERR U, GLEITER H. X-ray diffraction studies of the structure of nanometer-sized crystalline materials [J]. Phys. Rev. B, 1989, 35: 9085-9090.
    [12] JORRA E, FRAN H, PEISL J, WALLNER G, PETRY W, BIRRINGER R, GLEITER H, HAUBOLD T. Small-angle neutron scattering from nanocrystalline Pd [J]. Philos. Mag. B, 1989, 60: 159-168.
    [13] SCHEAFER H E, WüRSCHUM R, BIRRINGER R, GLEITER H. Structure ofnanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy [J]. Phys. Rev. B, 1988, 38: 9545-9554.
    [14] SCHUH C A, NIEH T G, IWASAKI H. The effect of solid solution W addition on the mechanical properties of nanocrystalline Ni [J]. Acta. Mater., 2003, 51: 431-443.
    [15] THOMAS G J. SIEGEL R W, EASTMAN J A. Grain boundaries in nanophase palladium: High resolution electron microscopy and image simulation [J]. Scr. Metall. Mater., 1990, 24: 201-206.
    [16] KUMAR K S, VAN SWYGENHOVEN H, SURESH S. Mechanical behavior of nanocrystalline metals and alloys [J]. Acta. Mater., 2003, 51: 5743-5774.
    [17] WANG J, WOLF D, PHILLPOT S R. Computer simulation of the structure and thermo-elastic properties of a model nanocrystalline material [J]. Phil. Mag. A, 1996 73 517-555.
    [18] KEBLINSKI P, PHILLPOT S R, WOLF D, GLEITER H. Relationship between nanocrystalline and amorphous microstructures by molecular dynamics simulation [J]. Nanostur. Mater., 1997, 9: 651-660.
    [19] LU K, LüCK R, PREDEL B. The interfacial excess energy in nanocrystalline Ni-P materials with different grain sizes [J]. Scr. Metall. Mater.,1993, 28: 1387-1392.
    [20] LU K, Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties [J]. Mater. Sci. Eng R., 1996, 16:161-221.
    [21] BIRRINGER R, GLEITER H, KLEIN H P, MARQUARDT P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?[J] Phys. Lett. A, 1984,102: 365-369.
    [22] SANDERS P G, FOUGERE G E, THOMPSON L J, EASTMAN J A. Weertman JR. Improvements in the synthesis and compaction of nanocystalline materials [J]. Nanostruct. Mater., 1997, 8: 243-252.
    [23] SANDERS P G, EASTMAN J A, WEERTMAN J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta. Mater., 1997, 45: 4019-4025.
    [24] BENJAMIN J S. Dispersion strengthened superalloys by mechanical alloying [J]. Metall. Trans., 1970, 1: 2943-2951.
    [25] BENJAMIN J S, VOLIN T E. Mechanism of mechanical alloying [J]. Metall. Trans., 1974, 5: 1929-1934.
    [26] ECKERT J, HOLZER J C, KRILL III C E, JOHNSON W L. Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition [J]. J. Mater. Res., 1992, 7: 1751-1755.
    [27] MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427-556.
    [28] KOCH C C. Synthesis of nanostructured materials by mechanical milling: problems and opportunities [J]. Nanostr. Mater., 1997, 9: 13.
    [29] SURYANARAYANA C. Mechanical alloying and milling [J]. Prog. Mater. Sci., 2001, 46: 1-184.
    [30] VALIEV R Z. Nanostructuring of metals by severe plastic deformation for advanced properties [J]. Nature. Mater., 2004, 3: 511-516.
    [31] VALIEV R Z, KRASILNIKOV N A, TSENEV N K. Plastic deformation of alloys with submicron-grained structure [J]. Mater. Sci. Eng. A, 1991, 137: 35-40.
    [32] VALIEV R Z, KORZNIKOV A V, MULYUKOV R R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation [J]. Mater. Sci. Eng. A, 1993, 168: 141-148.
    [33] WEI Q, KECSKES L, JIAO T, HARTWIG K T, RAMESH K T, MA E. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J]. Acta. Mater., 2004, 52: 1859-1869.
    [34] VALIEV R Z, SERGUEEVA A V, MUKHERJEE A K. The effect of annealing on tensile deformation behavior of nanostructured SPD titanium [J]. Scr. Mater., 2003, 49: 669-674.
    [35] WU S D, WANG Z G, JIANG C B, LI G Y, ALEXANDROV I V, VALIEV R Z. Shear bands in cyclically deformed ultrafine grained copper processed by ECAP [J]. Mater. Sci. Eng. A, 2004, 387-389: 560-564.
    [36] ZHILYAEV A P, KIM B K, SZPUNAR J A, BARóM D, LANGDON T G. The microstructural characteristics of ultrafine-grained nickel [J]. Mater. Sci. Eng. A, 2005,391: 377-389
    [37] POORTMANS S, DIOUF B, HABRAKEN A M, VERLINDEN B. Correcting tensile test results of ECAE-deformed aluminum [J]. Scr. Mater., 2007, 56: 749-752.
    [38] WEI Q, JIAO T, RAMESH K T, M A E, KECSKES L J, MAGNESS L, DOWDING R, KAZYKHANOV V U, VALIEV R Z. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression [J]. Acta. Mater., 2006, 54: 77-87.
    [39] IWAHASHI Y, HORITA Z, NEMOTO M, LANGDON T G. Factors influencing the equilibrium grain size in equal-channel angular pressing [J]: Role of Mg additions to aluminum. Metall. Mater. Trans. A, 1998, 29: 2503-2510.
    [40] STOLYAROV V V, PROKOFIEV E A, PROKOSHKIN S D, DOBATKIN S B, TRUBITSYNA I B, KHMELEVSKAYA I Y, PUSHIN V G, VALIEV R Z. Structural features, mechanical properties, and the shape-memory effect in TiNi alloys subjected to equal-channel angular pressing [J]. Phys. Met. Metall., 2005, 100: 608-618.
    [41] MCFADDEN S X, VALIEV R Z, MUKHERJEE A K. Superplasticity in nanocrystalline Ni3Al [J]. Mater. Sci. Eng. A, 2001, 319-321: 849-853.
    [42] FURUKAWA M, IWAHASHI Y, HORITA Z, NEMOTO M, TSENEV N K, VALIEV R Z, LANGDON T G. Structural evolution and the Hall-Petch relationship in an Al-Mg-Li-Zr alloy with ultra-fine grain size [J]. Acta. Mater., 1997, 45: 4751-4757.
    [43] STOLYAROV V V, GUNDEROV D V, POPOV A G, PUZANOVA T Z, RAAB G I, YAVARI A R, VALIEV R Z. High coercive states in Pr–Fe–B–Cu alloy processed by equal channel angular pressing [J]. J. Mag. Mag. Mater., 2002, 242-245: 1399-1401.
    [44] TAO N R, WANG Z B, TONG W P, SUI M L, LU J, LU K. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta. Mater., 2002, 50: 4603-4616.
    [45] LU K. Nanocrystalline metals crystallized from amorphous solids: nano- crystallization, structure, and properties [J]. Mater. Sci. Eng. R, 1996, 16: 161-221.
    [46] LU K, WEI W D, WANG J T. Microhardness and fracture properties of nanocrystalline Ni-P alloy[J]. Scr. Metall. Mater., 1990, 24: 2319-2323.
    [47] BEELI C, NISSEN H U, JIANG Q, LüCK R. Crystallization in amorphous NiZr2 studied by HRTEM [J]. Mater. Sci. Eng. A, 1991, 133: 346-352.
    [48] SUN N X, ZHANG K, ZHANG X H, LIU X D, LU K. Nanocrystallization of amorphous Fe33Zr67 alloy [J]. Nanostruct. Mater.,1996, 7: 637-649.
    [49] NICOLAUS M M, SINNING H.-R, HAESSNER F. Crystallization behaviour and generation of a nanocrystalline state from amorphous Co33Zr67 [J]. Mater. Sci. Eng A, 1992, 150: 101-112.
    [50] BOTTA F W J, NEGRI D, YAVARI A R. Crystallization of Fe-based amorphous alloys [J]. J. Non-Cry. Sol.,1999, 247: 19-25.
    [51] LU K, SUI M L, WANG J T. Eutectic crystallization products and their orientation relationship in amorphous TM-M alloys [J]. J. Mater. Sci. Lett., 1990, 9: 630-632.
    [52] MAT'KO I, DUHAJ P, SVEC P, JANICKOVIC D. Formation of nuclei of metastable phases in nanocrystalline materials [J]. Mat. Sci. Eng. A, 1994, 179-180: 557-562.
    [53]覃奇贤,郭鹤桐,刘淑兰,张宏祥。电镀原理与工艺[M]。天津:天津科学技术出版社,1993。
    [54] HILL J S, MACLACHLAN D F A, STODDART C T H. The structure and superconductive properties of electrodeposited tin films [J]. Brit. J. Appl. Phys., 1966, 17: 513-522.
    [55] MACINNIS R D, GOW K V. Microstructure of some electrodeposited nickel-iron alloys [J]. Plating, 1970, 57: 626-628.
    [56] ERB U. Electrodeposited nanocrystals: Synthesis, properties and industrial applications [J]. Nanostruct. Mater., 1995, 6: 533-538.
    [57] EL-SHERIK A M, ERB U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition [J]. J. Mater. Sci., 1995, 30: 5743-5749.
    [58] JEONG D H, ERB U, AUST K T, PALUMBO G. The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni-P coatings [J]. Scr. Mater., 2003, 48: 1067-1072.
    [59] ZIMMERMAN A F, CLARK D G, AUST K T, ERB U. Pulse electrodeposition of Ni-SiC nanocomposite [J]. Mater. Lett., 2002, 52: 85-90.
    [60] EL-SHERIK A M, SHIROKOFF J, ERB U. Stress measurements in nanocrystalline Ni electrodeposits [J]. J. Alloys Compd., 2005, 389: 140-143.
    [61] EBRAHIMI F, ZHAI Q, KONG D. Deformation and fracture of electrodeposited copper [J]. Scr. Mater., 1998, 39: 315-321.
    [62] EBRAHIMI F, AHMED Z. The effect of substrate on the microstructure and tensile properties of electrodeposited nanocrystalline nickel [J]. Mater. Charact., 2003, 49: 373-379.
    [63] LI H Q, EBRAHIMI F. Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals [J]. Appl. Phys. Lett., 2004, 84: 4307-4309.
    [64] LI H Q, EBRAHIMI F. Synthesis and characterization of electrodeposited nanocrystalline nickel-iron alloys [J]. Mater. Sci. Eng. A, 2003, 347: 93-101.
    [65] LI H Q, EBRAHIMI F. Tensile behavior of a nanocrystalline Ni-Fe alloy [J]. Acta Mater., 2006, 54: 2877-2886.
    [66] GU C D, LIAN J S, JIANG Q, JIANG Z H. Ductile–brittle–ductile transition in an electrodeposited 13 nanometer grain sized Ni–8.6wt.% Co alloy [J]. Mater. Sci. Eng. A, 2007, 459: 75-81.
    [67] SRIRAMAN K R, GANES H SUNDAR A RAMAN S, SESHADRI S K. Corrosion behaviour of electrodeposited nanocrystalline Ni–W and Ni–Fe–W alloys [J]. Mater. Sci. Eng. A, 2007, 460-461: 39-45.
    [68] BOCKRIS J O M, RAZUMNEY, G A. Fundametal Aspects of Electrocrystallization [M]. p. 27, Plenum Press, NY (1967).
    [69] CZERWINSKI F, SZPUNAR J A. Controlling the surface texture of nickel for hightemperature oxidation inhibition [J]. Corros. Sci., 1999, 41: 729-740.
    [70] EL-SHERIK A M, ERB U, PAGE J. Microstructural evolution in pulse plated nickel electrodeposits [J]. Surf. Coat. Technol., 1997, 88: 70-78.
    [71] WANG Y M, CHENG S, WEI Q M, MA E, NIEH T G, HAMZA A. Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni [J]. Scr. Mater., 2004, 51: 1023-1028.
    [72] GU C, LIAN J, JIANG Z, JIANG Q. Enhanced tensile ductility in an electrodepositednanocrystalline Ni [J]. Scr. Mater., 2006,54:579-584.
    [73] CHENG S, MA E, WANG Y M, KECSKES L J, YOUSSEF K M, KOCH C C, TROCIEWITZ U P, HAN K. Tensile properties of in situ consolidated nanocrystalline Cu [J]. Acta. Mater., 2005, 53: 1521-1533.
    [74] HALL E O. The Deformation and Ageing of Mild Steel: III Discussion of Results [J]. Proceedings of the Physical Society London B, 1951, 64: 747-753.
    [75] PETCH N J. The cleavage strength of polycrystals [J]. J. Iron Steel Ins., 1953, 174: 25-28.
    [76] DALLA TORRE F, VAN SWYGENHOVEN H, VICTORIA M. Nanocrystalline electrodeposited Ni: microstructure and tensile properties [J]. Acta. Mater., 2002, 50: 3957-3970.
    [77] DALLA TORRE F, SP?TIG P, SCH?UBLIN R, VICTORIA M. Deformation behavior and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel [J]. Acta Mater., 2005, 53: 2337-2349.
    [78] WANG Y M, MA E. Temperature and strain rate effects on the strength and ductility of nanostructured copper [J]. Appl. Phys. Lett., 2003, 83: 3165-3167.
    [79] WEI H, HIBBARD GD, PALUMBO G, ERB U. The effect of gauge volume on the tensile properties of nanocrystalline electrodeposits [J]. Scr. Mater., 2007, 57: 996-999.
    [80] WANG Y M, WANG K, PAN D, LU K, HEMKER K J, MA E. Microsample tensile testing of nanocrystalline copper [J]. Scr. Mater., 2003, 48: 1581-1586.
    [81] YOUSSEF K M, SCATTERGOOD R O, MURTY K L, HORTON J A, KOCH C C. Ultrahigh strength and high ductility of bulk nanostructured copper [J]. Appl. Phys. Lett., 2005, 87: 091904.
    [82] CHOKSHI A H, ROSEN A, KARCH J, GLEITER H. On the validity of the hall- petch relationship in nanocrystalline materials [J]. Scr. Metall. Mater., 1989, 23: 1679-1683.
    [83] NIEMAN G W, WEERTMAN J R, SIEGEL R W. Mechanical behavior of nanocrystalline Cu and Pd [J]. J. Mater. Res., 1991, 6: 1012-1027.
    [84] EL-SHERIK A M, ERB U, PALUMBO G, AUST K T. Deviations from hall-petch behaviour in as-prepared nanocrystalline nickel [J]. Scr. Metall. Mater., 1992, 27:1185-1188.
    [85] WANG N, WANG Z, AUST K T, ERB U. Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique [J]. Mater. Sci. Eng. A, 1997, 237: 150-158.
    [86] SCHI?TZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301: 1357-1359.
    [87] SCHI?TZ J. Atomic-scale modeling of plastic deformation of nanocrystalline copper [J]. Sc. Mater., 2004, 51: 837-841.
    [88] SCHI?TZ J, DI TOLLA F D, JACOBSEN K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391: 561-563.
    [89] SCHI?TZ J, VEGGE T, D I TOLLA FD, JACOBSEN K W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev. B, 1999, 60: 11971-11983.
    [90] TAKEUCHI S. The mechanism of the inverse Hall-Petch relation of nanocrystals [J]. Scr. Mater., 2001, 44: 1483-1487.
    [91] FOUGERE G E, WEERTMAN J R, SIEGEL R W, KIM S. Grain-size dependent hardening and softening of nanocrystalline Cu and Pd [J]. Scr. Metall. Mater., 1992, 26: 1879-1883.
    [92] JORDAN E H, GELL M, SOHN Y H, GOBERMAN D, SHAW L, JIANG S, WANG M, XIAO T D, WANG Y, STRUTT P. Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties [J]. Mater. Sci. Eng. A, 2001, 301: 80-89.
    [93] TRELEWICZ JASON R, SCHUH CHRISTOPHER A. The Hall–Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation [J]. Acta. Mater., 2007, 55: 5948-5958.
    [94] SCHUH C A., NIEH T G., YAMASAKI T. Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel [J]. Scr. Mater., 2002, 46: 35-740.
    [95] LIAN J, BAUDELET B. A modified hall-petch relationship for nanocrystalline materials [J]. Nanostruct. Mater., 1993, 2: 415-419.
    [96] LIAN J, BAUDELET B, NAZAROV A A. Model for the prediction of the mechanical behaviour of nanocrystalline materials [J]. Mater. Sci. Eng. A, 1993, 172: 3-29.
    [97] KIM H S, BUSH M B. The effects of grain size and porosity on the elastic modulus of nanocrystalline materials [J]. Nanostruct. Mater., 1999, 11: 361-367.
    [98] KIM H S, ESTRIN Y, BUSH M B. Plastic deformation behaviour of fine-grained materials [J]. Acta. Mater., 2000, 48: 493-504.
    [99] FU H H, BENSON D J, MEYERS M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta. Mater., 2001, 49: 2567-2582.
    [100] SCHWAIGER R, MOSER B, DAO M, CHOLLACOOP N, SURESH S. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel [J]. Acta. Mater., 2003, 51: 5159.
    [101] KOCH C C, MORRIS DG, LU K, INOUE A. Ductility of Nanostructured Materials [J]. Mater. Res. Soc. Bull, 1999, 24: 54-58.
    [102] KOCH C C, YOUSSEF K M, SCATTERGOOD R O, MURTY K L. Breakthroughs in Optimization of Mechanical Properties of Nanostructured Metals and Alloys [J]. Adv. Eng. Mater., 2005, 7: 787-794.
    [103] WANG Y M, CHEN M W, ZHOU F H, MA E. High tensile ductility in a nano- structured metal [J]. Nature, 2002, 419: 912-915.
    [104] ZHAO Y H, TOPPING T, BINGERT J F. THORNTON J J, DANGELEWICZ A M, LI Y, ZHU Y T, ZHOU Y Z , LAVERNIA E J. High Tensile Ductility and Strength in Bulk Nanostructured Nickel [J]. Adv. Mater., 2008, 20: 3028-3033
    [105] PARK Y S, CHUNG K H, KIM N J, LAVERNIA E J. Microstructural investigation of nanocrystalline bulk Al–Mg alloy fabricated by cryomilling and extrusion Mater [J]. Sci. Eng. A, 2004, 374: 211-216.
    [106] ZHANG X, WANG H, SCATTERGOOD R O, NARAYAN J, KOCH C C, SERGUEEVA A V, MUKHERJEE A K. Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn [J]. Acta Mater., 2002, 50: 4823-4830.
    [107] WANG Y M, MA E. Three strategies to achieve uniform tensile deformation in a nanostructured metal [J]. Acta. Mater., 2004, 52: 4259-4271.
    [108] LU L, SHEN Y F, CHEN X H, QIAN LH, LU K. Ultrahigh Strength and High Electrical Conductivity in Copper [J]. Science, 204, 304: 244-246.
    [109] ZHAO Y H, LIAO X Z, CHENG S, MA E, ZHU Y T. Simultaneously increasing the ductility and strength of nanostructured alloys [J]. Adv. Mater., 2006, 18: 2280-2283
    [110] WANG Y M, HAMZA A V, MA E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni [J]. Acta. Mater., 2006, 54: 2715-2726.
    [111] WEI Q. Strain rate effects in the ultrafine grain and nanocrystalline regime—influence on some constitutive responses [J]. J. Mater. Sci., 2007, 42: 1709-1727.
    [112] VALIEV R Z, ALEXANDROV I V, ZHU Y T, LOWE T C. Paradox of strength and ductility in metals processed by severe plastic deformation [J]. J. Mater. Res., 2002, 17: 5-8
    [113] JIANG Z H, LIU X L, LI GY, JIANG Q, LIAN J S. Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu [J]. Appl. Phys. Lett., 2006, 88: 143115.
    [114] JIA D, RAMESH K T, MA E. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron [J]. Acta. Mater., 2003, 51: 3495-3509.
    [115] WEI Q, RAMESH K T, MA E, KESCKES L J, DOWDING R J, KAZYKHANOV V U, VALIEV R Z. Plastic flow localization in bulk tungsten with ultrafine microstructure [J]. Appl. Phys. Lett., 2005, 86: 101907.
    [116] WEI Q, JIAO T, RAMESH K T, MA E. Nano-structured vanadium: processing and mechanical properties under quasi-static and dynamic compression [J]. Scr. Mater., 2004, 50: 359-364.
    [117] WEI Q, CHENG S, RAMESH K T, MA E. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals [J]. Mater. Sci. Eng. A, 2004, 381: 71-79.
    [118] LU L, SCHWAIGER R, SHAN Z W, DAO M, LU K, SURESH S. Nano-sized twins induce high rate sensitivity of flow stress in pure copper [J]. Acta. Mater., 2005, 53: 2169-2179.
    [119] ASARO R J, SURESH S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J]. Acta. Mater., 2005, 53: 3369-3382.
    [120] CONRAD H. Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng A, 2003, 341: 216-228.
    [121] KUMAR K S, SURESH S, CHISHOLM M F, HORTON J A, WANG P. Deformation of electrodeposited nanocrystalline nickel [J]. Acta. Mater., 2003, 51: 387-405.
    [122] BUDROVIC Z, V A N SWYGENHOVEN H, DERLET P M, VAN PETEGEM S, SCHMITT B. Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel [J]. Science, 2004, 304: 273-276.
    [123] KE M, HACKNEY S A, MILLIGAN W W, AIFANTIS E C. Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films [J]. Nanostruct. Mater., 1995, 5: 689-697.
    [124] HUGO R C, KUNG H, WEERTMAN J R, MITRA R, KNAPP J A, FOLLSTAEDT DM. In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films [J]. Acta. Mater., 2003, 51(7): 1937-1943.
    [125] YOUNGDAHL C J, WEERTMAN J R, HUGO RC, KUNG H H. Deformation behavior in nanocrystalline copper [J]. Scr. Mater., 2001, 44: 1475-1478.
    [126] SHAN Z W, STACH E A, WIEZOREK J M K, KNAPP J A, FOLLSTAEDT D M, MAO SX. Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel [J]. Science, 2004, 305: 654-657.
    [127] CHEN D. Degree of order of the boundary component and crystallite component in nanocrystalline materials [J]. Nanostruct. Mater. 1994, 4: 753-758.
    [128] WOLF R J, LEE M W, RAY J R. Pressure-composition isotherms for nano- crystalline palladium hydride [J]. Phys. Rev. Lett., 1994, 73: 557-560.
    [129] VAN SWYGENHOVEN H, CARO A. Plastic behavior of nanophase Ni: A molecular dynamics computer simulation [J]. Appl. Phys. Lett., 1997, 71: 1652-1654.
    [130] VAN SWYGENHOVEN H, DERLET P M. Grain-boundary sliding innanocrystalline fcc metals [J]. Phys. Rev. B, 2001, 64: 224105.
    [131] VAN SWYGENHOVEN H, DERLET P M, FR?SETH A G. Stacking fault energies and slip in nanocrystalline metals [J]. Nature. Mater., 2004, 3: 399-403.
    [132] VAN SWYGENHOVEN H, WEERTMAN J R. Deformation in nanocrystalline metals [J]. Mater. Today., 2006, 9: 24-31.
    [133] HASNAOUI A, V A N SWYGENHOVEN H, DERLET P M. Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation [J]. Phys. Rev. B, 2002, 66: 184112.
    [134] WOLF D, YAMAKOV V, PHILLPOT S R, MUKHERJEE A, GLEITER H. Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? [J]. Acta Mater., 2005, 53: 1-40.
    [135] YAMAKOV V, WOLF D, PHILLPOT S R, MUKHERJEE A K, GLEITER H. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation [J]. Nature. Mater., 2004, 3: 43-47.
    [136] YAMAKOV V, WOLF D, PHILLPOT S R, MUKHERJEE A K, GLEITER H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular- dynamics simulation [J]. Nature Mater., 2002, 1: 1-4.
    [137]曾祥德。十二烷基硫酸钠导致的镀层故障[J],材料保护,1993,26:35-36。
    [138] ASARO R J, KRYSL P, KAD B. Deformation mechanism transitions in nanoscale fcc metals [J]. Philos. Mag. Lett., 83 (2003) 733-743.
    [139] Hart EW, Theory of the tensile test [J]. Acta Metall., 1967, 15: 351-355.
    [140] LIAN J, BAUDELET B. Necking development and strain to fracture under uniaxial tension [J]. Mater. Sci. Eng., 1986, 84:157-162.
    [141] GHOSH A K, AYRES R A. On reported anomalies in relating strain-rate sensitivity (m) to ductility [J]. Metall. Trans. A, 1976, 7: 1589-1591.
    [142] RICQ. L, LALLEMAND. F, GIGANDET. M P. Influence of sodium saccharin on the electrodeposition and characterization of CoFe magnetic film [J]. Surf. Coat. Technol., 2001, 138: 278-283.
    [143] CISZEWSKI A, POSLUSZNY S, MILCZAREK G, BARANIAK M. Effect ofsaccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte [J]. Surf. Coat. Technol., 2004, 183: 127-133.
    [144] KISHIMOTO K, YOSHIOKA S, KOBAYAKAWA K, SATO Y. effects of various additives on the characteristic of electrodeposited nickel thin film [J]. J. Surf. Finish. Soc. JPN, 2003, 54: 710-713.
    [145] HASNAOUI A, VAN SWYGENHOVEN H, DERLET P M. Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation [J]. Science, 2003, 300: 1550-1552.
    [146] LI H Q, EBRAHIMI F. Ductile to Brittle Transition in Nanocrystalline Metals [J]. Adv. Mater., 2005, 17: 1969-1972.
    [147] GOLODNITSKY D, ROSENBERG Y, ULUS A. The role of anion additives in the electrodeposition of nickel-cobalt alloys from sulfamate electrolyte. Eletrochim [J]. Acta. Mater., 2002, 47: 2707-2714.
    [148] GU C D, LIAN J S, JIANG Z H. High strength nanocrystalline Ni-Co alloy with enhanced tensile ductility [J]. Adv. Eng. Mater., 2006, 8: 252-256.
    [149] RENTENBERGER C, WAITZ T, KARNTHALER H P. HRTEM analysis of nanostructured alloys processed by severe plastic deformation [J]. Scr. Mater., 2004, 51: 789-794.
    [150] GU C D, LIAN J S., JIANG Q, ZHENG W T. Experimental and modeling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni [J]. J. Phys. D: Appl. Phys., 2007, 40: 7440-7446.
    [151] GU C D, LIAN J S, JIANG Q. Layered nanostructured Ni with modulated hardness fabricated by surfactant-assistant electrodeposition [J] Scr. Mater., 2007, 57: 233-236.
    [152] FAN G J, FU L F, WANG Y D, REN Y, CHOO H, LIAW P K, WANG G Y, BROWNING N D. Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy x-ray diffraction technique [J]. Appl. Phys. Lett., 2006, 89: 101918.
    [153] LI H Q, EBRAHIMI F, CHOO H, LIAW P K. Grain Size Dependence of Tensile Behavior in Nanocrystalline Ni-Fe Alloys [J]. J. Mater. Sci., 2006, 41: 7636-7649.
    [154] GIGA A, KIMOTO Y, TAKIGAWA Y, HIGASHI K. Demonstration of an inverse Hall–Petch relationship in electrodeposited nanocrystalline Ni–W alloys through tensile testing [J]. Scripta. Mater., 2006, 55: 143-146.
    [155] EBRAHIMI F, AHMED Z, LI H. Effect of stacking fault energy on plastic deformation of nanocrystalline face-centered cubic metals [J]. Appl. Phys. Lett., 2004, 85: 3749-3751.
    [156] NIE X, WANG R, YE Y, ZHOU Y, WANG D. Calculations of stacking fault energy for fcc metals and their alloys based on an improved embedded-atom method [J]. Solid. State. Commun., 1995, 96: 729-734.
    [157] BRANDSTETTER S, ZHANG K, ESCUADRO A, WEERTMAN J R, VAN SWYGENHOVEN H. Grain coarsening during compression of bulk nanocrystalline nickel and copper [J]. Scr. Mater., 2008, 58: 61-64.
    [158] LI H Q, LIAW P K, CHOO H, TABACHNIKOVA E D, PODOLSKIY A V, SMIRNOV S N, BENGUS V Z. Temperature- dependent mechanical behavior of a nanostructured Ni-Fe alloy [J]. Mater. Sci. Eng A, 2008, 493:93-96.
    [159] FAN G J, FU L F, WANG G Y, CHOO H, LIAW P K, BROWNING N D. Mechanical behavior of a bulk nanocrystalline Ni–Fe alloy [J]. J. Alloys Compd., 2007, 434-435: 298-300.
    [160] JIANG Z H, ZHANG H Z, GU C D, JIANG Q, LIAN J S. Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu [J]. J. Appl. Phys., 2008, 104: 053505.
    [161] BASTOS A, ZAEFFERER S, RAABE D, SCHUH C. Characterization of the microstructure and texture of nanostructured electrodeposited NiCo using electron backscatter diffraction (EBSD) [J]. Acta. Mater., 2006, 54: 2451-2462.
    [162] TABACHNIKOVA E D, PODOLSKIY A V, BENGUS V Z, SMIRNOV S N, BIDYLO MI, LI H, LIAW P K, CHOO H, CSACH K, MISKUF J. Mechanical properties of nanocrystalline Ni-20%Fe alloy at temperatures from 300 K to 4.2K [J]. Mate. Sci. Eng A, 2009, 503: 110-113.
    [163] BRANDSTETTER S, BUDROVI? ?, VAN PETEGEM S, SCHMITT B,STERGAR E, DERLET P M, VAN SWYGENHOVEN H. Temperature-dependent residual broadening of x-ray diffraction spectra in nanocrystalline plasticity [J]. Appl. Phys. Lett., 2005, 87: 231910.
    [164] [164]SHAN Z W, WIEZOREK J M, STACH E A, FOLLSTAEDT D M, KNAPP J A, MAO S X. Dislocation dynamics in nanocrystalline nickel [J]. Phys. Rev. Lett., 2007, 98: 095502.
    [165] [165]RAJAGOPALA N J, HAN J H, SAIF M TAHER A. Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films [J]. Science, 2007, 315: 1831-1834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700