用户名: 密码: 验证码:
堆载预压法处理高速公路路基的卸载时机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国沿海及部分内陆地区分布着大量软黏土,高速公路软基处理通常采用堆载预压法,根据堆载预压法预压荷载与路基设计荷载的关系分为欠载预压、等载预压和超载预压。三种预压方法均涉及卸载和施工路面的问题,均需确定卸载时机。卸载过早工后沉降大,不但增大养护工作量,而且造成桥头跳车,进而危及行车安全、舒适性和行车速度。卸载过迟延长工期,降低经济效益和社会效益。因此,采用堆载预压法处理的高速公路软基路基确定卸载时机非常重要,并受到重视。
     工程实践中,采用堆载预压法处理高速公路路基的卸载时机确定通常采用工后沉降法和沉降速率法,利用实测沉降得到沉降速率、预测工后沉降,当沉降速率小于卸载沉降速率标准、工后沉降小于容许工后沉降时,可卸载和施工路面。这两种方法简单实用、应用广泛。
     虽然非常重视卸载时机确定,但是堆载预压法处理高速公路路基的卸载时机确定效果不理想,大部分高速公路的工后沉降大于预测工后沉降,跳车现象普遍,其原因有:(1)考虑的工后沉降组成不完整;(2)未正确考虑路基预压荷载与设计荷载差值对卸载时机确定的影响。另外,沉降速率法确定的卸载时间往往迟于工后沉降法预测的时间,而沉降速率法缺少理论依据,使人无所适从。对不同的路段、不同容许工后沉降均采用相同的沉降速率标准也是不合适的。
     针对高速公路软基路基确定卸载时机存在的问题,在查阅文献、借鉴已有成果的基础上,通过理论分析、室内实验、现场测试等手段,开展了以下研究工作:
     1.为考虑路基预压荷载与设计荷载差值对确定卸载时机的影响,研究了堆载预压法处理的高速公路软基路基荷载与沉降的关系。首先推导了高速公路路基荷载下地基中附加应力公式,利用其分析了地基中附加应力与路基填土厚度的关系;利用压缩实验和应力控制三轴试验研究了软黏土压缩模量与荷载的关系。研究表明,路基荷载小于200kPa时,地基20m深度内的附加应力与路基填土厚度基本成正比、软黏土压缩模量变化不大,从而得到高速公路路基沉降与路基荷载基本成正比的结论。其次,利用高速公路软基路基现场实测资料分析了路基瞬时沉降、固结沉降与路基荷载的关系。研究表明,堆载预压法处理的高速公路软基路基沉降与路基荷载基本成正比,进一步分析表明高速公路软基路基的沉降与路基填土高度也基本成正比。
     2.为了合理计算工后沉降、确定卸载时机,分析了工后沉降与剩余沉降的关系、工后沉降的组成,提出了工后沉降计算方法及利用实测沉降推算工后沉降的方法。建议工后沉降包含路基工后压缩、汽车荷载产生的瞬时沉降、路面荷载产生的再压主固结沉降、工后原压主固结沉降、工后次固结沉降等,工后主固结沉降不考虑养护加铺的影响,工后沉降其它组成部分应考虑养护加铺的影响。工后次固结沉降建议采用等效时间,提出了等效时间简化计算方法,其计算结果较理想。
     3.通过理论分析和压缩试验、现场测试等手段分析了利用表面沉降推算工后沉降的误差。对各土层分别推算最终沉降然后累加得到总沉降,将之与利用表面沉降推算的最终沉降进行对比表明,利用实测表面沉降推算成层地基的最终沉降存在一定误差,通常情况下利用表面沉降推算成层地基的工后沉降的误差可以忽略不计,软黏土下卧层较厚的工程误差较大,建议采用各土层的沉降监测资料预测工后沉降。
     4.利用室内常规压缩试验、长期压缩试验、现场试验研究了推算最终沉降与次固结沉降的关系。研究表明,双曲线法推算的最终沉降对应的时间与主固结时间的之比约为2~4,双曲线法推算的最终沉降只包括了30~60%的工后次固结沉降,采用双曲线法推算工后沉降时还应考虑工后次固结沉降。
     5.为了统一工后沉降法和沉降速率法、并合理确定卸载沉降速率标准,研究了软基沉降速率与剩余沉降的关系。首先,分析曾国熙固结度公式的误差,利用该公式和Voigt-Kelvin黏弹性模型推导了沉降速率与剩余沉降的关系。研究表明,沉降速率与剩余结沉降成两直线组成的折线关系,两条直线的交点对应主固结沉降的终点,沉降速率与剩余主固结沉降成线性关系,与剩余次固结沉降成正比关系;对符合双曲线的时间~沉降曲线推导分析表明沉降速率与剩余沉降的平方成正比。然后,利用室内压缩试验、模型试验、现场监测资料,分析了沉降速率与剩余沉降的关系,试验表明,软基沉降速率与剩余沉降成两直线组成的折线关系,两条直线的交点对应主次固结的分界点;软基沉降速率与剩余沉降的平方基本成正比关系。
     6.在上述研究的基础上,提出了考虑路基压缩、路面再压沉降、次固结沉降、荷载大小等因素的工后沉降法和沉降速率法,并推导了相应公式,实测工后沉降表明利用本文方法确定卸载时机效果较理想。
     最后,对需要进一步开展的工作方向进行了简要的说明。
A lot of soft clays are distributed over the coastal zones and some inland zones of China. The soft grounds under embankment of expressway are usually treated by preloading method. Preloading method can be classed as insufficient-load, equal-load preloading, preloading, surcharge preloading according to the relationship between preloading load and design load of embankment. Unloading for construction of pavement and decision of time for unloading are all encountered by the three preloading methods. Early unloading leads to large postconstruciton settlement which cause not only more maintenance but also vehicle bumping which lowers safety, comfort and velocity of vehicles. Late unloading defers operation of expressway which reduces economic and society benefit. Hence decision of time for unloading of embankment of expressway on soft ground treated by preloading method is very important and is attached much importance to.
     Postconstruction settlement method and settlement rate method are often employed to decide time for unloading of expressway treated by preloading method. The postconstruction settlement is predicted and settlement rate is calculated by use of monitored settlement. If they are less than allowable value, unloading is permitted. The two methods are so simple and useful that they are widely used.
     Although decision of time for unloading of expressway treated by preloading method is placed much emphasis on, the result isn’t ideal. The practical postconstruction settlement is often larger than that predicted and vehicle bumping occurs extensively. The main reasons are:(1) The components of postconstruction settlement weren’t considered completely and properly which lead to postconstruction settlement calculated or predicted less than real. (2) The defference between preloading load and design load of embankment isn’t taken into accounted properly .
     On the other hand, engineers are often confused by such facts:(1)The time gotten by settlement rate method is often later than that by postconstruction settlement method. (2) Settlement rate method lacks theory base. (3) Same settlement rate is adopted by settlement rate method for embankments with different geological conditions and allowable postconstruction settlements.
     Aiming at the above problems about decision of time for unloading of embankment of expressway on soft ground treated by preloading method, such subjects as follows were investigated through theory analysis, lab tests and in-situ experiments etc, basing on consulting of research background and fully use of current study results.
     1. Relationship between settlement of expressway on soft ground treated by preloading and pressure of embankment is studied to take the defference between preloading load and design load of embankment into account properly. Firstly, equation of superimposed stress in ground under embankment is derived and the relationship between superimposed stress in ground under embankment and thickness of embankment is analyzed. The relationship between modulus of compressibility of soft clay and pressure is studied through consolidation test and strain controlled triaxial compression apparatus. It is shown that superimposed stress of ground from surface to depth 20m under embankment is basically in direct proportion to the thickness of embankment and modulus of compressibility of soft clay is basically unchanged when the pressure of embankment is less than 200kPa and it can be induce that the pressure of embankment of expressway is basically in direct proportion to settlement of embankment. Secondly, the relationship between settlement of embankment of expressway and pressure of embankment of expressway is studied analyzed through analysis of relationship between monitored immediate settlement or consolidation settlement of many expressways and pressure of embankment. It is shown that the settlement of embankment of expressway on soft ground is basically in direct proportion to pressure of embankment. Further analysis shows that the settlement of embankment of expressway on soft ground is basically in direct proportion to height of embankment too.
     2. Relationship between postconstruction settlement and residual settlement, components of postconstruction settlement are analyzed to get postconstruction reasonably and decide time for unloading properly. Calculation method and prediction method of postconstruction settlement of embankment are put forth. It is proposed that postconstruction includes postconstruction compression of embankment, immediate settlement of ground caused by vehicle, recompression settlement of ground caused by pavement, postconstruction initial compression settlement and postconstruction secondary consolidation settlement etc. Except postconstruction primary consolidation settlement other components of postconstruction settlement should take effect of overlay maintenance of pavement into account. It is suggested that secondary consolidation settlement should be calculated with equivalent time. A simper method for calculating equivalent time is proposed and its result is relatively ideal.
     3. Error of postconstruction settlement predicted by use of monitored surface settlement is analyzed through theory analysis and compression tests and in-situ monitors. The ultimate settlement of each stratum is predicted and total ultimate settlement is gotten. The settlement gotten by the above accumulative prediction method is compared with the ultimate settlement predited by use of surface settlement. It is shown that error of postconstruction settlement predicted by use of monitored surface settlement exists and except ground with thick soft clay stratum under treated zone whose postconstruction settlement should be gotten through settlement of each stratum the error can be neglected.
     4. Relationship between predicted postconstruction settlement and secondary consolidation settlement is investigated through conventional consolidation tests, long term consolidation tests and in-situ experiments. It is shown that the ratio of time responding to ultimate settlement predicted by hyperbola method and time of primary consolidation is usually between 2 and 4. So the ultimate settlement predicted includes only 30~60% of postconstruction secondary consolidation settlement and postconstruction secondary settlement should be calculated for postconstruction settlement when hyperbola method is used to predict postconstruction settlement.
     5. Relationship between settlement rate and residual settlement is investigated to integrate postconstruction settlement method and settlement rate method and to decide reasonable settlement rate criterion for unloading. Firstly, error of equation of degree of consolidation proposed by Zeng Guoxi is analyzed. The relationship equations between settlement rate and residual settlement are induced by use of consolidation equation proposed by Zeng Guoxi and Voigt-Kelvin elastic viscoplastic model. It is shown that settlement rate and residual settlement can be demonstrated by a broken line consisting of two straight lines, the intersection point of the two straight corresponds with the end of primary consolidation settlement. So the settlement rate is in proportion to residual primary consolidation settlement and is in direct proportion to residual secondary consolidation settlement. The relationship equation between settlement rate and residual settlement is inferred from hyperbolic time vas settlement curve. It shows that settlement rate is in direct proportion to square of residual settlement. Then, relationship between settlement rate and residual settlement is studied through lab consolidation test, model experiment and in-situ monitoring etc. It is shown that settlement rate and residual settlement can be demonstrated by a broken line consisting of two straight lines, the intersection point of the two straight corresponds with end of primary consolidation settlement. Settlement rate is basically in direct proportion to square of residual settlement.
     6. Basing on the above studies postconstruction settlement method and settlement rate method which can take into account such factors as postconstruction compression of embankment, recompression settlement of ground caused by pavement, postconstruction secondary consolidation settlement and difference between preloading load and design load of embankment etc are proposed and corresponding equations are induced. It is proven by monitored postconstruction settlement that the results of the methods proposed by the paper are relatively ideal.
     Finally, further studies needed are simply listed.
引文
[1]张留俊,李刚.公路地基处理设计施工实用技术[M], .北京:人民交通出版社, 2004: 1-10, 54.
    [2]王盛源.王盛源文集[M].北京:中国建筑工业出版, 2007: 209-219.
    [3]朱小林,杨桂林.土体工程[M],上海:同济大学出版社, 1996: 197-201.
    [4]中华人民共和国交通部.国家高速公路网规划[EB/OL]. www.moc.gov.cn, 2005.1.13
    [5]广东省交通厅.广东省高速公路网规划(2004~2030年)[EB/OL]. www.gdcd.gov.cn, 2008.11.5
    [6]福建省交通厅.福建省高速公路规划[EB/OL]. www.fjjt.gov.cn,2002.4.17
    [7]中国交通建设监理协会.浙江高速公路网规划修订完成[EB/OL]. www.cahwec.com, 2005.5.24.
    [8]常州市交通局.江苏省高速公路网规划[EB/OL]. WWW.CZJT.GOV.CN, 2006.9.26.
    [9] JTG D30-2004.公路路基设计规范[S].北京:人民交通出版社, 2004.
    [10]广东省公路建设有限公司,广东省航盛工程有限公司.高速公路建设中软基处理关键问题的深入研究[R]. 2005.
    [11]刘松玉,钱国超,章定文.粉喷桩复合地基理论与工程应用[M].北京:中国建筑工业出版社, 2006: 265-273.
    [12]张留俊,王福胜,刘建都.高速公路软土地基处理技术[M].北京:人民交通出版社, 2002: 79-111.
    [13]陈冠雄,黄国宣,洪宝宁.广东省高速公路软基处理实用技术[M],北京:人民交通出版社, 2005: 252-309.
    [14] JGJ 017-96.公路软土地基路基设计与施工技术规范[S].北京:人民交通出版社, 2001.
    [15]黄建跃.广东省软粘土工程特性及高速公路软基处理实践[A].见龚晓南主编高速公路地基处理理论与实践[C].北京:人民交通出版社, 2005: 37-48.
    [16]广东省航盛工程有限公司岩土分公司.京珠高速公路广珠段(坦尾~金鼎)软基工后沉降监测总结报告[R].2003.
    [17]侯曙明,李永龙.压浆法在桥台台背加固中的应用[J].珠江水运, 2004(4): 42-43.
    [18]广东省航盛工程有限公司.西部沿海高速公路工后监测总结报告[R]. 2006.
    [19]广东省航盛工程有限公司.广肇高速公路工后监测总结报告[R]. 2006.
    [20]广韶高速公路公司.广韶高速公路桥头搭板脱空灌浆工程施工招标文件[Z]. 2006.
    [21]白冰,肖宏伟.软土工程若干理论与应用[M],北京:中国水利水电出版社, 2002: 104-107, 118-119.
    [22]中华人民共和国行业标准.客运专线铁路无碴轨道铺设条件评估技术指南[S].北京:中国铁道出版社, 2006.
    [23] TZ212-2005,客运专线铁路路基工程施工技术指南[S].北京:中国铁道出版社, 2008.
    [24] TB 10035-2006, J 158-2006.铁路特殊路基设计规范[S].北京:中国铁道出版社, 2007.
    [25] JTJ250-98.港口工程地基规范[S].北京:人民交通出版社,2004.
    [26]娄炎,杨守华,高长胜.对真空预压加固中沉降稳定标准的讨论[J].中国港湾建设, 2004(1): 23-31.
    [27] JGJ 79-2002.建筑地基处理技术规范[S].北京:中国建筑工业出版社, 2006.
    [28]张明,赵有明,刘国楠.真空预压法加固软基卸载时机预测方法研究[A],赵维炳.工程排水与加固技术理论与实践[C].北京:中国水利水电出版社, 2008: 28-37.
    [29]何光武,周虎鑫.机场工程特殊土地基处理技术[M].北京:人民交通出版社, 2003: 17-18.
    [30]铁道部科学研究院.深圳机场软基处理排水固结超载预压现场试验总结报告[R]. 1991.
    [31]朱向荣,潘秋元,卞守中,谢康和.超载预压加固宁波机场场道软基[J].岩土工程学报, 1992(S1): 04-10.
    [32]刘翼雄,唐敏.澳门国际机场人工岛地基处理工程[A].见刘家豪.塑料排水板排水法加固软基工程实例集[C],北京:人民交通出版社, 1999: 199-209.
    [33]房后国.深圳湾结构性淤泥土固结机理机模型研究[D]长春:吉林大学, 2005.
    [34]刘开元,王祥.路基荷载下次固结沉降分析[J].岩土工程技术, 2002(4): 191-194, 233.
    [35]师旭超,汪稔,韩阳.卸荷作用下淤泥变形规律的试验研究[J].岩土力学, 2004, 25(8): 1259-1262.
    [36]李国维,杨涛,殷宗泽.公路软基超载预压机理研究[J].岩土工程学报, 2006, 28(7): 896-901.
    [37]汤连生,刘增贤,王洋.软土路基工后沉降组成分析研究[J]城市勘测, 2002(2): 6-8, 39.
    [38]刘增贤.软基工后沉降的观测与分析[J].中外公路, 2002, 22(2): 33-35.
    [39] Bjerrum L. Embankments on soft ground. Proceedings of the specialty conference on performance of earth and earth-supported structures[J].Purdue University, ASCE, 1972(2): 1-54.
    [40] Mesri, Godlewski P M. Time and stress-compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(5): 417-430.
    [41] Nash D F T, Sills G C, Davison L R. One-dimensional consolidation testing for soft clay from Bothkennar[J]. Geotechnique, 1992, 42(2): 241-256.
    [42] Jun-Gao Zhu and Jian-Hua Yin Deformation and pore-water pressure responses of elastic viscoplastic soil. Journal of engineering mechanics. 2001, 127(9): 899-908.
    [43] Morten Liingaard; Anders Augustesen; and Poul V. Lade, Characterization of Models for Time-Dependent Behavior of Soils[J]. International journal of geomechanics 2004, 4(3): 157-177.
    [44] Anders Augustesen; Morten Liingaard; and Poul V. Lade, Evaluation of time-dependent behavior of soils. International Journal of Geomechanics, 2004, 4(3): 137-156.
    [45]殷建华.描述软土时间有关应力一应变关系的弹粘塑性模型[A].见第一届全国岩土本构理论研讨会论文集[C].北京:北京航空大学出版社, 2008: 168-176.
    [46]张惠明,徐玉胜,曾巧玲.深圳软土变形与工后沉降[J].岩土工程学报, 2002, 24(4): 509-514.
    [47]雷华阳,肖树芳.天津软土的次固结变形特性研究[J].工程地质学报, 2002, 10(04): 385-389.
    [48]师旭超,汪稔,张在喜.广西海相淤泥的次固结特性研究[J].岩土力学, 2003, 24(5): 863-865.
    [49]殷宗泽,张海波,朱俊高,等.软土的次固结[J].岩土工程学报, 2003, 25(5): 521-526.
    [50]高彦斌,朱合华,叶观宝,等.饱和软粘土一维压缩系数Cα值的试验研究[J].岩土工程学报, 2004, 26(4): 459-463.
    [51]张军辉,缪林昌,黄晓明.连云港软黏土次固结变形研究[J].水利学报, 2005(1): 116-119.
    [52]朱鸿鹄,陈晓平,张芳枝,等.南沙软土固结变形特性试验研究[J].工程勘察, 2005(1): 1-3.
    [53]陈晓平,朱鸿鹄,张芳枝,等.软土变形时效特性的试验研究[J].岩石力学与工程学报, 2005, 24(12): 2142-2148.
    [54]周秋娟,陈晓平.软土次固结特性试验研究[J].岩土力学, 2006, 27(3): 404-408.
    [55]邵光辉.复合双曲线法预测公路沉降探讨[J].林业建设, 2001(6): 30-33.
    [56]王志亮,郑明新,吴勇,等.增加曲线模型在路基沉降预测中的应用研究[J].岩土力学, 2004, 25(6): 9001-9004.
    [57]王志亮,吴克海,李永池,等.一个预测路基沉降的新经验公式模型[J].岩石力学与工程学报, 2005, 24(12): 2013-2017.
    [58]王志亮.软基路基沉降预测和计算[D].南京:河海大学, 2004.
    [59]杨涛,李国维,杨伟清.基于双曲线法的分级填筑路基沉降预测[J].岩土力学, 2004, 25(10): 1551-1554.
    [60]杨涛,戴济群,李国维.基于指数法的分级填筑路基沉降预测方法研究[J].土木工程学报, 2005, 38(5): 92-95.
    [61]黄广军.分级加载条件下提早预测地基沉降的沉降差法[J].岩土工程学报. 2007, 29(6): 811-818.
    [62]殷宗泽.土工原理[M].北京:中国水利水电出版社, 2007: 89-90, 375-388.
    [63]罗志光,魏金霞.软土路基超载设计与卸载时机确定[J].公路, 2004(8): 61-63.
    [64]杨涛,李国维.公路软基超载预压卸荷时间确定的沉降速率法研究[J].岩土工程学报, 2006,.28(11): 1942-1944.
    [65]钟才根,张序.高速公路软基路基沉降速率控制[J].苏州城建环保学院学报, 2001, 14(4): 48-53.
    [66]龚晓南.地基处理手册[M].第二版.北京:中国建筑工业出版社, 2000: 73-74.
    [67]刘世明,曾国熙.软粘土的次固结变形特性[J].浙江大学学报, 1990, 24(6): 840-847.
    [68]铁科院铁建所,铁四院二处.软土路基后期沉降研究[A].见铁道部第四勘测设计院.软土地基试验研究文集[C].武汉:中国地质出版社, 2001 :263-266.
    [69]折学森.软土地基沉降计算[M].北京:人民交通出版社, 1999: 14-35.
    [70]经绯,刘松玉,邵光辉.软土地基上路基沉降变形特性分析[J].岩土工程学报, 2001, 23(6): 728-730.
    [71]王良民,朱长歧,阎钶.软土路基沉降与软土层厚度及填土高度的关系分析[J].岩土力学, 2003, 24(增): 431-434.
    [72]刘松玉,经绯.软土地基上分期施工的路基沉降预测方法[J].岩土工程学报. 2003, 25(2): 229-231.
    [73]姜荣泽.上海高速公路路基总沉降及影响因素分析[J].中国市政工程, 2008(4): 6-8.
    [74]钟才根,兰宏亮,张序,等.高速公路软基路基沉降速率控制[J].华东公路, 2002(3): 42-44.
    [75]林代锐,李国维,黄少杰.汕汾高速公路软基超载预压卸载控制[J].河海大学学报, 2002, 30(4): 78-79.
    [76]刘加才,赵维炳,施建勇,等.竖向排水井地基工后沉降预测[J].岩土力学, 2006, 27(9): 1475-1479.
    [77]丁建奇,王永安,姜竹生,等.高速公路超软地基处理设计与施工[M].北京:人民交通出版社, 2006:.73-87, 149.
    [78]张长生.深圳后海湾海相沉积淤泥固结变形特性研究[D].北京:中国科学研究院研究生院, 2005.
    [79]袁怀宇.河滩相软土路基填筑期和预压期控制研究[J].公路交通科技, 2003, 20(6): 25-29.
    [80] Yin, J.-H. and Graham, J. 1989. Viscous-elastic-plastic modeling of one dimensional time-dependent behavior of clays[J]. Canada Geotechnical J., 26(2): 199-209.
    [81] Yin, J.-H. and Graham, J. 1994. Equivalent times and one dimensional elastic viscoplasitc modeling of time dependent stress strain behavior of clays. Canada Geotechnical J., 31: 42-52.
    [82] Yin, J.-H. and Graham, J. 1999. Elastic visco-plastic modeling of the time-dependent stress-strain behavior of soils. Canadian Geotechnical J., 36(4):736-745.
    [83] Yin, J.-H. and Zhu, J.G. 1999a. Elastic visco-plastic consolidation modeling and interpretation of porewater pressure responses in clay underneath Tarsiut Island. Canadian Geotechnical Journal, 36(4): 708-717.
    [84] Yin, J.-H. 1999. Non-linear creep of soils in oedometer tests. Geotechnique, 50(5): 699-707.
    [85] Jun Gao Zhu. Rheological behaviour and elastic viscoplastic moelling of soil[M]. Beijing: Science Press,2007: 36-37, 121-146.
    [86]陈曙光,但汉波,顾素珍.超载预压法软基处理工后沉降预测分析[J].低温建筑技术, 2006(02): 87-89.
    [87]李国维,盛维高,蒋华忠,等.超载卸荷后再压缩软土的次压缩特征及变形计算[J].岩土工程学报, 2009, 31(1): 118-123.
    [88]盛维高,李国维,刘汉龙,等.超载预压软土的次压缩沉降估算方法[J].河海大学学报, 2009, 37(5): 596-601.
    [89]张仪萍,俞亚南,张土乔,等.室内固结系数的一种推算方法[J].岩土工程学报, 2002, 24(5): 616-618.
    [90]曹国强,张仪萍,张土乔,等.地基沉降速率与沉降的关系研究及其应用[J].岩土力学, 2003,.24(3): 468-469.
    [91]刘吉福,陈新华.应用沉降速率法计算软土路基剩余沉降[J].岩土工程学报, 2003, 25(2): 233-235.
    [92]蔡波.饱和软粘土地基沉降速率的计算方法[J].中国港湾建设, 2007(4): 11-12, 50.
    [93]张峰,经绯.江苏东部海相软土路基沉降速率控制标准讨论[J].常州工学院学报, 2008, 21: 29-32.
    [94]张长生,张伯友,刘国楠,等.应用沉降速率推算剩余沉降及卸载时间[J].地球科学与环境学报, 2005, 27 (4): 28-30.
    [95]刘成云,陈双华.京珠高速公路中山新隆中桥段地基处理工程[A].见刘家豪.塑料排水板排水法加固软基工程实例集[C],北京:人民交通出版社, 1999: 124-131.
    [96]赵维炳,刘国楠,李荣强.控制工后变形新一代软基处理技术的发展[J].土木工程学报, 2004, 37(6): 78-81.
    [97]赵维炳,艾英钵,张静.排水固结加固高速公路深厚软基工后沉降[J].水利水运工程学报, 2003(1): 28-32.
    [98]周金鹏,王良国.真空-堆载联合预压加固高速公路路基探讨[J].公路交通科技, 2003, 20(3): 32-36.
    [99] SHC Dxx-2007.公路软土地基路基设计与施工技术指南[S](报批稿). 2007: 31,126.
    [100]蔡体楞.杭甬高速公路软土地基处理[M].杭州:杭州出版社, 1998: 155-156.
    [101]徐泽中,白忠良,陈景扬,等.沪宁高速公路(江苏段)软土路基沉降观测和稳定验证分析[J].水利水电科技进展, 1998, 18(2): 36-39.
    [102]王晓谋,袁怀宇.河滩相软土地基路基施工[J].长安大学学报, 2003, 23(3): 26-29.
    [103]龚晓南.高等级公路地基处理设计指南[M].北京:人民交通出版社, 2005: 71.
    [104]赵维炳.排水固结加固软基技术指南[M].北京:人民交通出版社, 2005: 14, 26-27.
    [105]岳忠文,赵维炳,唐彤芝.真空联合堆载预压处理深厚软基停泵标准研究[A].见赵维炳主编第六届全国工程排水与加固技术研讨会论文集[C].北京:人民交通出版社, 2005: 269-270.
    [106]付宏渊.桥头高填土路基沉降预测及台背土压力研究[D].武汉:武汉理工大学, 2006.
    [107]林川.汕汾高速公路软基工后沉降控制方法探讨广东公路交通2005(2): 45~48.
    [108]朱向荣,潘秋元.超载卸除后地基变形研究[J].浙江大学学报, 1991, 25(2): 252~255.
    [109] EN 15237:2007:E Execution of special geotechnical works-Vertical drainage. European Committee for Standardization, February 2007: 38~40.
    [110]张光永,王靖涛,卫军,等.超载预压法的卸载控制理论研究[J].岩土力学, 2007, 28(6): 1250-1254.
    [111]钱尼贵,郑睿,李国维.超载预压法加固软土地基原理和试验研究[J].长江工程职业技术学院学报, 2005, 22(1): 14-16.
    [112] GD DBJ 15-38-2005.广东省建筑地基处理技术规范[S].北京:中国建筑工业出版社, 2005: 32.
    [113] SJG 04-96.深圳地区地基处理技术规范[S].深圳:深圳市建设局, 1996: 20.
    [114]广东省航务工程总公司.京珠高速公路广珠段灵山软基试验工程[R]. 1997.
    [115]广东省航盛工程有限公司.台山二标软基试验段总结报告[R]. 2002.
    [116]周刚,陈谦应,周一勤,等.软基路基超载预压路段工后沉降预测[J]重庆交通学院学报, 2003, 22(4): 53-56.
    [117]王志亮,李昕.修正系数法预测软基高速公路沉降研究[J].水文地质工程地质, 2004(2): 64-66.
    [118]汪建斌,陈忠平.一种考虑荷载高度的沉降预测新方法[J].中外公路, 2003, 23(5): 72-74.
    [119]胡庆国,黄庆,黄生文.用实测资料求多级加载时软基沉降量的方法[J].湖南交通科技, 1997, 23(3): 9-12.
    [120]张仪萍,曹国强,李涛,等.分级加载条件下沉降预测方法[J].中国公路学报, 2005, 18(1): 30-33.
    [121]彭满红,涂许杭,王志亮. Asaoka法对路基沉降越级预测初探[J].水文地质工程地质, 2005(1): 41-44.
    [122]宋绪国,刘远锋,杨明雨,等.利用沉降观测资料推算未来沉降在秦沈客运专线中的应用[J].路基工程, 2002(5): 37-40.
    [123]高大钊,袁聚云.土质学与土力学[M].北京:人民交通出版社, 2006: 73-76.
    [124]李广信.高等土力学[M].北京:清华大学出版社, 2004: 268-303.
    [125]广东省航务工程总公司.珠江三角洲高含水量粘土地基工程特性及快速加固机理的研究[R]. 2001.
    [126]周秋娟,陈晓平.软土蠕变特性试验研究[J].岩土工程学报, 2006, 28(5): 626-630.
    [127]李丽慧,王清,王剑平,等.真空排水预压下土体变形的应力路径分析[J].工程地质学报, 2001, 9(2): 170-173.
    [128] Leroueil S, Kabbaj M, Tanvenas F, Bouchard R. Stress-strain-strain rate relation for the compressibility of sensitive natural clays. Geotechnique, 1985, 35(2): 159-180.
    [129] Kabbaj M, et al. In site and laboratory stress-strain relation. Geotechnique, 1988, 38(1): 83-100
    [130]曾国熙,杨锡龄.砂井地基沉降陷分析[J].浙江大学学报, 1959(3): 1-10.
    [131]张诚厚,袁文明,戴济群.高速公路软基处理[M].北京:中国建筑工业出版社, 1999: 63-68, 74-85.
    [132]黄腾,谭祥韶,吴玉刚.珠江三角洲地区软土路基实用稳定性判别方法[J].岩土工程学报, 2007, 28(03): 13-17.
    [133]刘吉福,魏金霞,徐小庆.桥头跳车机理研究与容许工后沉降研究[A].见龚晓南主编高速公路地基处理理论与实践[C].北京:人民交通出版社, 2005: 85-88.
    [134]刘吉福,莫海鸿,魏金霞.对工后沉降法确定卸载时机的认识[J].岩石力学与工程学报, 2006, 25(增2): 3518-3522.
    [135]黄晓明.高速公路路桥(涵)过渡段回填分析方法及应用技术[M].北京:人民交通出版社, 2007: 14-16.
    [136]刘吉福,莫海鸿,李翔,等.两种新的沉降推算方法[J].岩土力学, 2008, 29(1): 140-144.
    [137]刘吉福,莫海鸿.对沉降速率法确定卸载时机的认识[J].岩石力学与工程学报[J], 2007, 26(增刊1): 3065-3072.
    [138]王炳龙,宫全美,周顺华,等.砂井联合超载预压控制软土地基路基工后沉降的优化设计[J].铁道学报, 2004, 26(6): 75-80.
    [139]吕庆,尚岳全,陈允法,等.高填方路基粘弹性参数反演与工后沉降预测分析[J].岩石力学与工程学报, 2005, 24(7): 1231-1235.
    [140]王昌其.高速铁路土木工程[M].成都:西南交通大学出版社,1999: 2-10.
    [141]郝玉龙,蒋东旗,陈云敏.双层地基超载预压固结理论及应用[J].岩土工程学报. 2004, 26(5): 649-653.
    [142]郝玉龙,古力.超载预压地基卸载后吸水固结及回弹变形的研究[J].岩石力学与工程学报, 2005, 24(5): 883-887.
    [143] Bai Bing. Model for predicting shear strength of saturated soft clay after impact loading[J].岩石力学与工程学报, 2004, 23(4): 645-649.
    [144]周顺华,许恺,王炳龙,等.软土地基超载卸载再加荷的沉降研究[J].岩土工程学报, 2005, 27(10): 1226-1229.
    [145] Karl Terzaghi, Ralph B. Peck. Soil mechanics in engineering practice[M]. John Wiley & Sons, Inc., New York, Sydney, 1968: 64-83.
    [146] Gholamreza Mesri. Primary compression and secondary compression[A]. form John T. Germaine, Thomas C. Sheahan, Robert V. Whitman. Proceedings of the Symposium of Soil behavior and soft ground construction[C]. ASCE, 2003: 122-166.
    [147]张齐兴,朱俊高,殷建华.一个软土的弹粘塑性模型及其有限元应用[J].河海大学学报, 2001, 29(6): 15-19.
    [148] Yin Jianhua, Zhu Jungao. Elastic visco-plastic consolidation modelling of soft clay[J].岩土工程学报, 1999, 21(3): 359-364.
    [149]张超杰.结构性软土一维弹粘塑性固结性状研究[D].浙江大学, 2003.
    [150] Imai G, Tang Y X. A constitutive equation of one dimensional consolidation derived from inter-connected tests[J]. Soils and Foundations, 1992, 32(2): 83-96.
    [151]崔爱明,刘建生,纪若野.某高速公路软土地基沉降观测数据分析[J].岩土工程界, 2009, 12(11): 19-23.
    [152]赵维炳,施健勇.软土固结与流变[M].南京:河海大学出版社, 1996: 38, 40, 186-187.
    [153] Gray H. Simultaneous consolidation of contiguous layers of unlike compressible soils. Trans. ASCE, 1945, 110: 1327-1356.
    [154]谢康和.双层地基一维固结理论与应用[J].岩土工程学报, 1994, 16(5): 24-35.
    [155]谢康和,潘秋元.变荷载任意层地基一维固结理论[J].岩土工程学报, 1995, 17(5): 80-85.
    [156] Tang X W, Onitsuka K. Consolidation of double-layered ground with vertical drains[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(14): 1449-1465.
    [157] Tang X W, Onitsuka K. Consolidation of ground with partically penetrated vertical drains[A]. Geotechnical Engineering Journal[M], Rio de Jane. Brazil: Balkema A A, 1998, 29(2): 209-231.
    [158]房营光.层状饱和粘性土砂井地基的固结变形分析[J].土木工程学报, 1997, 30(5): 49-56.
    [159]刘加才,蔡南树,施建勇,等.成层竖向排水井地基固结分析[J].岩土力学, 2005, 26(8): 1247-1252.
    [160] Liu Ji-fu, Pang Qi-si. Methods of decision of coefficient settlement velocity[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(3): 35-38.
    [161]邓永锋,刘松玉,洪振舜.基于沉降资料反演固结系数的方法研究[J].岩土力学, 2005, 26(11): 1807-1809.
    [162]林本义,龚镭.从长期沉降观测资料谈预压加固的固结度问题[A].见赵维炳主编第六届全国工程排水与加固技术研讨会论文集[C].北京:人民交通出版社, 2005: 154-158.
    [163]邓东升,洪振舜,刘传俊,等.低浓度疏浚淤泥透气真空泥水分离模型试验研究[J].岩土工程学报, 2009, 31(2): 250-253.
    [164]倪一鸿.公路荷载作用下软土地基次固结[J].公路, 1999(10): 56-61..
    [165]刘吉福.关于“公路软基超载预压卸载时间确定的沉降速率法研究”的讨论[J].岩土工程学报, 2007, 29(6): 954-955.
    [166]杨涛,李国维.对”公路软基超载预压卸载时间确定的沉降速率法研究”讨论的答复[J].岩土工程学报, 2007, 29(6): 955-956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700