用户名: 密码: 验证码:
波浪循环荷载作用下防波堤—地基稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饱和软粘土地基在波浪荷载的循环往复作用下,土体产生软化效应。表现为土体的强度降低,变形模量减小,从而使软粘土地基的承载能力大幅度降低,影响结构的安全稳定性。对长江口深水航道治理工程导堤失稳原因进行了分析和总结,提出对于修建在软土地基上的防波堤、导堤等港口结构物和建筑物,必须考虑波浪循环荷载引起的地基强度弱化现象。以天津港原状软粘土为研究对象,通过室内试验手段研究半圆体沉箱、筒型基础等港口结构物地基土在波浪作用下的强度软化特性及其稳定性分析方法。本文主要的研究内容包括:
     1.粘土的循环软化程度与土的灵敏度有关。灵敏度对粘性土循环软化作用的重要性与松散程度对饱和砂土液化的影响类似。采用室内十字板测试仪进行了灵敏度试验,重塑土样(充分扰动)的强度降低到原状土样的强度的22%~42%,可用来判断土样充分扰动情况下的软化程度;
     2.在总结前期进行的长江口航道治理工程中的导堤软粘土地基软化问题的研究的基础上,增加了新的验证性和对比性试验,试验结果取得了与前期研究较为一致的规律性成果。提出了考虑不同的应力组合和实际的应力路径加载的室内动三轴试验方法,动、静三轴试验结果经过归一化分析,呈现比较明显的规律性,建立了软粘土强度软化程度与环境条件、荷载条件的关系,确定了软粘土动力软化的判别标准,为工程应用提供了便捷手段;
     3.正常固结的饱和软粘土,经不排水循环后,土体抗剪强度发生降低,类似于金属的“疲劳”现象。主要原因是循环荷载使软粘土内部产生累积孔隙水压力和不可恢复的结构性破坏。基于循环荷载下累积孔隙水压力和累积变形规律的分析,从能量转化角度,探讨了软粘土在波浪动荷载作用下的强度弱化机理;
     4.根据半圆体防波堤上的波浪力以及地基应力分布特征,利用软粘土强度弱化程度的室内试验成果,对半圆体防波堤软土地基加固前、后的稳定性进行了有限元分析,计算结果与实测数据吻合较好,提出在强度发生软化的情况下半圆体防波堤的稳定性分析方法。
     5.通过对天津港原位十字板剪切强度试验结果的统计回归,提出根据原位十字板剪切试验结果确定天津港软粘土抗剪强度指标的方法。由此方法得到的抗剪强度统计回归指标可以直接用来进行边坡稳定分析,土压力计算以及地基承载力评估。根据推算的软粘土抗剪强度指标,提出箱筒型基础防波堤稳定性的简化分析方法。
Strength softening may take place for the saturated soft clay under the action of wave cyclic loading. The strength of soft clay may further decrease and the modulus of deformation becomes smaller. As a result, the bear capability of the soft clay foundation will become significant lower and the stabilization of the structures will be worsened. Based on the analysis of the failure of the guide dikes for deepening of navigation channel along the Yangtze Estuary, it was proposed that the strength softening be considered when the harbor architectural or construct buildings such as guid dikes and breakwaters were buit on the soft soil foundations. The strength sofening property of the foundations soil on which the harbor buildings such as semi-circular caisson or suction caisson breakwaters were built was studied by means of performing indoor tests on the undisturbed samples taken from Tianjin harbor.
     1. Cyclic softening of the clay is related to the soil sensitivity. The sensitivity infulnece on clay is as important as that of the density on sand. The soil sensitivity were tested using indoor vane test device and the results revealed that the remodeled (fully disturbed) samples strength reduced to 22%~42% that of the undistrubed ones on anvarage, which can be used to determine the softening extent of the soil under fully disturbed condition.
     2. Depending on the research on the soft clay strength softening for the Yangtze Estuary guide dike foundations, more verification and comparison tests were performed. The tests gave similar results to those of the pervious research. The interior dynamic triaxial test method was introduced taking into account different load combinations and the actual loading path. The test results revealed obvious regularity when normalization was carried out on the dynamic and static triaxial test results. The relationship between discounting ratio and environmental and load conditions was established and then the strength discounting criterion of the soft clay could be determined which brought convinence to the engineering paractice.
     3. The shear strength of normal consolidated saturated clay will lowered after undrained cyclic shear which is similar with the metal fitague. The main reason is that cumulative pore pressure and unrecoverable structural failure has been caused in the clay. Based on the analysis of the accumulated pore pressure and accumulated deformation behaviour of the clay under cyclic loading, the strength discounting mechanics of the soft clay was also analyzed in the view of the energy transformation.
     4. According to wave loading distribution on the semi-circular breakewater and stress state of the foundation soil, the stability of the semi-circle breakwater foundation was analyzed before and after soil improvement combining the clay shear strength disconting ratio obtained from the test results with FE methods. The calculation results agree well with the observed data. The breakwater stability analysis method involving the soil softening effects was then put forward.
     5. By means of statistical regression analysis of the field vane test results of Tianjin Harbor soft clay, the thesis presented a method for how to determine the shear strength parameters of the clay using the in situ vane shear test results. The regression strength parameters can be used for slope stability analysis, earth pressure calculation and bearing capacity assessment. According to the correlated soil parameters, a simple analysis method for the suction caisson breakwaters was established also.
引文
[1] Seed, H. B., Idriss, I. M. Simplified Procedures for Evaluating Soil Liquefaction Potential[J]. Journal of Soil Mechanics and Foundations, ASCE, 1971, 97(9): 1249-1273.
    [2] Martin, G. R., Finn, W. D. L.and Seed, H. B. Fundamentals of liquefaction under cyclic loading[J]. Journal of Geotechnical Engineering, ASCE, 1975, Vo1. 101(5): 423-438.
    [3]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社, 1995, 491-536.
    [4] Seed, H. B., and Chan, C. K. Clay strength under earthquake loading conditions. Journal of Soil Mechanics and Foundations Divisions, 1966: 92(2), 53–78.
    [5] Andersen, K. H., Pool, J.H. and Brown, S.F., et al. Cyclic and static laboratory tests on Drammen clay[J]. ASCE, 1980, 106(GT5):499-529.
    [6] Andersen K. H., and Lauritzsen, R. Bearing capacity for foundations with cyclic loads[J]. Journal of Geotechnical Engineering, 1988, 114(5):540-555.
    [7] Andersen K. H., Kleven,A. and Heien,D. Cyclic soil data for design of gravity structures, ASCE, 1988, 114(GT5):517-539.
    [8] Boulanger, R. W. and Idriss, I.M. Liquefaction susceptibility criteria for silts and clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, Vol.132(11):1413-1426.
    [9] Boulanger, R. W., Meyers, M. W.,and Mejia, L. H. et al. Behavior of a fine-grained soil during Loma Prieta earthquake [J]. Journal of Canadian. Geotechnique, 1998, Vol.35(1):146-158.
    [10] Boulanger, R.W., and Idriss, I.M. New criteria for distinguishing between silts and clays that are susceptible to liquefaction versus cyclic failure[C]. Proc., Technologies to Enhance Dam Safety and the Environment, 25th Annual United States Society on Dams Conf., USSD, Denver, 2005, 357–366.
    [11] Boulanger, R.W. and Idriss, I.M. Evaluation of cyclic softening in silst and clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, Vol.133, (6): 641-652.
    [12] Chen, W. and Randolph, M. F. Uplift capacity of suction caissons under sustained and cyclic loading in soft clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, Vol.133 (11):1352–1363.
    [13] Hyodo, M., Yamamoto, Y., and Sugiyama, M. Undrained cyclic shear behavior of normally consolidated clay subjected to initial static shear stress. Soils and Found., 1994, 34(4): 1–11.
    [14] Chu, D. B., Stewart,J. P., Boulanger, R. W. and Lin, P. S. Cyclic Softening of Low-Plasticity Clay and Its Effect on Seismic Foundation Performance [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, Vol.134, (11):1595-1608
    [15] Puzrin, A., Frydman, S. and Talesnick, Mark. Normalized nondegrading behavior of soft clay under cyclic simple shear loading[J]. Journal of Geotechnical Engineering, 1995, Vol.121(12): 836-843.
    [16] Chung, K.Y.C. and Wong,I.H . Liquefaction Potential of Soils with Plastic Fines, In: Soil Dynamics and Earthquake Engineering Conference, Southampton, 1982, Southampton, 1982, 07, 13-15.
    [17] Hanna, A. M. and Javed, K. Design of foundations on sensitive Champlain clay subjected to cyclic loading [J]. Journal of geotechnical and geoenvironmental engineering, 2008, 134(7): 929-937.
    [18] Vucetic, M. and Dobry, R. Effect of soil plasticity on cyclic response[J]. Journal of Geotechnical Engineering, ASCE, 1991, Vol. 117(1): 89-107.
    [19] Okur, D.V. and Ansal, A. Stiffness degradation of natural fine grained soils during cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2007, 27: 843-854.
    [20] Matasovi?,N., Vucetic, M. Generalized cyclic-degradation-pore pressure generation model for clays[J]. Journal of Geotechnical Engineering, 1995, Vol. 121(1):33-42.
    [21] Ansal, A. and Erken, A. Undrained behavior of clay under cyclic shear stresses[J]. Journal of Geotechnical Engineering, 1989, Vol. 115(7): 968-983.
    [22] Azzouz, A. S., Malek, A. M., and Baligh, M. M. Cyclic behavior of clays in undrained simple shear. J. Geotech. Engrg., 1989,115(5): 637–657.
    [23] Hyde, A. F. L., Yasuhara, K. and Hirao, K. Stability criteria for marine clay under on-way cyclic loading[J]. Journal of Geotechnical Engineering, 1993, Vol. 119(11):1171-1189.
    [24]丁红岩,张超,韩雪松.筒型基础平台冰激振动下粘性土地基软化分析[J].辽宁工程技术大学学报, 2007, 26(3): 369-371.
    [25] Ding Hongyan, Qi Lan, Du Xiuzhen. Estimating Soil Liquefaction inIce-induced Vibration of Bucket Foundation[J].Journal of Cold Regions Engineering, 2003, 17(2): 60-67.
    [26]韩雪松.桶型基础平台冰激振动下地基土的动力软化研究[D]. [硕士学位论文],天津:天津大学, 2005.
    [27]闫澍旺,冯守中.波浪对软粘土软化作用的计算方法及离心模型试验研究[J].港口工程, 1998, (6): 6-9.
    [28]闫澍旺,邱长林,孙宝仓,章为民.波浪作用下海底软粘土力学性状的离心模型试验研究[J].水利学报, 1998, (9): 66-70.
    [29]冯军,闫澍旺.长江口软粘土在波浪循环荷载作用下的弱化分析[J].中国海洋平台, 2005, 20(1):18-21.
    [30]王建华,陈诚,张庆和,练继建.波浪作用下海洋浅层软土弱化与场地稳定性[J].水利学报, 1998, (10): 13-17.
    [31]吴明战,周洪,陈竹昌.循环加载后饱和软粘土退化性状的试验研究[J].同济大学学报, 1998, 26(2):274-278.
    [32]唐益群,张曦,周念清,黄雨.地铁振动荷载作用下饱和软粘土性状微观研究[J].同济大学学报(自然科学版),2005,33(5):626-630.
    [33]周念清,唐益群,王建秀,张曦,洪军.饱和粘性土体中孔隙水压力对地铁振动荷载响应特征分析[J].岩土工程学报,2006,28(12):2149-2152.
    [34]唐益群,张曦,赵书凯,王建秀,周念清.地铁振动荷载下隧道周围饱和软黏土的孔压发展模型[J].2007,40(4):82-86.
    [35]张曦,唐益群,周念清,王建秀,赵书凯.地铁振动荷载作用下隧道周围饱和软黏土动力响应研究[J].土木工程学报,2007,40(2):85-88.
    [36]顾中华,高广运.循环荷载下饱和粘土强度等效计算探讨[J].西北地震学报,2005,27(1):13-16.
    [37]顾中华.循环荷载作用下偏压固结饱和粘土孔压模型[J].地下空间与工程学报, 2007, 3(4):776-780.
    [38]蒋明镜,沈珠江,邢素英,徐锡荣.结构性粘土研究综述[J],水利水电科技进展, 1999, 19(1): 26-30.
    [39]刘恩龙,沈珠江,范文.结构性粘土研究进展[J].岩土力学, 2005, 26(增刊): 1-8.
    [40]赵书凯.地铁行车荷载下软粘土微观结构变形破坏机制研究: [硕士学位论文],上海:同济大学, 2006.
    [41]黄茂松,李进军,李兴照.饱和软黏土的不排水循环累积变形特征.岩土工程学报, 2006, 28(7):891-895.
    [42]周建,循环荷载作用下饱和软粘土特性研究[D]. [博士学位论文],杭州:浙江大学, 1998.
    [43]周建,龚晓南.循环荷载作用下饱和软粘土应变软化研究[J].土木工程学报, 2000, 33(5): 75-78.
    [44]边学成,曾二贤,陈云敏.列车交通荷载作用下软土路基的长期沉降[J].岩土力学, 2008, 29(11): 2990-2996.
    [45]汪小平,刘厚平,周晖,王军.循环荷载作用后饱和软粘土抗剪强度变化规律的试验研究[J].铁道建筑, 2006, (4): 56-58.
    [46]刘胜群,吴建奇.循环荷载作用下软粘土应变软化现象试验研究[J].铁道建筑,2006,(5): 55-57.
    [47]刘胜群,陈玉平.饱和软粘土动力特性试验研究[J].铁道建筑,2006, (10): 68-70.
    [48]鲁晓兵,张建红,王淑云等.水平动载下桶型基础周围土体软化的离心机模拟[J].中国海洋平台,2004,19(6):7-11.
    [49].矫滨田,鲁晓兵,时忠民等.垂向动载下桶形基础响应的离心机实验研究[J].中国海洋平台,2006, 21(5):13-15.
    [50]李校军,王军,吴延平.初始剪应力对饱和软粘土静、动力学性能影响——试验研究[J].自然灾害学报, 2009, 18(3): 117-122.
    [51]王淑云,楼志刚.原状土和重塑海洋粘土经历动载后的静强度衰减[J].岩土力学, 2000, 21(1): 20-23.
    [52] Andersen, K. H., Dyvik, R. and Lauritzsen, R. et al. Model test of gravity platforms.II: Interpretation[J]. Journal of Geotechnical Engineering, 1989, Vol. 115(11):1550-1568.
    [53] Anderson, K. H., Dyvik, R. and Schroder, K. et al. Field tests of anchors in clay II: preditions and interpretation[J]. Journal of Geotechnical Engineering, 1993, Vol. 119(10):1532-1549.
    [54] Jaime, A., Romo, M. P. and Resendiz, D. Behevior of friction piles in Mexico City clay[J]. Journal of Geotechnical Engineering, 1990, Vol. 116(6): 915-931.
    [55] Mostafa, A. M., Mizutani, N. and Iwata, K. Nonlinear wave, composite breakwater, and seabed dynamic interaction[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1999, Vol. 125(2):88-97.
    [56] Ichii, K. and Donahue, M.J.. Evaluation of sea dike settlement due to seismic shaking prior to tsunami attack [J]. Solution To Coastal Disasters, ASCE, 2005, 616-629.
    [57] Tung, C.C.. Beheavior of a cassion subjected to a horizontal breaking wave force[J]. Journal of Engineering Mechanics, 2007, Vol. 113(12): 1302-1310.
    [58] De Groot, M. B., Kudella, M. And Oumeraci, H. Liquefaction phenomena underneath marine gravity structures subjected to wave loads[J]. Journal of Waterway, Port, Coastal, and Ocean Engineer, 2006, 132(4):325-335.
    [59] Martinelli, L., Voortman, H. G., Lamberti, A., Vrijling, J.K. Hazard analysis of dynamic loaded caisson breakwaters[J]. Coastal Engineering, 2000, 1636-1649.
    [60] Kiara, A. and Tsiachris, A. Some practical aspects on the seismic behavior of rubble-mound breakwaters. ASCE, 1-10.
    [61] Bea, R.G. Pile capacity for axial cyclic loading[J]. Journal f Geotechnical Engineering, 1992, Vol.118(1): 34-50.
    [62] Seed, H.B. and Idriss I.M. Simplified Procedures for Evaluating Soil Liquefaction Potential [J]. Journal of Soil Mechanics and Foundations, ASCE, 1971, 97(SM9): 1249-1273.
    [63] Jin Chun Chai and Miura, N. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, (10): 907-916.
    [64]徐光明、高长胜、张凌等.软土地基上堤防稳定性研究[J].岩石力学与工程学报,2005, 24(13):2315~2321.
    [65] Xie Shileng. Wave forces on submerged semi-circular breakwater and similar structures[J]. China Ocean Engineering, 1999, Vol. 13(1): 63-72.
    [66]谢世楞.淹没情况下半圆型导堤上的波浪力[J].港工技术, 1998, (2): 1-5.
    [67]黄明毅.波浪力作用下半圆体结构地基应力分析研究[J].水运工程, 2006, (12), 34-48.
    [68]范庆来,栾茂田,倪宏革.循环荷载作用下软基上大圆筒结构弹塑性有效应力分析[J].水利学报, 2008, 39(7): 836-842.
    [69]刘振纹.软土地基上桶形基础的稳定性研究[D]. [博士学位论文],天津:天津大学, 2002
    [70]施晓春.水平荷载作用下桶型基础的性状[D]. [博士学位论文],杭州:浙江大学,2000.
    [71] Bie, S. A., Li, W. and Li, Z. Z. et al. Experimental study on stability of breakwaters with penetrating box foundations[J]. China Ocean Engineering, 2002, Vol.17(1): 71-82.
    [72]王元战,张宏志,周枝荣.沉箱式防波堤静力与动力稳定性设计体型分析[J].海洋工程, 2005, 23(2): 66-70.
    [73]王元战,华蕾娜,祝振宇.软土地基条件下大型圆筒海岸结构稳定性计算方法[J].岩土力学, 2005, 26(1): 41-45.
    [74]王元战,肖忠,迟丽华等.筒型基础防波堤稳定性简化计算方法[J].岩土力学, 2009, 30(5): 1367-1372.
    [75]王建华.软土中桶型基础水平循环承载力的模型试验[J].岩土力学, 2008, 29(10):2606-2612.
    [76]李宝强.北大防波堤及围埝建设中几个问题的思考[J].港工技术, 2001, 88-89.
    [77]杨俊杰,苗笛.沉箱式防波堤的稳定性分析[J].港工技术, 2007, (4): 19-21.
    [78]吴凤亮,李伟.箱筒型基础防波堤结构的沉降量分析[J].国防交通工程与技术, 2006, (4):39-42.
    [79]冯军.长江口软粘土地基在波浪循环荷载作用下的弱化分析[D]. [硕士学位论文],天津:天津大学2004.
    [80]闫澍旺,侯晋芳,刘润,等.长江口导堤在波浪荷载作用下的稳定性研究[J].岩石力学与工程学报, 2006, 25(增1): 3245-3249.
    [81]王杰贤.动力地基与基础,北京:科学出版社, 2001.
    [82]孙更生,郑大同.软土地基与地下工程,中国建筑工业出版社,1984
    [83] Brand, E.W., Brenner, R.P.著.叶书麟,宰金璋等译.软粘土工程学[M].中国铁道出版社, 1991.
    [84]曾长女,刘汉龙,陈育民.细粒含量对粉土动孔压发展模式影响的试验研究[J].岩土力学, 2008, 29(8): 2193-2198.
    [85]王建华,杨进良,陈诚.海洋原状软粘土不固结不排水剪切模量循环弱化特性.土动力学理论与实践.辽宁大连:大连理工大学出版社,1998, 109-114.
    [86]王建华,饱和软粘土动力特性的研究与应用, [博士学位论文],天津:天津大学, 1993.
    [87]白冰,周健.周期荷载作用下粘性土变形及强度特性述评,岩土力学, 1999, 20(3):84-90.
    [88]廖红建,宋丽,杨政等.往返荷载下粘性土的强度及取值标准试验研究.岩土力学, 2001, 22(1): 16-20.
    [89]侯永峰,张航,周建等.循环荷载作用下水泥复合土变形性状试验研究,岩土工程学报, 2001, 23(5): 288-291.
    [90] Yasuhara, K., Hirao, K. and Hyde, AFL. Effects of cyclic loading on undrained strength and compressibility of clay. Soils and Foundation,1992, 32(1): 100–16.
    [91]王建华,要明伦,刘远锋.振动荷载作用下海洋原状软粘土不固结不排水强度特性.土动力学理论与实践.辽宁大连:大连理工大学出版社, 1998, 114-118.
    [92]徐凌峰,蒋军.不排水循环荷载作用后粘土的强度.第一届全国环境岩土工程与土工合成材料技术研讨会论文集.浙江杭州:浙江大学出版社, 2003, 385-388.
    [93]周健,屠洪权,安原一哉.动力荷载作用下软粘土的残余变形计算模式[J].岩土力学, 1996, 17(1): 54-60.
    [94]蒋军,陈龙珠.长期循环荷载作用下黏土的一维沉降[J].岩土工程学报, 200l, 23(3):366-369.
    [95]李进军,黄茂松,王育德.交通荷载作用下软土地基累积塑性变形分析[J].中国公路学报, 2006, 19(1): 1-5.
    [96] Kanatani, M., Kawai, T., and Tochigi, H. Prediction method on deformation behavior of caisson-type seawalls covered with armored embankment on man-made islands during earthquakes[J]. Soils and Foundations, 2001,41(6): 79-96.
    [97]谢定义,土动力学,西安交通大学出版社,1988, 100-150.
    [98]吴世明等,土动力学,中国建筑工业出版社,2002, 30-55.
    [99]土工试验规程(SL237-1999),中国水利水电出版社,1999, 262-276.
    [100]施明雄.多向振动下砂土动力特性试验研究.[硕士学位论文],浙江杭州:浙江大学,2008.
    [101]刘飞禹.交通荷载作用下软土地基动力特性及加筋道路动力响应研究. [博士学位论文],浙江杭州:浙江大学,2007.
    [102]王艳玲.循环荷载作用下地铁隧道-土层的动力稳定性研究. [硕士学位论文],上海:同济大学,2002.
    [103]唐益群,刘冰洋,赵书凯等.高压沼气对浅部砂质粉土工程性质的影响[J].同济大学学报(自然科学版), 2004, 32(10):1316-1319.
    [104]天津大学岩土工程研究所,长江口深水航道治理工程地基土动三轴试验研究报告,天津大学,2003.
    [105]魏汝龙,软粘土的强度和变形,人民交通出版社,1987, 11-40.
    [106] Procter, D.C. and Khafaf, J.H. Cyclic Triaxial Tests on Remoulded Clay, Journal of Geotechnical Engineering, 1984,110(10): 1431-1445.
    [107]谢世楞.淹没情况下半圆体导堤上的波浪力.港工技术, 1998, (2):1-5.
    [108] Matasovi?, N. and Vucetic, M. A pore pressure model for cyclic straining of clay[J], Soils and Foundations, 1992, 32(3): 156-173.
    [109] Ramsamooj, D. V., and Alwash, A. J. Model prediction of cyclic response. Journal of Geotechnical Engineering, 1990, Vol. 116(7): 1053-1072.
    [110]赵春彦.静载和循环动载作用下软土地基中桩基长期沉降研究[D], [博士学位论文],上海:同济大学,2008.
    [111]章克凌,陶振宇.饱和粘土在循环荷载作用下的孔压预测.岩土力学, 1994, 15(3):9-17.
    [112]吴明战,周洪,陈竹昌.循环加载后饱和软粘土退化性状的试验研究[J].同济大学学报, 1998, 26(3):274-278.
    [113]陈中颐,周景星,王洪瑾.土力学.北京:清华大学出版社, 1994, 1-112.
    [114]王金昌,陈页开,ABAQUS在土木工程中的应用,浙江大学出版社,2006,1-124.
    [115]董亮,赵成刚,蔡德钩等.高速铁路无砟轨道路基动力特性数值模拟和试验研究.土木工程学报, 2008, 41(10):81-86.
    [116]吴波,刘维宁,索晓明等.地铁施工近邻短桩桥基加固效果研究.土木工程学报, 2006, 39(7):99-103.
    [117]张欣,丁秀丽,李术才. ABAQUS有限元分析软件中Duncan-Chang模型的二次开发.长江科学院院报, 2005, 22(4):45-47.
    [118]侯钊,陈环,钱征.天津软土地基[M].天津:天津科学技术出版社, 1987, 5-55.
    [119] Bishop, A W. The strength of soils as engineering material[J]. Geotechnique, 1966, 16: 91–128.
    [120] Craig, R F. Soil mechanics[M]. Chapman & Hall, 1995.
    [121] Skempton, A W, Sowa, V A. The behavior of saturated clays during sampling and testing[J]. Geotechnique, 1963, 13: 269–290.
    [122] Skempton, A W. Residual strength of clays in landslides, folded strata and the laboratory[J]. Geotechnique, 1985, 35: 1–18.
    [123] Bjerrum, L. Problem of soil mechanics and construction on soft clays and structurally unstable soil (collapsible, expansive and others). Proceeding 8th International Conference on Soil Mechanics Foundation Engineering, Moscow, 1973: 111–159.
    [124]侯晋芳.软黏土土坡稳定性研究. [博士学位论文],天津:天津大学, 2007.
    [125]温耀霖,潘健,吴湘兴.珠江三角洲软土的微观结构与力学特性[J].华南理工大学学报(自然科学版),1995,23(1): 144-152.
    [126]刘祖德,陆士强,包承纲,等.土的抗剪强度特性,土的抗剪强度与本构关系学术会议水平发展报告之一[J].岩土工程学报, 1986, 8(1): 106–119.
    [127]刘祖德.土的抗剪强度的取值标准问题[J].岩土工程学报, 1987, 9(2): 11–19.
    [128] Leroueil, S, La Rochelle, P. Remarks on the stability of temporary cuts[J]. Canadian Geotechnical Journal, 1990: 687–692.
    [129] Skempton, A W. Vane tests in the alluvial plain of the River Forth near Grangemouth[J]. Geotechnique, 1948, 1: 111.
    [130]魏汝龙,张凌.稳定分析中的强度指标问题[J].岩土工程学报, 1993, 5(5): 24–30.
    [131]张宇,王梅,楼志刚.竖向载荷作用下桶形基础与土相互作用机理研究[J].土木工程学报, 2005.38(2): 97-101.
    [132]严驰,李亚坡,袁中立.桶形基础竖向承载力理论计算方法及土性参数的敏感性分析[J]. 2004, 19(1): 31-36.
    [133]孟昭瑛,梁子冀,刘孟家.浅海桶形基础平台水平承载力与抗滑稳定分析[J].黄渤海海洋, 2000, 18(4): 36-41.
    [134]王庚荪,孔令伟,杨家岭等.水平载荷作用下土体与桶形基础的相互作用[J].工程力学, 2004, 21(2): 107-113.
    [135]张伟,周锡礽,余建星.滩海桶形基础极限水平承载力研究[J].中国海洋平台, 2004, 19(3): 14-16.
    [136]祝振宇,闫乃凌.考虑土体剪切作用下桶形基础水平承载力研究[J].港工技术, 2005, (4): 43-45.
    [137]港口工程地基规范(JTJ250-98),天津港湾工程研究所,1999.
    [138]陈愈炯,吴有茗,胡中雄,等.工程实践中土体抗剪强度的确定—土的抗剪强度与本构关系学术会议水平发展报告之四[J].岩土工程学报, 1986, 8(1): 106–119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700