用户名: 密码: 验证码:
高温前后高强混凝土多轴力学性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外关于混凝土多轴力学性能研究绝大多数局限于普通强度混凝土,而且是在常温条件下;而在实际工程中经常会遇到高温或火灾前后钢筋混凝土结构非线性设计与分析问题,这就需要建立高温前后混凝土多轴破坏准则和本构关系;近年来,高强混凝土正逐渐取代现有的普通混凝土;因此,常温下和高温后高强混凝土在多轴应力状态下力学性能研究迫在眉睫。本文结合辽宁省教育厅高等学校科学研究项目《恶劣环境因素下混凝土破坏准则和耐久性研究》(2023901023)和正在申请中的高等学校博士学科点专项科研基金资助项目《剪力墙持载下抗火性能及火灾后抗震性能试验研究》,进行了常温下和高温后6个试验温度(20℃、200℃、300℃、400℃、500℃、600℃)的两种强度等级(C60和C50)高强混凝土在多轴应力状态下强度与变形性能试验,并在分析其试件在不同应力状态和不同应力比,以及不同温度高温后的相应破坏形态及机理、多轴强度和峰值应变与应力应变曲线规律性等基础上,给出了其相应的强度与变形结论,建立了其相应的高温前后高强混凝土多轴力学模型,其与试验结果符合较好;本文的主要研究工作和创新成果具体如下:
     1.进行了常温下两种高强混凝土在多轴应力状态下的强度与变形试验,其应力状态包括6种:单轴拉、单轴压、双轴拉压、双轴压压、三轴拉压压、三轴压压压。建立了高强混凝土在多轴应力状态下的破坏准则公式。在多轴压下高强混凝土强度和峰值应变提高倍数较普通混凝土小,而其多轴拉压力学性能相差不大,略有降低。
     2.进行了高温后两种高强混凝土单轴受拉和受压强度与变形试验。给出了能够反映其单轴抗拉和抗压强度与其初始弹性模量等随温度变化的公式,并建立了其应力-应变曲线方程。高温200℃、300℃后,其单轴压强度较常温下略有升高,其峰值应变反而略有降低。
     3.进行了高温后两种高强混凝土在双轴压、三轴压下的强度与变形试验。给出了其在双轴压下第三主应力方向的初始弹性模量计算公式。在多轴应力状态下分别建立了带有温度参数的高温后高强混凝土破坏准则公式。高温后高强混凝土双轴压、三轴压强度相对于其单轴压强度提高倍数取决于其应力比以及不同温度高温后高强混凝土单轴压强度;200℃、300℃后稍低,400℃~600℃逐渐升高,三轴压强度提高幅度较双轴压更大;其峰值应变变化规律相似于强度。常温下和高温后高强混凝土单轴压强度越大,其多轴压强度提高倍数越小;反之,则越大。
     4.进行了高温后高强混凝土(C60)在双轴拉压、三轴拉压压下的强度与变形试验。建立了带有温度参数的高温后高强混凝土多轴拉压破坏准则公式。高温前后多轴拉压强度在所有的应力比下都比其相应的单轴拉、压强度小,在应力比α=0~0.2,多轴拉压强度σ_(3f)迅速降低;但高温400℃~600℃后两者应力状态差异程度逐渐减小,而且,其多轴拉压强度降低幅度较常温下的更大。
     5.基于过-徐正交异性本构模型,考虑了高温因素、高强混凝土特点对其破坏形态和应力-应变曲线的影响,在不同应力状态下分别建立了高温前后高强混凝土多轴正交异性本构模型。
     本项研究填补了国内外关于“高温后高强混凝土多轴力学性能试验研究”的空白,建立带有温度参数高强混凝土多轴破坏准则和本构关系是本文的创新之处,可为高温前后高强混凝土结构设计分析,以及灾后损伤评估与修复加固提供更符合实际的计算力学模型。
At present, most studies all over the word have merely been carried out to characterize the mechanical behavior of normal strength concrete(NSC) under multiaxial stress states as well as normal temperature. It is well known that the design and analysis of nonlinear behavior of reinforced concrete structure before and after high temperatures or fire are often applied in practicable engineering so that its multiaxial strength criteria and constitutive relationships must be established. In recent years, high strength concrete(HSC) is becoming an attractive alternative to traditional NSC. Therefore, it has become increasingly evident that it is quite import and urgent for the study on the mechanical behavior of HSC under multiaxial stress state before and after high temperatures. Based on the project of educational department of Liao Ning province science foundation (2023901023) and the research fund for the doctoral program of higher educationin application, the experiments on the strength and deformation behavior of two strength levels of HSC-60 and HSC-50 under multiaxial stress states as well as after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, are performed; moreover, based on the analysis of their failure mode and mechanism, multiaxial strength and peak strain regularity and stress-strain curves, etc. of HSC specimens under the corresponding stress state and ratios after high temperatures, the conclusions on strength and deformation are obtained and the corresponding mechanical models are also established. Comparison between the theoretical model and experimental results indicates good agreement. The major contributions of the work presented in this thesis are listed as follows:
     1. Tests on the strength and deformation of HSC-60 and HSC-50 under normal temperature as well as multiaxial stress state such as uniaxial tension and compression, biaxial tension-compression and compression-compression, and triaxial tension-compression-compression and compression-compression-compression, are carried out. The proposed failure criterion for HSC under multiaxial stress states in this paper, are established respectively. Compared with NSC, the increasing times of the multiaxial to uniaxial compressive strength for HSC are less; but, the difference of the both mechanical behavior under multiaxial tension-compression isn't obvious and its strength and peak strain slightly decrease.
     2. Tests on the strength and deformation of HSC-60 and HSC-50 after high temperatures under uniaxial tension and compression, are made. The formulas of the tensile and compressive strength, the initial elastic modulus for HSC with temperature parameter are obtained. The formulas of the corresponding stress-strain curve are established. The uniaxial compressive strength of HSC after exposure to 200℃and 300℃slightly increases; but, its peak strain decreases.
     3. Tests on the strength and deformation of HSC-60 and HSC-50 under biaxial and triaxial compression after high temperatures, are conducted. The formula of the initial elastic modulus of the third principal stress direction for HSC under biaxial compression are established. The formula of failure criterion for HSC after high temperatures under multiaxial stress state is proposed respectively. The ratios of the multiaxial to uniaxial compressive strength are depended on the stress ratios and its uniaxial compression strength of HSC after exposure to different temperatures; moreover, the ratios under triaxial compression are much greater than that under biaxial compression. Its increasing times after 200℃, 300℃are less; but, they are much bigger after 400℃~600℃. The regularity of their peak strain is similar to the strength's. The greater the uniaxial compression strength of HSC after exposure to different temperatures is; the less its increasing times.
     4. Tests on the strength and deformation of HSC-60 under biaxial tension-compression and triaxial tension-compression-compression after high temperatures, are carried out. The formulas of failure criterion for HSC with the temperature parameters under multiaxial tension-compression, are proposed. The multiaxial tension-compression strengths of HSC before and after high temperatures are less than its corresponding uniaxial tensile-compressive strength at all stress ratios; atα=0~0.2, they decrease rapidly. It isn't obvious for the difference of HSC mechanical behaviour between under biaxial and triaxial tension-compression stress state after 400℃~600℃, and its reducing extent is much bigger than that under normal temperature.
     5. An orthotropic constitutive relationship with temperature parameters for plain HSC under multiaxial stress states is developed. It is based on the analysis of the multiaxial stress-strain curves and the corresponding failure modes of HSC before and after high temperatures, and the orthotropic constitutive model of Guo-Xu modified.
     This research fills the blanks of "experimental research on the multiaxial mechanical behavior of plain HSC after high temperatures". It is the creative key in this paper to the multiaxial failure criteria and constitutive relationships with temperature parameters established for plain HSC under multiaxial stress states. This paper may also serve as a reference (testing data, correlated formula and mechanical behavior) for the maintenance, design and the life prediction of HSC structure before and after subjected to high temperatures.
引文
[1]中国土木工程学会高强与高性能混凝土混凝土委员会.高强混凝土结构设计与施工指南.北京:中国建筑工业出版社。2001.
    [2]冯乃谦.高性能混凝土结构.北京:机械工业出版社,2004.
    [3]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析:(博士学位论文).北京:清华大学,1992.
    [4]过镇海.混凝土的强度和变形-试验基础和本构关系.清华大学出版社,1997.
    [5]中华人民共和国国家标准.GB50010-2002混凝土结构设计规范.北京:中国建筑工业出版社,2002.
    [6]过镇海.混凝土的强度和本构关系-原理与应用.北京:中国建筑工业出版社,2004.
    [7]吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究.土木工程学报,2000,33(2):8-12,34.
    [8]陆州导.钢筋混凝土梁对火灾反应的分析:(博士学位论文).上海:同济大学,1989.
    [9]肖建庄.高性能混凝土材料与结构抗火性能研究.上海:同济大学,2004.
    [10]南建林.温度-应力耦合作用下混凝土力学性能的试验研究:(硕士学位论文).北京:清华大学,1994.
    [11]吕彤光.高温下钢筋的强度和变形试验研究:(硕士学位论文).北京:清华大学,1996.
    [12]Jumppanen U M,Schneider U.高性能混凝土-材料特性与设计.北京:中国铁道出版社,1998.
    [13]Chan Y.N.,Luo X,Sun W.Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800℃.Cement and Concrete Research,2000(30):247-251.
    [14]李卫,过镇海.高温中混凝上的强度和变形性能试验研究.建筑结构学报,1993,14(1):8-16.
    [15]Li Min,Qian Chun Xiang,Sun Wei.Mechanical properties of high-strength concrete after fire.Cement and Concrete Research 2004,34(6):1001-1005.
    [16]过镇海,王传志.高温下混凝土性能的试验研究概况.清华大学,1989.2.
    [17]过镇海,李卫.混凝土耐热力学性能的试验研究总结.清华大学土木系,1999.1.
    [18]吕天启,赵国藩,林志伸.高温后静置混凝土力学性能试验研究.建筑结构学报,2004,25(1):63-70.
    [19]马忠诚.火灾后钢筋混凝土结构损伤评估与抗震修复:(博士学位论文).哈尔滨:哈尔滨建筑大学,1997.
    [20]吴波.火灾后钢筋混凝土结构的力学性能.北京:科学出版社,2003.
    [21]陈磊,李彬.混凝土高温力学性能分析.混凝土,2003(7):26-28.
    [22]Harun Tanyildizi,Ahmet Coskun.The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash.Construction and Building Materials,2008,22(11):2269-2275.
    [23]Chan Sammy Y.N.,Peng Gai-fei et al.Comparison Between High Strength Concrete and Normal Strength Concrete Subjected to High Temperature.Materials and Structures,1996(29):616-619.
    [24]张彦春,胡晓波,白成彬.钢纤维混凝土高温后力学性能研究.混凝土,2001,(9):50-53.
    [25]Chang Y.F.,Chen Y.H.,Sheu M.S.,et al.Residual stress-strain relationship for concrete after exposure to high temperatures.Cement and Concrete Research,2006,36(10):1999-2005.
    [26]Chan Y.N.,Peng G.F.,Anson M.Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperature.Cem.Concr.Res.,1999(21):23-27.
    [27]李敏.高强混凝土受火损伤及其综合评价研究:(博士学位论文).南京:东南大学,2005.
    [28]贾锋.受高温后混凝土抗压强度的试验研究.青岛建筑工程学院学报,1997,18(1):10-14.
    [29]朱玛.高温后混凝土强度实验研究.湘潭矿业学院学报,2000,15(2):70-72.
    [30]徐彧,徐志胜,朱玛.高温作用后混凝土强度与变形试验研究.长沙铁道学院学报,2000,18(2):13-17.
    [31]阎继红,林志伸,胡云昌.高温作用后混凝土抗压强度的试验研究.土木工程学报,2002,35(5):17-19
    [32]Peng Gai-Fei.Evaluation of fire damage to high performance concrete:(PhD thesis).Hong Kong:The Hong Kong Polytechnic University,1999.
    [33]姚亚雄,朱伯龙.钢筋混凝土框架结构火灾反应分析.同济大学学报,1997,25(3):255-261.
    [34]谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究.浙江大学学报(自然科学版),1998,32(5):597-602.
    [35]陆洲导.钢筋混凝土梁对火灾反应的分析:(博士学位论文).上海:同济大学,1989.
    [36]姚亚雄.钢筋混凝土框架火灾反应分析及火灾温度鉴定的研究:(博士学位论文).上海:同济大学,1991.
    [37]时旭东.高温中钢筋混凝土杆系结构试验研究和非线性有限元分析:(博士学位论文).北京:清华大学,1992.
    [38]吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究.建筑结构学报,1999,20(5):42-49.
    [39]谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究.浙江大学学报,1998,32(5):597-602.
    [40]谭玮.钢筋混凝土梁在火灾后的修复加固与有关专家系统的研究:(硕士学位论文).上海:同济大学,1990.
    [41]丁伟.受火灾钢筋混凝土框架修复及决策支持系统研究:(硕士学位论文).上海:同济大学,1991.
    [42]Peng Gai-Fei,Sammy Yin Nin Chan,Anson Michael.Characteristics of crock growth of high performance concrete subjected to fire.Materials and Structures,1997(22):306-310.
    [43]Sarshar.R,Khroury.G.A.Material and Environmental Factors Influencing the Compressive Strength of Unsealed Cement Paste and Concrete at High Temperatures.Magazine of Concrete Research,1993,45(162):51-61.
    [44]Peng Gai-Fei,Bian Song-Hua,Guo Zhan-Qi,et al.Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures.Construction and Building Materials,2008,22(5):948-955.
    [45]Mohamedbhai.G.T.G.Effect of exposure time and rates of heating and cooling on residual strength of heated conerete.Magazine of Conerete Research,1986,38(136):151-158.
    [46]Ahmed.A.E.,Al-shaikh A.H.,Arafat.T.I.Residual compressive and bond strength of limestone aggregate concrete subjected to elevated temperatures.Magazine of Concrete Researeh,1992,44(159):117-125.
    [47]肖建庄,王平,李杰等.矿渣高性能混凝土高温后抗压强度.高强与高性能混凝土及其应用第四届学术讨论会论文集,2001,204-210.
    [48]沈鲁明.碳化混凝土及钢筋混凝土柱抗火性能分析:(硕士学位论文).上海:同济大学,1997.
    [49]Saad M.,Abo-EI-Enein S.A.,et.al.Effect of Temperature on Physical and Mechanical Properties of Concrete Containing Silica Fume.Cem.Concr.Res.1996,26(5):669-675.
    [50]肖建庄,王平,李杰等.矿渣高性能混凝土高温后抗压强度.高强与高性能混凝土及其应用第四届学术讨论会,长沙,2001.
    [51]Metin Husem.The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete.Fire Safety Journal,2006,41(2):155-163.
    [52]Shah S P,Ahnad S H.High performance concrete:Properties and Applications.Great Britain:McGraw-Hill,Inc.1994.
    [53]Thelanderson S.On the multiaxial behaviour of conerete exposed to high temPerature.Nuclear Engineering and Design,1982,75(2):271-282.
    [54]Ehm C.,Schneider U.The high Temperature Behavior of Concrete under Biaxial Conditions.Cement and Conerete Research,1985,15:27-34.
    [55]Kordina K.,Ehm C.,Sehneider U.Effect of biaxial loading on the high temperature behaviour of concrete.Proc.1st Symp,on Fire Safety Science,Gaithersburg,MD,1985.
    [56]Thienel K.CH.,Rostasy F.S.Strength of oncrete subjected to high temperature and biaxial stress:Experiments and modelling.Materialsand Structures,1995,28(10):575-581.
    [57]Khennane A.,Baker G.Plastieity models for the biaxial behaviour of concrete at elevated temperatures.Part Ⅰ:Failure criterion.Computer Methods in Applied Mechanics and Engineering,1992,100:207-223.
    [58]Khennane A.,Baker G.Plastieity models for the biaxial behaviour of concrete at elevated temperatures,Part Ⅱ:Implementation and simulation tests.Computer Methods in Applied Mechanics sand Engineering,1992,100:225-248.
    [59]周新刚.高温后混凝土轴压疲劳初探.工业建筑,1996,26(5):33-36.
    [60]覃丽坤.高温及冻融循环后混凝土多轴强度和变形试验研究:(博士学位论文).大连:大连理工大学.2004.
    [61]宋玉普,张众,覃丽坤.高温后混凝土双轴拉-压力学特性试验研究.大连理工大学学报,2006,46(1):54-58.
    [62]胡倍雷,宋玉普,赵国藩.高温后混凝土在复杂应力状态下的变形和强度特征的试验研究.四川建筑科学研究,1994,(1):47-50.
    [63]Schneider U.Concrete at high temperatures-a general review.Fire Safety Journal,1988,13(1):55-68.
    [64]肖建庄,王平,谢猛等.矿渣高性能混凝土高温后受压本构关系试验研究.同济大学学报,2003,31(2):186-190.
    [65]Castillo Carlos and Durrani A.J.Effect of Transient High Temperature on High-Strength Concrete.ACI Materials Journal,1990,(87):85-89.
    [66]朋改非,李斌,马强等.火灾高温中高性能混凝土的裂纹扩展与爆裂关系.混凝土,2001(7):15-17.
    [67]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系.清华大学学报,1997,37(6):87-90.
    [68]肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析.建筑材料学报,2003,6(2):1 82-189.
    [69]Harmathy,T.Z.Thermal properties of selected masonry unit concrete,ACI Journal Proceedings,1973,70(2):132-142.
    [70]Harmathy,T.Z.,Allo,L.W.Thermal properties of concrete subject to elevated to temperature.Concrete for Nuclear Reactors,ACI SP-34,Detroit,1972.
    [71]Harmathy,T.Z..Strength,Elasticity and thermal properties of concrete subject to elevated temperature,Concrete for Nuclear Reactors,ACI SP-34,Detroit,1972,1:377-406.
    [72]Zhang Binsheng,Bicanic Nenad,Pearce Christopher J.,etal.Relationship between brittleness and moisture loss of concrete exposed to high temperatures.Cement and Concrete Research,2002,32(3):363-371.
    [73]Diederichs,Schneider V.,Ulrich.Bond strength at high temperature,Magazine of Concrete Research,1981,33(115):75-84.
    [74]Moeley,P.D.,Royles,R.Response of the bond in reinforced concrete to high Temperature,Magazine of Concrete Research,1983,35(123):67-84.
    [75]Moeley,P.D.,Royles,R.Further response of the bond in rein-forced concrete to high temperature,Magazine of Concrete Research,1985,35(124):157-163.
    [76]宿晓萍.火灾后约束高强混凝土本构关系与已修复结构抗震性能研究:(硕士学位论文).哈尔滨:哈尔滨工业大学.2000.
    [77]袁杰.火灾后高强混凝土结构的剩余后抗力研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2001.
    [78]过镇海,卫李.混凝土在不同应力-温度途径下的变形试验和本构关系.土木工程学报,1993,26(5):58-69.
    [79]徐彧,徐志胜,朱玛.高温作用后混凝土强度与变形试验研究.长沙铁道学院学报,2000,18(2):13-17.
    [80]吴波.高温后混凝土变形特性及本构关系的试验研究.建筑结构学报,1999,20(5):42-48.
    [81]Ahmad S.H.,Hamoush S..A constitutive model for concrete exposed to high temperature,In:Elastic Plastic Failure Modeling of Structures with Applications.ASN1E Pressure Vessels and Piping Conf,Pittsburgh,PA,USA,1988(2):145-152.
    [82]Nechnech W.,Meftah F.,Reynouard J.M..An elastic-plastic damage model for plain concrete subjected to high temperatures.Engineering Structures,2002,24:597-611.
    [83]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析.北京:清华大学出版社,1993.
    [84]Comite Euro-International du Beton.Bulletin D information No.213/214 CEB-FIP Model Code 1990(Concrete Structures.Lausanne,1993.
    [85]于骁中等.混凝土在二轴应力作用下的强度和变形.岩石·混凝土·断裂与强度,1982(1):23-27.
    [86]薛林华.拉压二向应力状态下混凝土特性的试验研究:(硕士学位论文).南京:河海大学,1989.
    [87]徐积善,何淅淅.双轴拉压应力下混凝土的强度和变形.水利学报,1986,10(11):59-64.
    [88]杨木秋.混凝土二轴受压与二轴拉压强度及其在拱坝设计中的应用.人民长江,1992,23(6):35-39.
    [89]杨木秋,林泓.双轴拉压应力下混凝土的强度和应力应变全曲线的试验研究.福州大学学报(自然科学版),1991,19(4):105-111.
    [90]过镇海.混凝土的强度和变形.试验基础和本构关系.北京:清华大学出版社,1997.
    [91]宋玉普.多种混凝土材料的本构关系和破坏准则.北京:中国水利水电出版社,2002.
    [92]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003.
    [93]宋玉普.钢筋混凝土有限元分析中的力学模型研究:(博士学位论文).大连:大连理工大学,1988.
    [94]Bresler B.,Pister K.S.Strength of concrete under combined stress.ACI,1958,55(9):321-345.
    [95]Willam K J,W arnke E P.Constitutive models for the triaxial behavior of concrete.IABSE Proceeding,Italy,1975,19:1-30.
    [96]Ottosen N S.A failure criterion for concrete.Journal of Engineering,Mechanics Division.ASCE,1977,103(EM4):527-535.
    [97]Hsieh S S,Ting E C,Chen W F.An Elastic-Fracture Model for Concrete.Proceeding of 3~(rd)Engineering Mechanics Division,Special Conference ASCE,Austin,1979:437-440.
    [98]Kotsovos M D.A mathematical description ofthe strength properties of concrete under generalized stress.Magazine of Concrete Research,1979,31(108):151-158.
    [99]Podgorski J.General failure criterion for isotropic Media.Journal of Engineering Mechanics ASCE,1985,111(EM2):188-201.
    [100]宋玉普,赵国藩.应变空间混凝土的破坏准则.大连理工大学学报,1991,31(1):455-462.
    [101]于晓中等.混凝土的二轴强度及其在拱坝设计中的应用.见:水利水电科学研究院编.科学研究论文集第19集(结构、材料).北京:水利电力出版社,1981:17-23.
    [102]过镇海,王传志,张秀琴等.混凝土的多轴强度试验和破坏准则研究.见:清华大学抗震抗爆工程研究室.科学研究报告集第六集(混凝土力学性能的试验研究).北京:清华大学出版社,1996:1-51.
    [103]俞茂鋐.强度理论新体系.西安:西安交通大学出版社,1992.
    [104]Bazant,Z.P.,Tsubaki,T.Slip-dilantancy model for cracked reinforced concrete.ASCE,1980,106(ST9):1947-1966.
    [105]谢和平.岩石、混凝土损伤力学.徐州:中国矿业大学出版社,1990.
    [106]Romstad.K.M,Taylor.M.A,Hernnann.L.R.Numerical biaxial characterization for concrete.Journal of Engineering Mechanics Division,ASCE,1974,100(5):935-948.
    [107]过镇海.钢筋混凝土原理.北京:清华大学出版社,1999.
    [108]Chen W F.Plasticity in reinforced concrete.New York:McGraw-Hill Book Company,1982.
    [109]过镇海等.混凝土应力-应力全曲线的试验研究.建筑结构学报,1982,3(1):1-12.
    [110]Darwin.D,Pecknold.D.A nonlinear biaxial stress-strain law for concrete.Journal of Engineering Mechanics.ASCE.1977,103(EM2):229-241.
    [111]Han D J,Chen W F.Strain-space plasticity formulation for hardening-softening materials with elastoplastic coupling.J.Solids structures,1986,22(8):935-950.
    [112]Stevens D J,et al.Strain-based constitutive model with mixed evolution rules for concrete.ASCE,1992,118(EM6):1184-1200.
    [113]Yoder P J,Iwan W D.On the formulation of strain-space plasticity with multiple loading surfaces.J.Appl.Mech.1981,48(4):773-778.
    [114]Casey J,Naghdi P M.On the nonequivalence of the stress space and strain space formulation of plasticity theory.J.Appl.Mech.ASME,1983,50(2):350-354.
    [115]Mizuno E.,Hatanaka S.Compressive softening model for concrete.ASCE,1992,118(EM8):1546-1563.
    [116]Ottosen N S.Constitutive model for short-time loading of concrete.Journal of the Engineering,Mechanics Division,ASCE,1979,105(EM1):127-141.
    [117]徐焱,过镇海.三轴拉压应力状态下混凝土的强度及变形.结构工程学报(专刊),1991,2(3、4):401-406.
    [118]过镇海,郭玉涛,徐焱等.混凝土非线弹性正交异性本构模型.清华大学学报,1997,37(6):78-81.
    [119]Han D J,Chen W F.A nonuniform hardening plasticity model for concrete materials.Journal of Mechanics of Materials,1985,4(4):283-302.
    [120]Yoder P J,Iwan W D.On the formulation of strain-space plasticity with multiple loading surfaces.Journal of Applied Mechanics,ASME,1981,48(12):773-778.
    [121]Dougill J W.Some Remarks on Path Independence in the Smallin Plasticity.Quarterly of Applied Mathematics,1975,33(3):233-243.
    [122]BazantZ P,Kim S S.Plastic-fracturing theory for concrete.Journal of Engineering Mechanics Division ASCE,1979,105(EM3):407-428.
    [123]Fl(u|¨)gge W.Visco-elasticity,Springer-Verlag,Berlin,1975.
    [124]Cristescu N,Suliciu I.Visco-plasticity.Bucharest Martinus Nijhoff Publishers,1982.
    [125]Bazant Z P,BhatP D.Endochronic theory of inelasticity and failure of concrete.Journal of the Engineering Mechanics Division ASCE,1976,102(EM4):701-722.
    [126]韩大健.塑性、断裂及损伤力学在建立混凝土本构模型中的应用.力学与实践,1988,10(1):46-52.
    [127]Yazdani S,Schreyer H L.An anisotropic damage model with dilatation for concrete.Mechanics of Materials,1988,7(3):231-244.
    [128]YazdaniS,Schreyer H L.Combined plasticity and damage mechanics model for plain concrete.Journal of Engineering Mechanics ASCE,1990,116(EM7):1435-1450.
    [129]宋玉普,赵国藩.混凝土内时损伤本构模型.大连理工大学学报,1990,30(5):577-583.
    [130]Klisinski M.Plasticity theory based on fuzzy sets.Journal of Engineering Mechanics ASCE,1988,114(EM4):563-582.
    [131]Ghaboussi J,Garrett J H,W u X.Knowledge based modeling of material behavior with neutral networks.Journal of Engineering Mechanics ASCE,1991,117(EM1):132-153.
    [132]中华人民共和国国家标准.GB50081-2002普通混凝土力学性能试验方法.北京:清华大学出版社,1997.
    [133]郭玉涛.二轴应力下高强混凝土强度和变形的试验研究:(硕士学位论文).北京:清华大学,1995.
    [134]吴佩刚,朱金铨,韩淑兰.高强混凝土的物理力学性能.见:混凝土结构研究报告选集(3).北京:中国建筑工业出版社,1994.
    [135]中国建筑科学研究院.GBJ10-89混凝土结构设计规范.北京:中国建筑工业出版社,1989.
    [136]ACI Committee363.State-of-the-Art Reporton High-Strength Concrete.ACI,1984,81(4).
    [137]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用.北京:清华大学出版社,1992.
    [138]ACI Committee 363.State-of-the-Art report on high-strength concrete.Farmington Hills,Mich,1992.
    [139]Carrasquillo,R.L.,Nilson,A.H.,and Slate,F.O.,Properties of high strength concrete subjected to short-term loading.ACI Journal,1981,78(3):171-178.
    [140]FIP-CEB Working Group on High Strength Concrete.High strength concrete:state of the art report.Bulletin d'Information No.197,London,1990.
    [141]许锦峰.高强混凝土应力应变全曲线试验研究:(硕士学位论文).北京:清华大学,1986.
    [142]中国土木工程学会高强混凝土委员会.高强混凝土结构设计与施工指南.北京:中国建筑工业出版社.1994.
    [143]杨讯.高强混凝土的抗拉应力-应变全曲线.第一届高强混凝土及其应用学术讨论会,北京,1992.
    [144]日本全国大坝委员会.坝工设计规范.水利水电部科学技术情报所译.北京:水利出版社,1981.
    [145]苏联混凝土及钢筋混凝土设计规范(CHM3 Ⅰ-Ⅱ-21,75,).中国建筑科学研究院结构所,1982.
    [146]张众.冻融及高温后混凝土多轴力学特性试验研究:(博士学位论文).大连:大连理工大学,2007.
    [147]商怀帅.引气混凝土冻融循环后多轴强度的试验研究:(博士学位论文).大连:大连理工大学,2006.
    [148]冀晓东.冻融后混凝土力学性能及钢筋混凝土粘结性能的研究:(博士学位论文).大连:大连理工大学,2007.
    [149]王怀亮.复杂应力状态下大骨料混凝土力学特性的试验研究和分析:(博士学位论文).大连:大连理工大学,2007.
    [150]赵东拂.混凝土多轴疲劳破坏准则研究:(博士学位论文).大连:大连理工大学,2002.
    [151]杨健辉.侧压下混凝土静态受拉与受拉疲劳性能研究:(博士学位论文).大连:大连理工大学,2003.
    [152]曹伟.定侧压下混凝土三轴疲劳性能试验与理论研究:(博士学位论文).大连:大连理工大学,2007.
    [153]朱劲松.混凝土双轴疲劳试验与破坏预测理论研究:(博士学位论文).大连:大连理工大学,2003.
    [154]吕培印.混凝土单轴、双轴动态强度和变形试验研究:(博士学位论文).大连:大连理工大学,2002.
    [155]尹有君.冻融条件下湿筛大骨料混凝土多轴强度的试验研究:(硕士学位论文).大连:大连理工大学,2008.
    [156]翟雪.海水中冻融循环后湿筛混凝土多轴强度的试验研究:(硕士学位论文).大连:大连理工大学,2006.
    [157]陈飞.冻融条件下引气混凝土多轴强度的试验研究:(硕士学位论文).大连:大连理工大学,2006.
    [158]日和田 希与志.轻骨料混凝土多轴强度与变形性能研究:(硕士学位论文).大连:大连理工大学.2005.
    [159]于长江.冻融环境下普通混凝土的多轴破坏准则:(硕士学位论文).大连:大连理工大学,2004.
    [160]候景鹏.混凝土材料疲劳破坏准则研究:(硕士学位论文).大连:大连理工大学,2001.
    [161]Husem M,Gozutok S.The effects of low temperature curing on the compressive strength of ordinary and high performance concrete.Construction and Building Materials,2005,19(1):49-53.
    [162]Krishnan M J,Rajagopal K R.Triaxial testing and stress relaxation of asphalt concrete.Mechanics of Materials,2004,36(9):849-864.
    [163]Domingo S,Ignacio C,Ravindra G,et al.Study of the behavior of concrete under triaxial compression.J.Eng.Mech.,2002,128(2):156-163.
    [164]陈创群.高强混凝土的配制和应用.混凝土与水泥制品,2004(12):26-28.
    [165]中华人民共和国国家标准.GB 50119-2003混凝土外加剂应用技术规范.北京:中国建筑工业出版社.2002.
    [166]中华人民共和国国家标准.GB 50204-2002混凝土结构工程施工质量验收规范.北京:中国建筑工业出版社,2002.
    [167]中华人民共和国国家标准编写组.GBJ82-85混凝土长期和耐久性试验方法.北京:中国建筑工业出版社,1985.
    [168]中华人民共和国国家标准编写组.GB175-1999硅酸盐水泥和普通硅酸盐水泥.北京:中国标准出版社,1999.
    [169]中国土木工程协会高强高性能混凝土委员会.高强混凝土结构设计与施工指导手册.北京:中国建筑工业出版社,2001.
    [170]高强高性能混凝土技术编委会.高强高性能混凝土技术.南京:江苏科学技术出版社,2002.
    [171]Kupfer H,HilsdorfH K,R(u|¨)sch H.Behavior of Concrete under Biaxial Stresses.ACI Journal,1969,66(8):656-666.
    [172]Shickert G.Design ofan Apparatus for Short-Time Testing of Concrete under Triaxial Load,Concrete for Nuclear Reactors.ACISP 34 -63,1972,3:1355-1376.
    [173]Gerstle K H et al.Behavior of Concrete under Multi-axial Stress States.Journal of the Engineering Mechanics Division ASCE,1980,106(EM6):1383-1403.
    [174]Carino,N.J.,Clifton,J.R..High Performance Concrete:Research Needs to Enhance Its Use,Concrete International,1991,13(9):70-76.
    [175]Yves,Malier,High Performance Concrete:From Material to Structure,E & FNSPON,1992.
    [176]美国土木工程师学会混凝土与圬工结构分会.钢筋混凝土有限元分析--技术现状报告.周氐等译.南京:河海大学出版社,1988.
    [177]CEB欧洲-国际混凝土委员会.1990CEB-FIP模式规范(混凝土结构).中国建筑科学研究院结构所规范室译.北京:中国建筑科学研究院,1991.
    [178]覃丽坤,宋玉普,张众,于长江.高温后双轴压混凝土强度和变形性能研究.大连理工大学学报,2005,45(1):113-117.
    [179]梁伟,吴佩刚,赵光仪等.高强混凝土三轴强度规律与破坏准则.建筑结构,2003,33(1):17-19.
    [180]Lee Sang-Keun,Song Young-Chul,Han Sang-Hoon.Biaxial behavior of plain concrete of nuclear containment building.Nuclear Engineering and Design,2004,227(2):143-153.
    [181]过镇海,时旭东.钢筋混凝土的高温性能及其计算.北京:清华大学出版社,2002.
    [182]时旭东,过镇海.高温下钢筋混凝土受力性能的试验研究.土木工程学报,2000,33(6):6-16.
    [183]San jayan G,Stocks L J,Spalling of high-strength silica fume concrete in fire,ACI Materials Journals,1993,90(2):170-173.
    [184]Cheng Fu-Ping,Kodur V.K.R.,Wang Tien-Chih.Stress-strain curves for high strength concrete at elevated temperatures.Journal of Materials in Civil Engineering ASCE,2004,16(1):84-90.
    [185]Janotka I.,Mojumdar S.C.Thermal analysis at the evaluation of concrete damage by high temperatures.Journal of Thermal Analysis and Calorimetry,2005,81(1):197-203.
    [186]李卫.高温下混凝土强度和变形的试验研究:(硕士学位论文).北京:清华大学,1991.
    [187]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系.土木工程学报,1993,26(5):58-69.
    [188]罗欣.高性能混凝土的防火性能、机理及数值模拟研究:(博士学位论文).南京:东南大学,2001.
    [189]徐有邻,周氐.混凝土结构设计规范理解与应用.北京:中国建筑工业出版社,2002.
    [190]过镇海,周云龙等.慕尼黑工业大学的混凝土多轴强度试验资料的汇集和分析.见:清华大学抗震抗爆工程研究室.科学研究报告集第六集-混凝土力学性能的试验研究.北京:清华大学出版社,1996:85-110.
    [191]Tasuji ME,Nilson AH,Slate FO.Biaxial stress-strain relation ships for concrete.Magazine of concrete research,1979,31(109):217-224.
    [192]Kotsovos MD.A mathematical model of the deformational behavior of concrete under generalized stress based on fundamental material properties.Materials and structures,1980,13(76):289-298.
    [193]Stankowski T,Gerstle KH.Simple formulation of concrete behavior under multiaxial load histories.ACI,1985,82(2):213-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700