用户名: 密码: 验证码:
镍基单晶合金力学特性及其在冷却涡轮叶片上的应用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡轮冷却叶片作为航空发动机的核心部件之一,工作环境十分恶劣,承受着高温、高压、高转速的工作负荷。涡轮冷却叶片在某种程度上不仅决定着航空发动机设计性能的优劣,而且也是结构性故障发生最多的部件之一,所以对涡轮冷却叶片开展试验和理论研究具有十分重要的工程应用价值。本文在目前国内研究现状的基础上,采用试验和有限元模拟对镍基单晶冷却叶片进行较系统的研究,为镍基单晶冷却叶片的工程实际应用进行有益的探索。论文的主要工作和结论表现在以下方面:
     1、探讨了描述晶体塑性各向异性性质的晶体滑移本构模型。采用切线系数法,对晶体塑性滑移理论编制了率相关晶体塑性滑移本构模型的有限元子程序,并将其植入有限元软件Abaqus中。根据晶体塑性理论的特点,给出了局部坐标系和整体坐标系下更新应力应变的方法。
     2、开发了温度梯度试验系统,在温度梯度下对不含气膜孔和含气膜孔的试样进行拉伸和疲劳试验。试验结果表明:温度梯度对材料的拉伸和疲劳性能有一定的影响;通气状态下比非通气的试样屈服强度高;由于受气膜孔附近应力集中影响,带气膜孔试样的屈服强度急剧下降,同时通气状态下的低周疲劳寿命高于同等应力水平下的非通气的寿命。
     3、采用含与不含气膜孔平板试样,研究了[001]、[011]和[111]晶体取向980℃不同保载时间和应力条件下的镍基单晶合金DD6的循环蠕变性能。研究发现,DD6单晶合金的高温蠕变疲劳性能存在明显的方向性,试样形状及表面状态是影响单晶合金寿命的重要因素,特别是气膜孔的存在显著地降低了材料的循环蠕变寿命,不含气膜孔平板试样蠕变损伤起主要作用,含气膜孔平板试样疲劳损伤起主要作用。同时在高温条件下,不同保载时间的蠕变和疲劳损伤对试件的破坏起重要作用,蠕变与疲劳的交互作用会大大缩短材料的使用寿命。
     4、对带孔和不带孔的某第二代镍基单晶合金平板试样进行了蠕变性能试验研究与有限元对比计算。高温蠕变试验表明,平板试样的晶体取向和是否开孔对蠕变寿命有明显的影响。气膜孔导致蠕变寿命降低,对[001]取向的影响大于[111]取向。在高温低应力条件下,[001]取向的蠕变性能优于[111]取向。有限元分析结果表明,气膜孔改变了模型中的应力分布,在孔附近产生了高应力,导致模型蠕变寿命降低。有限元计算蠕变持久寿命与试验结果吻合,说明采用基于分切应力的蠕变持久寿命计算模型是合理的。
     5、针对镍基单晶冷却叶片气膜孔,建立一个含气膜孔的CELL模型,对此进行流固耦合及传热分析,并作为弹塑性以及蠕变持久分析的前提。建立有限元模型,根据不同取向的单向试验结果,根据不同温度和不同滑移系的模型参数,详细分析了温度梯度对气膜孔模型弹塑性以及蠕变持久寿命的影响。分析结果表明,温度梯度对材料性能的影响比较大,考虑材料的性能时不能忽视温度梯度的影响。本文的初步研究表明,温度梯度对材料蠕变损伤、蠕变寿命的影响比较大,气膜冷却时存在的温度梯度提高了叶片的蠕变持久寿命。
     6、选取单晶冷却叶片模型为研究对象,在气动和传热分析的基础上对存在温度梯度的冷却单晶叶片进行弹塑性分析。计算结果表明,冷却空气下叶片的最大应力比最高温度下叶片的最大应力小7.8MPa,说明冷却空气提高了叶片的强度,同时冷却空气也可以提高叶片的工作温度。冷却空气下叶片的最大分切应力比最高温度和最低温度下的最大分切应力都小。冷却空气大大提高了叶片的工作寿命。冷却空气下叶片的最大位移介于最高温度和最低温度的最大位移之间,顶端的最大轴向位移介于最高温度和最低温度之间,并且轴向位移的分布比较类似,相比局部失效模型而言,温度梯度对位移分布的影响不大。
     7、采用双参数蠕变损伤模型,对某发动机各向异性单晶涡轮叶片进行蠕变变形分析。应用多学科优化设计理论对单晶叶片晶体取向进行优化设计。分析结果表明:叶型积叠线方向的晶体取向偏角和随机取向的晶向角,对单晶叶片的叶尖蠕变变形具有较大的影响,对单晶叶片的晶向进行优化设计,具有重要的工程应用价值。
Turbine blade is an important part of the aero-engines. To improve the thermal efficiency and the power output, advanced gas turbine engines work at a very high temperature (1500-1900K). The temperature is far above the melting point of the turbine blade material. Cooling techniques are used to decrease the thermal stress and ensure that turbine blades operate without failure. Based on the actuality of present research, the Ni-based single crystal cooling blade is studied by experiment and finite element method (FEM) in this thesis. The main work and conclusion is obtained as following:
     Based on finite deformation crystallographic constitutive model, Tangent stiffness type methods for rate dependent was employed, a rate-dependent constitutive model for single crystals was implemented into ABAQUS。The correlation was established between resolved Shear Stress, strain and macroscopic stress, strain by orientation tensor.
     An experimentation system at high temperature gradient was developed, and the specimen with cooling hole and without cooling hole were designed to carry out tension and fatigue test at temperature gradient. The experiment result shows that the temperature gradient has influence on the tension and fatigue behavior of specimen. The yield stress with cooling air is higher than that without cooling air, and the yield stress with cooling hole is lower than that without cooling hole as the effect of stress concentration. The low fatigue life with cooling air is higher than that without cooling air.
     The fatigue-creep properties of DD6 single crystal supperalloy with [001], [011], [111] crystallographic orientations has been investigated at 980℃. One half of specimens are plates with film cooling holes. The experimental results show the fatigue-creep properties of DD6 are obviously anisotropic. The film cooling hole will reduce the fatigue-creep life of material; The creep damage play a major effect on the plate specimen without film cooling holes; but the fatigue damage plays a major effect on the plate specimen with film cooling holes. Under high temperature, the fatigue and creep damage at different dwell time with 5 min and 30 min play a main role in facture of test specimens. Interaction between fatigue and creep will greatly shorten using life of material.
     Plate specimens were used to model turbine blades with cooling holes. Experimental and numerical study on the creep behavior of a second generation nickel-based single crystal has been performed with these modeling specimens. The results of creep test at high temperature show that crystallographic orientations and cooling holes have noticeable influence on the creep life. Compared with that of the specimen without cooling holes, the creep life of the specimen with cooling holes is lower for both [001] and [111] orientations. The cooling holes have larger influence on the creep life in [001] orientation than that in [111] orientation. The creep behavior under high temperature and low stress conditions in [001] orientation is better than that in [111] orientation. The finite element analysis (FEA) results reveal that the cooling holes change the stress distribution in the specimen and cause stress concentration near the holes, which result in the decrease of creep life. As the creep life obtained from FEA is accordant to that from experiment, it is reasonable to calculate the creep life with the model based on the resolved slip stress.
     A cell model with film cooling hole was taken out from nickel-based single crystal cooling blade. Distributions of pressure and temperature of the model were given based on the fluid and heat transfer. An FEM model of crystal was built, the crystallographic stress characterization was analyzed based on the rate dependent constitutive, and the creep life of cell model was analyzed based on the creep parameters of the different slip systems. The result shows that there is an obvious temperature gradient around film cool. And the distribution of displacement and Von Mises stress has remarkable gradient due to the temperature gradient. The creep life of cell model is influenced greatly by the film cool. And the influence of [111] orientation is much more than [001] orientation.
     The nickel-based single crystal cooling blade with temperature gradient was analyzed based on the rate dependent constitutive. The result shows that the cooling air improves the strength of the cooling blade. And the cooling air improves the maximum resolved shear stress of the blade. Compared with the cell model, the distribution of the stress and strain at temperature gradient is not obvious.
     A two-damage-variable creep constitutive model has been used to analyze the creep deformation of nickel-based single crystal turbine blades. The crystallographic orientation optimization is performed by multidisciplinary design optimization theory. The analysis results show that controlled orientation and uncontrolled orientation have profound influence on creep deformation of single crystal turbine blades. The blade crystallographic orientations should be optimized for a better creep property.
引文
[1]徐润泽,粉末冶金结构材料学[M],长沙:中南工业大学出版社, 2002.1
    [2] GARBAR I I,The effect of load on the structure and wear of friction pair materials [J]. Wear, 1997, 205: 240-245
    [3]王开国,李嘉荣,刘世忠,曹春晓,DD6单晶高温合金980℃蠕变性能研究[J].材料工程,2004(8):7-11
    [4]李影,苏彬,吴学仁,DD6单晶高温合金的低周疲劳寿命估算[J].航空材料学报,2001,21(3):43-45
    [5] Gabb T.P.,Gayda J.,Miner R.V.,Orientation and temperature dependence of some mechanical properties of the single crystal Ni-based superalloy N4: Part II-low cycle fatigue[J]. metal. Trans. A, 1990,17A:497-505
    [6] Remy L., High temperature fatigue of superalloy[A].Bailon J.P., Dickson J.I., Proceedings of the 5th international conference[C], Montreal, 1993:825-834
    [7] Li S.X., Smith D.J., High temperature fatigue-creep behavior of single crystal SRR9 Ni-based superalloy: Part II-fatigue-creep life behavior [J].Fract. Engng. Mater. Struct. 1995,18(5):631-643
    [8]胡壮麒,刘丽荣,金涛,孙晓峰,镍基单晶高温合金的发展[J].航空发动机,2005,31(3):1-7。
    [9]陈荣章,王罗宝,李建华,铸造高温合金发展的回顾与展望.航空材料学报, 2000, 20(1):55-61。
    [10]周永军,王瑞丹,镍基超合金的发展和研究现状[J].沈阳航空工业学院学报,2006 23(1),35-37。
    [11]尚家香,赵栋梁,王崇愚, Ti在bcc Fe晶界中的作用[J].金属学报,2001,37(8): 893-896。
    [12]胡壮麒,彭平,刘轶,等,镍基合金γ’相界面的强化设计[J].金属学报, 2002,38(11):1121-1126。
    [13]冯培锋,王殿富,杜善义,李海涛,层板复合材料疲劳性能的唯象学研究模型及其应用[J].材料科学与工程,2002,20(2):192-195。
    [14]冯明珲,吕和祥,一种弹性粘塑性统一本构模型[J].固体力学学报,2001,22(4):403-408
    [15] G. I. Taylor. Plastic Strain in Metals [J]. J.Inst.Met, 1938, 62:307~324.
    [16] G. I. Taylor, C. F. Elam. The Distortion of an Aluminum Crystal During a Tensile Test [J]. Proceedings of the Royal Society, 1923, 102A: 643~644. London.
    [17] G. I. Taylor, C. F. Elam. The Plastic Extension of Fracture of Aluminum Crystal [J]. Proceedings of the Royal Society, 1925, 108A: 643~644. London.
    [18] G. I. Taylor. The Mechanism of Plastic Deformation of Crystal [J]. Part I. Theoretical. Proceedings of the Royal Society, 1934, 145 A: 362~387. London.
    [19] E. Orowan. Z.Phys, 1934, 89:634~651.
    [20] V. M. Polanyi. Z.Phys, 1934, 89:660~673.
    [21] E. Schmid. Plasticity of Crystal, 1935.
    [22] R. Hill. J.Mech.Phys.Solids. 1966, 14:95~110.
    [23] R. Hill, J. R. Rice. Constitutive Analysis of Elastic-Plastic Crystal at Arbitrary Strain [J]. J.Mech.Phys.Solids. 1972, 20:401~415.
    [24] R. J. Asaro, J. R. Rice. Strain Localization in Ductile Single Crystal [J]. J.Mech.Phys.Solids. 1977, 25:309~338.
    [25] R. J. Asaro. Crystal Plasticity. J. Appl.Mech.1983, 50:921~934.
    [26] R. J. Asaro. Micromechanics of Crystals [J]. In: Advances in Applied Mechanics, 23(1983): 1.Eds.J. W. Hutchinson.
    [27] J. R. Rice. Inelastic Constitutive Relations for Solids: an Internal-Variable Theory and its Application to Metal Plasticity [J]. J.Mech.Phys.Solids, 1971, 19:433~455.
    [28] K. S. Havner. Finite Plastic Deformation of Crystalline Solids [M]. Cambrige: Cambridge University Press, 1992.
    [29] K. S. Havner, G. S. Baker. Theoretical Latent Hardening in Crystal-General Equations for Tension and Compression with Application to FCC Crystal in Tension [J]. J.Mech.Phys.Solids, 1979, 27:33~50.
    [30] S. N. Nasser. Rate-Dependent Finite Elastic-Plastic Deformation of Polycrystals [J]. Proc.R.Soc.Land, 1986, A407:45~49
    [31] J. R. Rice. Inelastic Constitutive Relations for Solids, an Internal-VariableTheory and its Application to Metal Plasticity [J]. J.Mech.Phys.Solids, 1971, 19:433~455.
    [32] R. Hill, K. S. Havner. Perspectives in the Mechanics of Elastoplastic Crystal [J]. J.Mech.Phys.Solids, 1982, 30:5~22.
    [33] D. Peirce, R. J. Asaro,A.Needleman. An Analysis of Non-uniform and Localized Deformation in Ductile Single Crystal [J]. Acta Metall, 1982, 30:1087~1119.
    [34] D. Peirce, R. J. Asaro, A.Needleman. Material Rate Dependence and Localized Deformation in Crystalline Solids [J].Acta Metall,1983, 31:1951~1976.
    [35] M. M. Rashid, S. N. Nasser. A Constitutive Algorithm for Rate-Dependent Crystal Plasticity [J]. Comput.Methods Appl.Mech.Engrg. 1992, 94:201~228.
    [36]岳珠峰,尹泽勇,杨治国,成晓明,吕震宙:晶体滑移有限元程序及其应用[J].计算力学学报,14(1997),500-503。
    [37]尹泽勇,岳珠峰,杨治国,成晓明:各向异性单晶合金结构强度与寿命,国防工业出版社,2002.12。
    [38]岳珠峰,郑长卿:基于大变形晶体塑性理论的Ni基高温单晶拉伸特性分析,现代数学与力学,中国矿业大学出版社,1993,366-370.
    [39]万建松.有限变形晶体塑性滑移理论单晶力学行为的研究[D].西北工业大学博士论文,2003。
    [40]于庆民.基于晶体塑性理论的镍基单晶构件力学性能的有限元分析[D].西北工业大学硕士论文,2005。
    [41]温志勋.晶体塑性理论及其在镍基单晶和双晶合金中的应用[D].西北工业大学硕士论文,2007.
    [42]岳珠峰,吕震宙,何健:镍基单晶合金的γ’相筏化准则及蠕变性能的晶体取向相关性,金属学报,1999,35:585-588.
    [43]王春涛,单晶镍基合金的组织结构、蠕变行为及高温氧化特征[D].沈阳工业大学硕士论文,2006。
    [44]王春涛,田素贵,王明罡等,一种单晶合金的高温蠕变行为及其变形特征[J].材料与冶金学,2006,5(2):133-136
    [45] Gayda J, Macka R A. Analysis of Gamma' shape Changes in a Single Crystal Ni-base Superalloy. Scripta Metallurgical. 1989, 23:18351844
    [46] Fredholm A, Strudel J L. On the Creep Resistance of Some Nickel-Base SingleCrystals. in:Superalloys 1984. Warrendale: AIMS. 1984. 211220
    [47] Pollock T.M.,Argon A.S.,Creep resistance of CMSX-3 Nickel base superalloy single crystals[J].Acta Metall Mater, 1992,40:1-30
    [48]丁智平,陈吉平,尹泽勇,等,一种镍基单晶合金多轴低周疲劳损伤参量[J].航空动力学报,2006,21(3):538-544
    [49]丁智平,复杂应力状态镍基单晶高温合金低周疲劳损伤研究[D].中南大学博士论文,2005。
    [50]李影,苏彬,760℃下DD6单晶高温合金的循环形变[J].材料工程,2002,5:7-10
    [51] L I S X , FLL ISON E G,SMITH D J . The influence of orientation on the elastic and low cycle fatigue properties of several single crystal nickel base superalloy [ J ] . J Strain Analysi , 1994 , 29(2) : 147.
    [52] Mitsuru Kanda, M asao Sakane, M asateru Ohnam i. H igh Temperature M ultiaxial Low Cycle Fatigue of CM SX22 N i2Base Single Crystal Superalloy [J ]. ASME Journal of Engineering Materials and Technology , 1997, 119: 153~160.
    [53] Swanson G R, A rakere N K. Effect of Crystal Orientation on Analysis of Single2CrystalN ickel2Based Turbine Blade Superalloys [R ]. N T IS N 20000037784?X A B , 2000, 2, 78.
    [54]岳珠峰,吕震宙.复杂应力状态下镍基单晶合金低周疲劳寿命预测模型[J ].稀有金属材料工程, 2000, 29 (1) : 28~31.
    [55] Mac Lachlan D W , Know les D M. Fatigue Behaviour and Lifing of Two Single Crystal Superalloys [ J ]. Fatigue Fract Enging Mater Struct, 2001, l24: 503~521.
    [56]王纪安,于永泗.循环频率对CMX23单晶合金高温疲劳行为的影响[J ].宇航材料工艺, 2001, 2: 56~58.
    [57]王自强.理性力学[M].北京:科学出版社, 2000.
    [58] Hayashi M. Thermal fatigue behavior of thin-walled cylindrical carbon steel specimens in simulated BWR environment [J]. Nuclear Engineering and Design, 184(1998), 123-133.
    [59] Rau K, Beck T, Loehe D. Isothermal, thermal-mechanical and complex thermal-mechanical fatigue tests on AISI 316L steel– a critical evaluation[J].Mat. Sci. Eng., A345(2003), 309-318.
    [60] Shah QH, Homma H. Fracture criterion of materials subjected to temperature-gradient [J]. Int. J. Pressure Vessels and Piping, 62(1995), 59-68.
    [61] Kim KS. Crack growth under thermal-mechanical and temperature gradient loadings[J]. Eng. Fract Mech., 58(1997), 133-147.
    [62] Gallerneau F, Chaboche JL. Fatigue life prediction of single crystals for turbine blade application[J]. Int. J. Damage Mechanics, 8(1999), 402-427.
    [63] Zhou YC, Hashida T. Thermal fatigue failure induced by delamination in thermal barrier coating[J]. Int. J. Fracture, 24(2002), 407-417.
    [64]岳珠峰,杨治国,尹泽勇等.单晶涡轮叶片材料本构模型及应用研究[J],燃气涡轮试验与研究,2003, 16(1),50-56.
    [65]李影,于慧臣,张国栋等.高温下拉伸保载对DD6单晶合金低周疲劳行为的影响,燃气涡轮试验与研究,2005,18(1):14-16
    [66]王开国,李嘉荣,刘世忠等. DD 6单晶高温合金760℃的蠕变性能研究,材料工程,2004,5,7-11.
    [67]岳珠峰.镍基单晶合金涡轮叶片强度与寿命分析,西北工业大学报告,2005, No.1994-012
    [68]何明辉,李海燕,聂景旭.DD6单晶合金的高温蠕变/疲劳损伤研究,燃气涡轮试验与研究,2002,15(2):24-27
    [69]苏彬,吴学仁.高温下取向对DD6单晶高温合金低周疲劳寿命的影响,航空材料学报,2001,21(2):43-45
    [70]蔡能,尚德广.高温多轴疲劳损伤与寿命预测研究进展.机械强度,2004,26(5),576-582
    [71] Charlie R. Brooks, Ashok Choudhury. Failure Analysis of Engineering Materials[M].McGraw-Hill Companies, Inc. 2002.
    [72]尹泽勇,岳珠峰,杨治国,成晓明.各向异性单晶合金结构强度与寿命[M].北京:国防工业出版社,2003.1.
    [73] Feleury G, Schubert F, Nickel H. Modeling of the thermal-mechanical behavior of the single crystal superalloy CMSX-4[J]. Computational Materials Science, 1996, 7: 183~193.
    [74] Zhou H, Harada H, Koizumi Y, Kobayashi T, Okada I. Thermo-mechanicalfatigue properties of a third generation single crystal superalloy TMS-75[R]. High Temperature Materials 21, TMS Annual Meeting, Feb. 2002. 203~215.
    [75] Eggeler G., Final Progress Report, Predictive microstructural assessment and micromechanical modeling of deformation and damage accumulation in single crystal gas turbine blading[R]. MICROMOD, Brite/Euro 96-3911(1997.1~2000.12), Jan, 2001.
    [76]于庆民,岳珠峰.晶体率相关弹塑性晶体滑移有限元程序[R].西安:西北工业大学报告,2005.
    [77]何明辉,李海燕,聂景旭. DD6单晶合金的高温蠕变/疲劳损伤研究[J].燃气涡轮试验与研究,2002, 15(2):24~27.
    [78]于庆民.基于晶体塑性理论的镍基单晶合金构件力学性能的有限元分析[D].西安:西北工业大学,2005.
    [79]于庆民,万建松,岳珠峰.镍基单晶合金涡轮叶片蠕变分析的MARC用户子程序开发[J].燃气涡轮试验与研究. 2004,17(4):20~23.
    [80]岳珠峰,吕震宙.双剪切试样在镍基单晶合金蠕变变形损伤和寿命研究中的应用[J].金属学报,2002,38(8):809~813.
    [81]张晓兵,李其连,王健.激光加工小孔工艺及其孔壁再铸层对DZ22高温合金疲劳性能的影响[J].航空工艺技术,1995(2):20-22.
    [82]张宏炜,陈荣章.激光加工气膜孔对定向凝固高温合金薄壁持久性能的影响[J].航空材料学报,1998,18(1):29-31.
    [83]于庆民.基于晶体塑性理论的镍基单晶构件力学性能的有限元分析[D].西北工业大学硕士学位论文,2005.
    [84] MARC Analysis Research Corporation, MARC Volume D: User Subroutine and Special Routines, Version K7.
    [85]尹泽勇,岳珠峰,杨治国,成晓鸣.各向异性单晶合金结构强度与寿命[M].北京:国防工业出版社, 2003:58-64
    [86] Yue ZF. Multiaxial Creep Damage Constitutive Relationship for Nickel-base Single Crystal Superalloys Based on the Microstructural. Assessment and Applications[R]. ArH Report. 2000
    [87]岳珠峰,吕震宙.双剪切试样在镍基单晶合金蠕变变形损伤和寿命研究中的应用[J].金属学报,2002,38(8):809-813.
    [88]《航空发动机设计手册》总编委会.航空发动机设计手册第10册[M].航空工业出版社,北京,2001.
    [89] D. Lakehal, G.S.Theodoridis, W.Rodi. Three-dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model. International Journal of Heat and Fluid Flow, 22(2001):113-122
    [90] Yiyb J. Kim, S.-M. Kim. Influence of shaped injection holes on turbine blade leading edge film cooling. International Journal of Heat and Mass Transfer 47(2004):245-256
    [91] D.Lakehal, G.S. Theodoridis and W.Rodi, Three-dimensional flow and heat transfer calculations of film cooling at the leading edge edge of a symmetrical turbine blade model. International Journal of Heat and Flow 22(2001): 113-122
    [92] Thimas A. Zang. Multidisciplinary Design Optimization Techniques: Implications and Opportunities for Fluid Dynamics Research. AIAA-99-3798.
    [93]袁新,林智荣,赖宇阳等.涡轮叶片的气动优化设计系统.热力涡轮. 2004(3).
    [94] Goel, Sanjay and Lamson Scott, Automating the Design Process for 3D Turbine Blades, CFD for Design and Optimization, ASME, FED-Vol. 232.
    [95]岳珠峰,吕震宙,杨治国,成晓鸣,尹泽勇.晶体取向的偏差和随机性对镍基单晶叶片强度与蠕变寿命的影响[J].航空动力学报,2003,18(4),477-480.
    [96]岳珠峰,杨治国,尹泽勇.晶体取向对航空发动机单晶叶片结构强度和蠕变寿命的影响[J].航空发动机,1997,4,32-34.
    [97]万建松,岳珠峰.镍基单晶DD3涡轮叶片蠕变寿命晶向相关性分析[J].燃气涡轮试验与研究,2004,17(2),18-22.
    [98]岳珠峰,吕震宙,杨治国,尹泽勇.镍基单晶结构的蠕变损伤寿命研究[J].推进技术,2003,24(3),283-285.
    [99]岳珠峰,胡卫兵,吕震宙.镍基单晶合金筏化规律及蠕变持久寿命模型在复杂应力状态下的考核[J].稀有金属材料与工程,2002, 31(6), 419-422
    [100]岳珠峰,吕震宙.双剪切试样在镍基单晶合金蠕变变形损伤和寿命研究中的应用[J].金属学报,2002,38(8),809-813.
    [101] iSIGHT8.0.赛特达科技有限公司. 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700