用户名: 密码: 验证码:
松辽盆地(南部)深层构造特征及油气富集规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on the Deep Fault Depression Structure Characteristic and Oil&gas Accumulation in Southern Part of Songliao Basin
  • 作者:李瑞磊
  • 论文级别:博士
  • 学科专业名称:地球探测与信息技术
  • 学位年度:2005
  • 导师:杨宝俊
  • 学科代码:081802
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-06-01
  • 答辩委员会主席:孙建国
摘要
本文在大量地质、地球物理资料的基础上,通过四条地震长剖面对松辽盆地南部深部断陷盆地的构造特征及演化进行了研究,认为松辽盆地深层断陷主要以NNE 中央复式断陷为主线,在东部复式断陷区派生出两个NE 向的分支,在西部分散断陷区内只是有少的残余断陷分布。并进一步分析了十屋断陷的构造特征,储层特征,并总结了成藏规律。阐述了采用多种地球物理新技术对现今松南油气藏的描述、储层预测研究的应用和方法。总结了目前松辽盆地南部深层油气聚集规律、成藏模式和控制因素,指出下一步松辽盆地南部深层天然气的勘探目标、方向。
The Songliao Basin, located in Northeast China (NE China) with an area of about 260000 km2, is the most important oil and gas concentrating region in china. It is traditionally recognized that the Songliao Basin is divided into northern and southern sectors along the boundary between the Heilongjiang and Jilin provinces, and these two sectors cover 120000 and 140000 km2 respectively. Since the breakthrough of crude oil exploited from Well SongJi3 in Songliao Basin in 1959, Songliao Basin has entered the stage of highly containing water now and the yield presents the downward trend, after 40 years of exploration and development. So it is necessary that the exploration target would turn to deep oil and gas layers from middle and shallow layers. This paper mostly studies structural characteristics of the south of Songliao Basin, analyzes the characteristics of the migration and accumulation of natural gas, meanwhile, it discusses the potentiality and direction of deep exploration in the future.
    Firstly, the paper synthetically analyzes that structural framework and tectonic evolution of rift basins in the south of Songliao Basin, by used of four long seismic profiles and past geophysical and geological data. After describing the framework of the rift basins in the south of Songliao Basin in detail, it is thought that the deep rift area of Songliao Basin is mainly central overlapping rift area, which is in NNE direction. In the south, it branches a fault zone of NE direction, namely Shiwu rift, Dehui rift and Yushu rift in turn from south to north; and near Songhua River, there is another branch of NE direction, namely Sheli rift, Halahai rift and Xujiaweizi rift in the north of Songliao Basin etc. The central overlapping rift area is divided into Changling deep Depression and Qianan deep Depression by Daqingzijing lobe of NW direction. Changling deep Depression is in NW direction.
    Basement faults are mainly in NNE direction and that in NW direction take second place. There are mostly two NW faults, one is located alone Songhua River and another is the dividing line of Central deep Depression Area, Southeast Uplifted Area and Southwest Uplifted Area. The later faults’trends are mainly NNW and approximate NS direction and it is proved the change in the direction of stress field of Songliao Basin. The tectonic movement in the south of Songliao Basin is mainly divided into four stages: the end of Yingchen Formation, the end of Denglouku Formation, the end of Nenjiang Formation and the end of Mingshi Formation. In the end of Yingcheng Formation and Denglouku Formation, the manifestation of the tectonic movement is mainly that the strata rise in small vertical relief, with the phenomena of denudation occurred in partial structure. Toward the end of Nenjiang Formation deposition, the spreading Japan Sea applied westward compression to the basin. This resulted in the Nenjiang movement wrenching, rotation and transpression, creating folding and uplift, particularly in the eastern part of the basin. As a result of folding, uplift and inversion in the eastern part of the basin, the Sifangtai Formation and Mingshui Formation depocenters shifted westward, largely into the Central Depression Area. During movement of the end of Nenjiang Formation, and little or no deposition was recorded in Southeast uplifted portion of the basin. The tectonic movement of the end of Nenjiang Formation enabled some reversal structure further formed, and rose and denuded. The thickness of denudation reached nearly one thousand meters. Using the 3D seismic data of 700 km2 of the Shi Wu rift basin for full 3D seismic interpretation, and using technique of variance cube to research the fault system, it is considered that Shi Wu rift basin is a NNE half graben basin, which is controlled by Sangshutai Fault zones. There are three NNE basement faults with structural feature of counter-clockwise strike-slip in the Basin. The partial structures distributed in pinch-and-swell form in the depression, and its trend is the same as the three NE faults. They are Xidingjia-Pijia Structural Belt, Houwujiahu-Siwujiazi-Taipingzhuang-Shuanglong Structural Belt (Central Structural Belt) and Aijia-Qinjiatun Belt respectively. These three structural belts are also main petroleum accumulation area of Shiwu rift. The petroleum reservoirs of Shiwu Fault Depression have the following basic laws. Plenty petroleum layers are distributed in vertical, which crossed well interval is long. The distribution of oil-gas reservoirs is discovered from Member 4 Formation Quantou to base rock. The feature of zonal distribution of discovered oil-gas reservoirs is obvious. From exploration results, the discovered oil and gas reservoirs concentrated and distributed over the three NNE fault belts in Shiwu Fault Depression. The types of petroleum reservoir are various, vertical type is a combination of petroleum series, which mainly formed overlapping accumulation area. The law of petroleum distribution is that oil and gas distributed in a circle
    around oil generating center, in the oil generating center there is natural gas reservoir, outward there are oil and gas reservoir and pure oil reservoir respectively. To the features and difficult points of glutenite and thin interbed in the rift strata of the south of Songliao Basin, the reservoir prediction is studied by means of coherence analysis technique, inversion of seismic impedance and inversion of reservoir features with characteristic curve reconstructing. The reservoir predicting technique was found, which is combined with various technique fitting for practical geological features of the area. The distributional mode of deep petroleum of the south of Songliao Basin may be divided into following modes: fault block lithology and fault lithology forming reservoir mode(spanning mode), the lower generating and the upper accumulating mode, which is communicated with deep major fault fracture; lithology structure forming reservoir mode, the lower generating and the upper accumulating mode, which is communicated with fault fracture; primary oil-gas forming reservoir mode, generation of itself, accumulation of itself and capping formation of itself mode; stratigraphic overlapping forming reservoir mode, the lower generating and the upper accumulating mode; the burial hill of the base rock forming reservoir mode, the upper generating and the lower accumulating mode; inorganic CO2 forming reservoir mode. The controlling factors of petroleum forming reservoir can be divided into the following aspects: deep rift basin controls petroleum distribution on the whole and each rift has a respective petroleum-bearing system. It is necessary for forming reservoir of petroleum accumulation that deep rift communicates the relation between hydrocarbon rocks and shallow reservoir layers. The distribution of area cap formation and direct cap formation decides the vertical distribution of petroleum, and the physical properties of reservoir is the key factor of restricting deep productive capacity. In a word, there is enormous potentiality in deep exploration of Songliao Basin. To the shallow secondary reservoir, certain achievement has been made, and some of reserves have been proved. However, being effected with complicated depositional environment and multiple-stage tectonic movement, and faults and fractures are developed, the type of structure is complicated, the physical properties are out of condition to reservoir, and anisotropism is strong, it is difficult to search large-scale and self contained oil and gas fields in the shallow. The result of exploration was also proved that the proved petroleum reservoirs are in small scale at present and rely mainly on the fact that the secondary oil-gas reservoirs, whose productive capacity is rather lower. It is even difficult to break through the aspects of structure and reservoirs with the existing prospecting technique. After recent years’prospecting progress, it is considered that the thought of deep prospecting in the south of Songliao Basin in the future should be turned firstly from searching secondary oil-gas reservoirs to the searching of primary oil-gas reservoir near the area of the
引文
[1]查明.断陷盆地油气二次运移与聚集.地质出版社.1997
    [2]陈发景等,含气(油)盆地的成因类型特征—典型盆地分析及远景评价,中国地质大学出版社,1994
    [3]陈焕疆.论板块大地构造与油气盆地分析.同济大学出版社.1990
    [4]陈孔全,吴金才,唐黎明等.松辽盆地南部断陷成藏体系.中国地质大学出版社.1999
    [5]陈义贤.辽河裂谷盆地断裂演化序次和油气藏形成模式,石油学报,1985,6(2):1~11
    [6]陈昭年,陈发景. 松辽盆地反转构造. 地质出版社,1998
    [7]迟元林,云金表,蒙启安等.松辽盆地深部结构及成盆动力学与油气聚集.石油工业出版社.2002
    [8]迟元林.松辽盆地基底构造演化及油气聚集.见:大庆油田发现40 年论文集.石油工业出版社.1999
    [9]戴金星,王庭斌,中国大中型天然气田形成条件与分布规律,地质出版社1997
    [10]戴金星等,中国天然气地质学(卷一),石油工业出版社,1992
    [11]单家增,孙红军,肖乾华等.辽河盆地古近纪二期构造演化特征的研究.地球物理学报.2003,46(1):73~78
    [12]丁正言,韩广玲,张惠,等. 松辽盆地南部油气聚集带的成因类型和分布模式. 见:徐树宝,胡见义. 中国油气聚集与分布. 石油工业出版社,1991,39~48
    [13]方立敏,李玉喜,殷进垠等. 松辽盆地断陷末期反转构造特征与形成机制. 石油地球物理勘探,2003,38(2):190~193
    [14]傅维洲. 满洲里—绥芬河地学断面及相邻地区的现代构造应力场特征.见金旭杨宝俊主编中国满洲里—绥芬河地学断面地球物理场及深部构造特征研究,地震出版社;1994 年
    [15]高君,李占林,李勤学.松辽盆地北部深部地壳结构及盆地成因机制.大庆石油地质与开发.2002,21(1):20~22
    [16]关德师,李建忠.松辽盆地南部岩性油藏成藏要素及勘探方向.石油学报.2003,24(3):24~27
    [17]何兴华.松南下白垩统天然气成藏主控因素与成藏规律.石油与天然气地质.2004,25(1):75~80
    [18]侯贵廷,冯大晨,王文明等. 松辽盆地的反转构造作用及其对油气成藏的影响. 石油与天然气地质,2004,25(1):49~53
    [19]侯启军,杨玉峰.松辽盆地无机成因天然气及勘探方向探讨.天然气工业.2002,22(3):5~10
    [20]胡见义、黄第藩、徐树宝等,中国陆相石油地质理论基础,石油工业出版社,1991
    [21]黄福林,骆传才,何兴华等. 松辽盆地南部构造圈闭系列.石油与天然气地质.1996,17(4):333~336
    [22]金衍泰译, B K 加弗里什, 深断裂在石油及天然气运移和聚集中的作用,石油工业出版社,1988
    [23]李春意,郭令智,朱夏等. 板块构造讲稿.中国地质科学院.1982 年
    [24]李庆忠.走向精确勘探的道路.石油工业出版社.1994
    [25]李瑞磊,杨立英.叠前深度偏移技术在松南秦家屯地区的应用.长春科技大学学报.2000, 30(吉林地球物理专辑):35~37
    [26]李思田、杨士恭、吴冲龙等,中国东部及邻区新生代裂陷作用的大地构造背景,见:王鸿祯主编,《中国及邻区构造古地理和生物古地理》,地质出版社,1990, 109~26
    [27]李晓松,赵占银,李春雷等.三维地震资料解释技术研究及实例,见:地震资料解释新技术应用成果交流会论文集,石油工业出版社,2001
    [28]李志明,张光珠.地应力与油气勘探开发.石油工业出版社.1997
    [29]刘宝柱,姜呈馥,杨亚娟.松辽盆地南部正反转构造与油气成藏关系.大庆石油与开发,1998,17(2):10~12
    [30]刘嘉麒,论中国东北大陆裂谷的形成与演化,地质科学,1989,NO.3, 209~215
    [31]刘立,汪筱林等.满洲里—绥芬河地学断面域中新生代裂谷盆地的构造—沉积演化. 见M—SGT 地质课题组中国满洲里—绥芬河地学断面域岩石圈结构及其演化的地质研究,地震出版社;1994,1~13
    [32]刘立、刘招君、刘万洙等,试论松辽盆地的沉降与两侧山地隆升的关系,长春地质学院学报, 22,论文(摘要)专辑, 170~72
    [33]刘立、王东坡,松辽盆地中生代地层中不整合的类型、特征与成因, 长春地质学院建院四十周年《科学研究论文集》(基础地质),吉林科学技术出版社,1992,258~264
    [34]刘为付.松辽盆地徐家围子断陷深层火山岩储层特征及有利区预测.石油与天然气地质.2004,25(1);115~119
    [35]刘雯林.油气田开发地震技术.石油工业出版社.1996
    [36]刘泽容,信全麟,朱筱敏等.断陷盆地构造岩相带与油气评价.科学出版社.1992
    [37]刘招君,汪筱林等. 满洲里—绥芬河地学断面域松辽—海拉尔中生代盆地形成机制. 见M—SGT 地质课题组中国满洲里—绥芬河地学断面域岩石圈结构及其演化的地质研究,地震出版社;1994,14~25
    [38]刘子良,梁春秀.松辽盆地南部构造裂缝成因机制及分布方向.石油勘探与开发,1999,26(5):83~85
    [39]罗群,白新华等.断裂控烃理论与实践——断裂活动与油气聚集规律.中国地质大学出版社,1998
    [40]罗群,孙宏智.松辽盆地深大断裂对天然气的控制作用.天然气工业.2000,20(3):16~21
    [41]马莉等.松辽盆地成因演化与软流圈对流模式.地质科学,1999,34(3):365~374
    [42]祁林,韩广玲,张惠等.松辽盆地喜山运动期地应力场演化对油气运聚的影响.石油与天然气地质.1992,13(4):398~406
    [43]谯汉生,方朝亮,牛嘉玉等主编.中国东部深层石油地质,石油工业出版社,2002
    [44]谯汉生等.中国东部大陆裂谷与油气.石油工业出版社,1999
    [45]孙运生,金旭,穆石敏等.满洲里——绥芬河地学断面地球物理研究的初步成果.见:金旭,杨宝俊主编.中国满洲里——绥芬河地学断面地球物理场及深部构造特征研究.地震出版社,1994,1~5
    [46]唐建人,陈守田,张克民.松辽盆地北部深层层圈结构与成因模式探讨.长春科技大学学报.2001,31(4):338~339
    [47]唐建人,刘振彪,刘金平等. 松辽盆地北部深层地震勘探技术进步及地质效果. 东部深层目标地震攻关研讨会论文集,石油工业出版社,1999,19~29
    [48]唐黎明,何兴华.松辽盆地梨树凹陷泉头组沉积特征.石油与天然气地质.2002,23(3):266~288
    [49]万天丰. 中国东部中、新生代板内变形构造应力场及其应用. 地质出版社,1993
    [50]万天丰.构造应力场研究的新进展,地学前缘,1995,2(1~2):226~235
    [51]汪筱林,刘立等. 满洲里—绥芬河地学断面域中新生代盆地基底结构及其构造演化. 见M—SGT 地质课题组中国满洲里—绥芬河地学断面域岩石圈结构及其演化的地质研究,地震出版社;1994,26~37
    [52]王德海. 松辽盆地南部天然气的成藏与分布. 见李干生张永刚朱起煌主编中国石化论文集;2002 年
    [53]王东坡,刘招君,刘立等.松辽盆地演化与海平面升降.地质出版社.1994
    [54]王果寿.松辽盆地十屋——德惠地区沉积体系特征.石油与天然气地质.2001,22(4):331~335
    [55]王鸿祯,刘本培,李思田.中国及邻区大地构造划分和构造发展阶段,中国及邻区构造与地理和生物古地理.中国地质大学出版社,1990
    [56]王尚文主编. 中国石油地质学.石油工业出版社.1983 年
    [57]王涛.中国东部裂谷盆地油气藏地质.石油工业出版社.1996
    [58]王咸彬,曹辉,郭全仕等.真(全)三维构造解释技术初探.石油物探,2000,39(2):89~94
    [59]王永春,松辽盆地南部岩性油藏的形成与分布.石油工业出版社.1999
    [60]王志武主编.中国石油地质志卷二(上),大庆油田.石油工业出版社.1993
    [61]吴崇筠,薛叔浩等.中国含油气盆地沉积学.石油工业出版社.1992
    [62]徐嘉伟,马国峰.郯庐断裂带研究的十年回顾.地质论评,1992,38(4):316~324
    [63]杨宝俊,李勤学,唐建人等.松辽盆地反射地震莫霍面的形态、三瞬处理结果及其地质意义.地球物理学报.2003,46(3):398~402
    [64]杨宝俊,刘财等. 用近垂直反射地震资料研究安达—肇州—哈尔滨断面域地壳结构. 见金旭杨宝俊主编中国满洲里—绥芬河地学断面地球物理场及深部构造特征研究,地震出版社;1994 年
    [65]杨宝俊,刘财等.满洲里—绥芬河地学断面、满洲里—林甸段广角地震测深资料综合研究. 见金旭杨宝俊主编中国满洲里—绥芬河地学断面地球物理场及深部构造特征研究,地震出版社;1994 年
    [66]杨宝俊,穆石敏,金旭等.中国满洲里—绥芬河地学断面地球物理综合研究,地球物理学报.1994,39(6):772~ 782
    [67]杨宝俊,牛滨华,阎贫.勘探地震学导论(下册).吉林科学技术出版社.1992
    [68]杨宝俊、刘财、王功先等,深层地震勘探方法的初步研究和研究,长春地质学报,1992,22(1)
    [69]杨宝俊.在地学断面域内用地震学方法研究大陆地壳——以中国满洲里—绥芬河地学断面为例.地震出版社.1999 年
    [70]杨凤丽,周祖翼.陆相盆地复式含油气系统研究——埕岛例析.石油工业出版社,2000
    [71]杨万里主编. 松辽陆相盆地石油地质.石油工业出版社.1985 年
    [72]殷进垠,刘和,迟海江.松辽盆地徐家围子断陷构造演化.石油学报.2002,23(2):26~31
    [73]于建国,韩文功,王金铎.陆相断陷盆地砂岩储层横向预测.石油工业出版社.2002
    [74]张功成,蔡希源,周章保等.裂陷盆地分析原理和方法——以松辽盆地为例.石油工业出版社.1996
    [75]张恺.板块构造与油气成因二元论.石油工业出版社.1997
    [76]张明坤主编.中国石油地质志卷二(下),吉林油田.石油工业出版社.1993
    [77]张明利,万天丰.含油气盆地构造应力场研究新进展.地球科学进展.1998,13(1):38~43
    [78]张庸,王锡魁等. 东北地区NE 向断裂的左旋运动. 见M—SGT 地质课题组中国满洲里—绥芬河地学断面域岩石圈结构及其演化的地质研究.地震出版社.1994
    [79]张渝昌.中国含油气盆地原型分析.南京大学出版社.1997
    [80]张玉芬.薄互层地震反射特征研究.中国地质大学出版社.2002
    [81]朱夏.论中国含油气盆地构造.石油工业出版社.1986
    [82]Ade , K. and Kanamori, H., 1970. Mantle structure beneath the Japan Sea as revealed by surface waves. Bull. Earthquake Res. Inst., Univ. of Tokyo. 48: 1011~1021
    [83]Allen P. A., Allen J R. Basin Analysis. London: Blackwell Scientific Publication. 1990
    [84]Apperson-K-Denise, Guoping-Bai, Hobday-David-K. Songliao Basin: tectonic and depositional controls on giant hydrocarbon accumulations. In: American Association of Petroleum Geologists 1998 annual meeting. Annual Meeting Expanded Abstracts -American Association of Petroleum Geologists. 1998
    [85]Bahorich M. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. The Leading Edge, 1995, 14(10): 1053~1058
    [86]Berge T B, Fred Aminzadeh, Paul de Groot, et al. Seismic inversion successfully predicts reservoir, porosity, and gas content in Ibhubesi Field, Oracge Basin, South Africa, The Leading Edge, 2002, 21(2): 338~348
    [87]Biondo L. Biondi, 3-D Seismic Imaging, Standford University, 2003
    [88]Carrie Decker, Mike Burnett, Mohamed Eissa. Advanced seismic technology improves prospect evaluation and reservoir delineation in the mature Macuspana Basin, Mexico. The Leading Edge, 2003, 22(11): 1142~1147
    [89]Chopra S. Coherence Cube and beyond. First Break, 2002, 20(1): 27~33
    [90]Cloetingh S, Boldreel L O, Larsen R T, et al. Tectonics of sedimentary basin formation: models and constraints. Tectonophysics. 1998. 300:1-11
    [91]Dou-Lirong; Li-Jinchao, Structure style and petroleum systems of the Songliao Basin. In: Proceedings of the 30th international geological congress; Geology of fossil fuels; oil and gas. Proceedings of the International Geological Congress. 1997. 30, 18: 33-42
    [92]Evans,J.R., Suyehiro, K. and Sacks, I.S., Mantle structure beneath the Japan Sea---a re-examination. Geophys., Res. Lett., 1978,5:487-490
    [93]Gersztenkorn A, Marfurt K J. Eigenstructure based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics, 1999,64, 1468~1479
    [94]Harding T P, Lowell J D. Structural style, their plate-tectonic habitats and hydrocarbon traps in petroleum provinces, AAPG Bull, 1979, 63(7)
    [95]Harding T P., Seismic characteristics and identification of negative flower structures, positive flower structures and positive structural inversion. AAPG Bulletin, 1983, 69:582~600
    [96]Harding T P., Structural inversion at Rambutan oil Filed, South Sumatra Basin. AAPG Bulletin, 1984,68:333~362
    [97]He-Sheng; Tang-Zhonghua , Hydrochemical characters and origin of underpressure system in the southeast area of Songliao Basin, China. In: American Association of Petroleum Geologists 1999 annual meeting. Annual Meeting Expanded Abstracts -American Association of Petroleum Geologists. 1999, 57
    [98]Hopper E C D. Fluid Migration along growth faults in compacting sediments. Jour. of Petrol. Geol. , 1991, 14(2): 161~180
    [99]Hu-Wangshui, Cai-Chunfang, Wu-Zhiyong, et al. Structural style and its relation to hydrocarbon exploration in the Songliao Basin, Northeast China, Marine and Petroleum Geology. 1998.15; 1, Pages 41-55
    [100]Hwang R J, et al. Oil composition variation and reservoir continuity: Unity field, Sudan, Organic Geochemistry, 1994, 21:171~188
    [101]Karig,D.E., Origin and development of marginal basin in the western Pacific, J. Geophys., Res., 1971,76,1541-2546.
    [102]Kidd D., Fundamentals of 3-D seismic volume visualization. The Leading Edge, June 1999, 702~709
    [103]Kobayash, Kazuo and Isezaki, Magmatic anomalies in the sea of Japan and Shikoku Basin, possible tectonic implications. In George H. Sutton “The geophysics of the Pacific Ocean Basin and its margins”. 1976, 235~251
    [104]Kusznir N J, Ziegler P A. The mechanics of continental extension and sedimentary formation: a simple –shear/ pure –shear flexural cantilever model. Tectonophysics, 1992,215:117~131
    [105]Li Sitian et al., Sedimentation and Tectonic evaluation of late Mesozoic faulted coal basins in North-Eastern china, In Sedimentology of coal and coal-bearing sequences. Blackwell Scientific Publications, 1985
    [106]Ludwig, W.J., Murauchi, S. and Houtz, R.E., Sediments and structure of the Japan Sea. Soc. Am. Bull., 1975.87:651-664.
    [107]Magoon L B, Sanchez R M O. Beyond the petroleum system. AAPG Bulletin, 1995,79:1731~1736
    [108]Mahob, P.N., Castagna, J.P., and Young, R.A., AVO inversion of a Gulf of Mexico bright spot a case study: Geophysics, 1999, 64, 1480-1491.
    [109]Marfurt K J, Kirlin R J, Farmer S L, et al. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics, 1998, 63, 1150~1165
    [110]McClay K R. Extensional fault systems in sedimentary basins: a review of analogue model studies. Marine and Petroleum Geology, 1990,7:206~233
    [111]Mitra S., Geometry and Kinematics evaluation of inversion structures. AAPG Bulletin, 1993, 77(7): 1159~1191
    [112]Morley C K, Nelson R A, Patton T L and Munn S G. Transfer zones in the East African rift system and their relevance to hydrocarnbin exploration in rifts. AAPG Bulletin, 1990,74:1234~1253
    [113]Naoshi Hirata Hidekazu Tokuyama and Tae Woong Chung, 1988, An anomalously thick layering of the crust of the Yamato Bain, southeastern Sea of Japan: the final stage of back-arc spreading. Tectonophysics, 1988,165,303-314,
    [114]Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 1995, 23(8): 719~722
    [115]Otofuji, Y.,Hayashida, A. and Torii,M., When was the Japan Sea opened?:palaeomagnetic evidence from southwest Japan. In: N. Nasu, I. Kushiro, K. Kobayashi and H. Kagami (Editors), Formation of Active Ocean Margins. Terrapub, Tokyo, 1985,551-556.
    [116]Peerrodon A., Petroleum systems and global tectonics, Journal of Petroleum Geology. 1995, 82.18(4)
    [117]Perrodon A, Masse P. Subsidence, sedimentation and Petroleum system. Journal of Petroleum Geology, 1984, 7(1): 5~26
    [118]Ramsay J G, Huber M I., The Techniques of modern structural geology. London: Academic Press, 1989. 15~150
    [119]Reinaldo J Michelena, Ezequiel Gonzalez S M, Mariangela Capello DEP. Similarity analysis: A new tool to summarize seismic attributes information. The Leading Edge, 1998, 17(4): 545~548
    [120]Richard P, Krantz R W. Experiments on fault reactivation in strike-slip mode. Tectonophysics, 1991, (188):117~131
    [121]Rutherford & Williams, Amplitude versus Offset Variation in Gas Sands, Geophysics, 1989, 54(6)
    [122]Sandiford M. Mechanics of basin inversion. Tectonophysics, 1999,305:109~120
    [123]Song-Tingguang, Inversion styles in the Songliao Basin (Northeast China) and estimation of the degree of inversion. Tectonophysics. 1997. 283; 1-4, 173-188.
    [124]Toksoz, M. Nafi and Bird, Peter, Formation and evolution of marginal basins and continental plateau, in manik Talwani and walter C, Pittman LLL (eds) “island arcs. Deep Sea Trenches and Back arc basins,”Ame. Geophy. Union. 1977,379-394
    [125]Wang-Pujun, Ren-Yanguang, Shan-Xuanlong, et al. , The Cretaceous volcanic succession around the Songliao Basin, NE China; relationship between volcanism and sedimentation. Geological Journal. 2002. 37( 2):97-115.
    [126]Wernich B. Low-angle normal faults in the Basin and Range province: nappe tectonics in an extending orogen, Nature, London, 1981, 291:645~647
    [127]Xiao-Deming, Yin-Jinyin, Chi-Yanlin, Characteristics of inversion structure and hydrocarbon accumulation in Songliao Basin, Northeast China. In: 30th international geological congress; abstracts. International Geological Congress, Abstracts--Congress Geological International, Resumes. 1996. 30(1):250
    [128]Xie-Xinong; Jiao-Jiu-Jimmy; Tang-Zhonghua; Zheng-Chunmiao , Evolution of abnormally low pressure and its implications for the hydrocarbon system in the southeast uplift zone of Songliao Basin, China. AAPG Bulletin. 2003. 87(1):99-119
    [129]Xu-Min. Syn-and post-rift petroleum systems in the Songliao Basin, China. In: AAPG Foundation grants-in-aid recipients for 2000.AAPG Bulletin. 2000. 84(11):1877
    [130]Yang-Baojun; Liu-Cai; Han-Liguo; Zhang-Haijiang, A study for the base and the bottom of

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700