用户名: 密码: 验证码:
鸡蛋卵黄高磷蛋白乳化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡蛋制品中活性功能成分的精深加工是提高蛋产品附加值,扩大其工业化应用范围的重要途径。蛋黄中卵黄高磷蛋白(Pv)是以带负电荷的磷酸酰丝氨酸为核心的细长链的形式存在的含有大量磷的蛋白。疏水末端赋予了Pv双极性,使其具备了作为天然生物表面活性剂的应用潜能。由于Pv在食品复杂体系中应用时必然与其他组分相互作用而影响其乳化行为,同时,针对Pv自身组成结构缺陷,包括缺乏分枝结构不能形成强有效空间位阻效应,疏水末端短小而限制其有效吸附在油水界面等,本课题分别从内外因素两个角度对Pv乳化特性进行改良,并对Pv的结构组成及理化特性进行表征,旨在对Pv乳化作用机理进行阐述。
     以鸡蛋蛋黄为原料,分别采用盐溶法和PEG法实现了Pv零有机溶剂的分离提取。盐溶法工艺的Pv得率为91.05%,氮/磷比(N/P)为3.45,极性氨基酸(AA)占总AA含量的70.7%,疏水性AA占19%左右。同时,Pv的二级结构比较松散,不规则展开占91%。Pv具有比酪蛋白酸钠(Sc)更高的乳化特性,乳化活性指数(EAI)为19.80,乳化稳定指数(ESI)为67.60,但是起泡特性远不如大豆分离蛋白,起泡活性(FC)为12.42%。PEG法工艺的Pv得率为49.28%,N/P为2.89,极性AA占总AA含量的80.2%,疏水性AA占13.5%左右。PEG6000的使用屏蔽了Pv的疏水特性,还引起了部分的二级结构的变化,旷螺旋和β-结构(包括p-折叠和p-转角)分别为17%和26%,不规则展开只占35.8%。因此,Pv的EAI只有11.37,ESI为49.89,FC也只有8.33。
     常见食品添加剂,包括甘油、果胶和海藻糖对Pv的乳化行为具有协同增效作用。结果表明,外源添加0.5%甘油显著地将Pv的EAI从19.8增加到20.9,ESI从67.6增加到75.1。0.1%果胶和0.5%海藻糖也增强了Pv的乳化稳定性。圆二色谱(CD)图谱显示,Pv呈现出典型的松散的不规则展开型二级结构,所有添加剂只稍微改变了Pv的二级结构。内源性荧光光谱也表明,甘油和海藻糖增加了Pv的疏水性,果胶则相反。实验中所有的乳化液都呈现处剪切变稀的流动特性,其流动行为都符合幂律模型。频率扫描表明,乳化液呈现出粘性液体的流动特性。
     从增加Pv空间位阻效应以提高Pv乳化稳定性的角度出发,Pv与葡聚糖(Dex)混合体系在高温液态体系下美拉德反应初级阶段实现了Pv的糖基化反应。具体反应条件为,Pv:Dex比为1:4,Dex分子量为40kDa,热处理温度为100。C反应时间为6h,Pv的自由氨基含量下降到77.4%。SDS-PAGE凝胶电泳上新条带Ⅱ及SE-HPLC洗脱图谱上主要峰出峰时间从9.16min迁移到8.87min,次要峰的出峰时间从6.56min迁移到6.13min共同证实了Pv-Dex交联物的生成。同时,Pv糖基化反应后,不规则展开结构下降到72.1%,α-螺旋增加到20.8%。Pv与Dex共价交联后在pH5.0~8.0之间的溶解度保持恒定,但显著地将Pv在pH4.0处的溶解度从53.0%提升到79.3%。Dex的共价结合还降低了Pv的疏水特性,对Pv表面电荷有轻微的屏蔽效应,但是,显著增加了Pv在酸性环境下的界面层厚度。从浊度法、粒径分布以及共聚焦激光显微镜三个角度来考察了糖基化对不同pH环境下Pv乳化特性的影响,所有结果都证实,Dex与Pv交联是提高Pv乳化稳定性及对极端pH环境抗性的有效手段。
     从增加Pv疏水末端以改善Pv乳化特性的角度出发,将脂肪酸(FA)酯化活化后,再与Pv酰化反应制备了不同碳链长度的Pv-FA系列衍生物。SDS-PAGE凝胶电泳图表明Pv-FA衍生物的分子量稍高,条带更宽。月桂酸(C12),肉豆蔻酸(C14),棕榈酸(C16)与Pv酰化后最大紫外吸收波长发生不同程度的偏移,最大吸收强度依次为Pv-C14>Pv-C16>Pv-C12,反应程度分别为16.45%,30.56%,27.02%。Pv与C12、C14、C16共价结合后Pv溶解度分别下降到51.00%、56.77%、22.14%,不规则展开型二级结构也从35.8%分别增加到38.3%、69.3%、45.6%。C14和C16在Pv末端的结合还增强了Pv的表面疏水性。Pv-C14在中性环境下EAI最高,为16.26,同时,ESI也高达74.41,FC高达33.33%。对极端pH环境的抵抗能力也最强。C12的引入也显著提高了Pv的EAI到14.54,ESI到62.23,FC到20.83%,对极端pH环境具有一定的抵抗能力。C16与Pv结合显著增强了Pv的FC到28.57%。研究表明,Pv疏水末端FA的引入是改善Pv加工特性的另一种有效手段。
Deep processing of functional active ingredients was an effective way toimprove the value-added and expand the industrial application of egg products. Pv,from hen egg yolk, was a protein with high content of phosphours. The core in theform of an elongated chain contained negatively charged phosphatidylserine. Phosvtinacted as a bipolar molecule with the hydrophic amino acid in the C-terminal. Itshowed an application potential as the natural biosurfactant in food, medical, andcosmetic industry. Generally, the components in food system would have an interationwith Pv and then influenceits emulsifying behavior, and there was barely literature onthis subjuct. At the same time, the little hydrophobic terminal in Pv would limit itsabsorption behavior in the interfacial layer of oil-in-water. The lack of branchedstructure in Pv would aslo limit the forming of an effective steric-hinerance instabilizing the oil-in-water emulsion. In our research, the improvement technologyfrom both the external and internal points of view was tried to enhance theemulsifying property of Pv. The physicochemical properties were also characterizedto better understand the mechanism of emulsifying actions.
     Two Pv-isolated technology, salty and PEG, were applicated to extract Pv fromhen egg yolk with no organic solvent used. The yield and N/P ratio of Pv by saltymethod were91.05%and3.45respectively. The proportions of polar and hydrophobicAA residues were70.7%and19%respectively. At the same time, the secondarystructure of Pv was loose and the unfolding structure accounded for91%. Theemulsifying activity index (EAI) and emulsion stability index (ESI) of Pv were19.80and67.60resepctively, higher than that of sodium caseinate (Sc). However, thefoaming capacity (FC) was12.42%, lower than that of soybean protein isolated (SPI).The yield and N/P ratio of Pv by PEG method was49.28%and2.89respectively. Theproportions of polar and hydrophobic AA residues were80.2%and13.5%respectively. Part of hydrophic properties of Pv were screened and the secondarystructure was changed by PEG6000. The proportion of α–helix and β–structure(including β–folding and β–turn) were17%and26%respectively, and the unfoldingforms occupied of35.8%. The EAI and ESI of Pv isolated by PEG method were11.37and49.89respectively, lower than that by salty method. The FC was only8.33, alsolower than that of SPI.
     The normal food additives, such as glycerol, pectin and trehalose showed asynergistic interaction with Pv on the emulsifying behavior. The presence of0.5% glycerol significantly increased EAI of Pv from19.8to20.9and ESI from67.6to75.1. The addition of0.1%pectin and0.5%trehalose also resulted in a betteremulsion stability of Pv. The pattern of CD spectra indicated a typical unfoldingsecondary structure, and all the tested additives displayed slight effect on theunfolding structure of Pv. Furthermore, fuorescence spectra pattern demonstrated thatglycerol and trehalose increased the hydrophobicity of Pv, while pectin showed anopposite effect. All emulsions exhibited a shear-thinning behavior and the fowbehavior was ftted to the power law model. Frequency sweeps of all tested emulsionsillustrated that they behaved like a viscous liquid.
     To enhance the steric hindrance effect of Pv and in turn improve the emulsionstability, the Pv-Dex conjugates were prepared in an aqueous solution at the initialstage of Maillard reaction. The optimum conjugation condition chosen was per Pvglycosylated with4-fold dextran (Mw40kDa) at100℃for6h. The content of freeamino groups in the glycosylated Pv decreased to77.4%. The new bandII inSDS-PAGE gel and the shift of main peak in SE-HPLC from9.16min to8.87minand the minor peak from6.56min to6.13min both confirmed the formation ofcovalent conjugates. CD spectra demonstrated that the unfolding structure decreasedto72.1%, and α–helix increased to20.8%after glycosylation reaction. No significantdifference occurred to the solubility of Pv after conjugation with Dex when pH rangedfrom5.0to8.0, but a remarkable increase from53.0%to79.3%appeared at pH4.0.The hydrophobicity was decreased and the surface charges were slightly screenedafterDex attaching to Pv, while the interfacial thickness of Pv was prominentlyincreasedat the acidic condition. The emulsifying properties characterized byturbidimetric method, droplet-size distributions and confocal laser scanningmicroscopy illustrated that glycosylation of Pv would be an effective method toimprove the emulsion stability against unfavorable pH environment.
     To link a hydrophobic tail to Pv and then improve the emulsifying property andfoaming property, FA was activated through esterification and then attached to Pvthrough acylation. The slight higher andwider bands in SDS-PAGE gel indicated thatdifferent carbon chain length of FA had been convalent binded to Pv. Differentdegrees of shift of maximum UV absorbance wavelength were caused by lauric acid(C12), myristic acid (C14), palmitic acid (C16) grafting with Pv, and the absorbanceswere in the following order: Pv-C14>Pv-C16>Pv-C12. The reaction extent of C12,C14and C16with Pv were16.45%,30.56%,27.02%respectively and the solubilityof relevant products decreased to51.00%56.77%22.14%respectively. The unfolding structure was also increased from35.8%to38.3%69.3%45.6%respectively. Pv-C14displayed the highest EAI of16.26, ESI of74.41, and FC of33.33%in the neutral condition, and showed the strongest resistance to theunfavorable pH environment. Pv-C12also increased the EAI to14.54, ESI to62.23,and FC to20.83%, and resulted in a certain resistance to acidic conditions. Pv-C16enhanced FC to28.57%. All the resultes demonstrated that the covalent binding of FAto Pv was an effective way to improve the processing properties of Pv.
引文
1. Romanoff, A.L. and A.J. Romanoff. The avian egg[J]. The avian egg.,1949: pp xiii+918pp.
    2. Chang, C., W. Powrie, and O. Fennema. Microstructure of egg yolk[J]. Journal of food science,1977,42(5):1193-1200.
    3. Martin, W., J. Augustyniak, and W. Cook. Fractionation and characterization of thelow-density lipoproteins of hen's egg yolk[J]. Biochimica et Biophysica Acta(BBA)-Specialized Section on Lipids and Related Subjects,1964,84(6):714-720.
    4. Bee, L. and O. Cotterill. Ion-exchange chromatography and electrophoresis of egg yoIkproteins[J]. Journal of food science,1979,44(3):656-667.
    5. Anton, M. Composition and structure of hen egg yolk[J]. Bioactive egg compounds,2007:1-6.
    6. Dyer-Hurdon, J. and IA Nnanna. Cholesterol content and functionality of plasma and granulesfractionated from egg yolk[J]. Journal of food science,1993,58(6):1277-1281.
    7. Burley, R. and W. Cook. Isolation and composition of avian egg yolk granules and theirconstituent α-and β-lipovitellins[J]. Canadian journal of biochemistry and physiology,1961,39(8):1295-1307.
    8. Saari, A., W. Powrie, and O. Fennema. Isolation and characterization of low-densitylipoproteins in native egg yolk plasma[J]. Journal of food science1964,29(3):307-315.
    9. Mecham, D.K. and H.S. Olcott. Phosvitin, the principal phosphoprotein of egg yolk[J].Journal of the American Chemical Society,1949,71(11):3670-3679.
    10. Taborsky, G. and C. Mok. Phosvitin. Homogeneity and molecular weight[J]. The Journal ofbiological chemistry,1967,242(7):1495-501.
    11. Abe, Y., T. Itoh, and S. Adachi. Fractionation and characterization of hen's egg yolkphosvitin[J]. Journal of food science,1982,47(6):1903-1907.
    12. Culbert, J. and W. McIndoe. A comparison of the heterogeneity of phosvitin of egg-yolk andblood-plasma of the domestic fowl (Gallus domesticus)[J]. International Journal ofBiochemistry,1971,2(12):617-622.
    13. Wallace, R.A. and J.P. Morgan. Chromatographic resolution of chicken phosvitin. Multiplemacromolecular species in a classic vitellogenin-derived phosphoprotein[J]. BiochemicalJournal,1986,240(3):871-8.
    14. Shainkin, R. and G.E. Perlmann. Phosvitin, a phosphoglycoprotein[J]. Journal of BiologicalChemistry,1971,246(7):2278-2284.
    15. Brockbank, R.L. and H.J. Vogel. Structure of the oligosaccharide of hen phosvitin asdetermined by two-dimensional proton NMR of the intact glycoprotein[J]. Biochemistry,1990,29(23):5574-5583.
    16. Itoh, T., Y. Abe, and S. Adachi. Comparative studies on the α-and β-phosvitin from hen's eggyolk[J]. Journal of food science,1983,48(6):1755-1757.
    17. Byrne, B.M., et al. Amino acid sequence of phosvitin derived from the nucleotide sequence ofpart of the chicken vitellogenin gene[J]. Biochemistry,1984,23(19):4275-4279.
    18. Taborsky, G. Phosphoproteins[J]. Advances in protein chemistry,1974,28:1-210.
    19. Renugopalakrishnan, V., P. Horowitz, and M. Glimcher. Structural studies of phosvitin insolution and in the solid state[J]. Journal of Biological Chemistry,1985,260(21):11406-11413.
    20. Prescott, B., et al. A Raman spectroscopic study of hen egg yolk phosvitin: structures insolution and in the solid state[J]. Biochemistry,1986,25(10):2792-2798.
    21. Grizzuti K and P. GE. Conformation of the phosphoprotein, phosvitin[J]. Journal of BiologicalChemistry,1970,245(10):2573-2578.
    22. Chang, C.T., C.S. Wu, and J.T. Yang. Circular dichroic analysis of protein conformation:inclusion of the beta-turns[J]. Analytical biochemistry,1978,91(1):13-31.
    23. Taborsky, G. Effect of freezing and thawing on the conformation of phosvitin[J]. Journal ofBiological Chemistry,1970,245(5):1054-1062.
    24. Dickinson, E., V.J. Pinfield, and D.S. Horne. On the “Anomalous” Adsorption Behavior ofPhosvitin[J]. Journal of colloid and interface science,1997,187(2):539-541.
    25. Belitz, H., W. Grosch, and P. Schieberle. Amino Acids, Peptides, Proteins[J]. Food Chemistry,2009:8-92.
    26. W., T. Characterization of water soluble egg yolk proteins with isoelectric focusing[J]. Journalof food science,1989,54(3):764-765.
    27. Joubert, F. and W. Cook. Preparation and characterization of phosvitin from hen egg yolk[J].Canadian journal of biochemistry and physiology,1958,36(4):399-408.
    28. Losso, J. and S. Nakai. A simple procedure for the isolation of phosvitin from chicken eggyolk[J]. Egg uses and processing technologies: new developments,1994:150-157.
    29.倪莉,王.许.鸡蛋中卵黄高磷蛋白的提取[J].无锡轻工大学学报,1999,18(2):55-59.
    30. Castellani, O., et al. Egg yolk phosvitin: preparation of metal-free purified protein by fastprotein liquid chromatography using aqueous solvents[J]. Journal of Chromatography B,2003,791(1-2):273-284.
    31. Chay Pak Ting, B.P., et al. On the use of ultrafiltration for the concentration and desalting ofphosvitin from egg yolk protein concentrate[J]. International Journal of Food Science&Technology,2010,45(8):1633-1640.
    32. Zhang, X., et al. Simply and effectively preparing high-purity phosvitin using polyethyleneglycol and anion-exchange chromatography[J]. Journal of separation science,2011,34(22):3295-301.
    33. Kato, A., et al. Effects of Phosphate Residues on the Excellent Emulsifying Properties ofPhosphoglycoprotein Phosvitin[J]. Agricultural and biological chemistry,1987,51(11):2989-2994.
    34. Castellani, O., et al. Oil-in-water emulsion properties and interfacial characteristics of hen eggyolk phosvitin[J]. Food Hydrocolloids,2006,20(1):35-43.
    35. Timasheff, S.N., R. Townend, and G.E. Perlmann. The circular dichroism of phosvitin[J].Journal of Biological Chemistry,1967,242(9):2290-2292.
    36. Castellani, O., et al. The role of metal ions in emulsion characteristics and flocculationbehaviour of phosvitin-stabilised emulsions[J]. Food Hydrocolloids,2008,22(7):1243-1253.
    37. Chung, S.L. and L.K. Ferrier. Conditions Affecting Emulsifying Properties of Egg YolkPhosvitin[J]. Journal of food science1991,56(5):1259-1262.
    38. Chung, S.L. and L.K. Ferrier. pH and sodium chloride effects on emulsifying properties of eggyolk phosvitin[J]. Journal of food science1992,57(1):40-42.
    39. Chung, S.L. and L.K. Ferrier. Heat denaturation and emulsifying properties of egg yolkphosvitin[J]. Journal of food science1995,60(5):906-908.
    40. Castellani, O., et al. Effect of aggregation and sodium salt on emulsifying properties of eggyolk phosvitin[J]. Food Hydrocolloids,2005,19(4):769-776.
    41. Khan, M.A.S., et al. Effect of protease digestion and dephosphorylation on high emulsifyingproperties of hen egg yolk phosvitin[J]. Journal of agricultural and food chemistry,1998,46:4977-4981.
    42.张小燕,范.高.贾. and K. Guo.酶水解和脱磷对卵黄高磷蛋白高乳化性的影响[J].化学通报,2005,4:304-308.
    43. Akhtar, M., et al. Emulsion stabilizing properties of depolymerized pectin[J]. FoodHydrocolloids,2002,16:249-256.
    44. Mirhosseini, H., C.P. Tan, and A.R. Taherian. Effect of glycerol and vegetable oil onphysicochemical properties of Arabic gum-based beverage emulsion[J]. European FoodResearch and Technology,2008,228(1):19-28.
    45. Cerimedo, M., et al. Stability of emulsions formulated with high concentrations of sodiumcaseinate and trehalose[J]. Food Research International,2010,43(5):1482-1493.
    46. Dickinson, E. and M. Golding. Influence of calcium ions on creaming and rheology ofemulsions containing sodium caseinate[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,1998,144(1):167-177.
    47. Vagenende, V., M.G. Yap, and B.L. Trout. Mechanisms of protein stabilization and preventionof protein aggregation by glycerol[J]. Biochemistry,2009,48(46):11084-11096.
    48. Sahu, R.K. and V. Prakash. Mechanism of prevention of aggregation of proteins: a case studyof aggregation of α-globulin in glycerol[J]. International Journal of Food Properties,2008,11(3):613-623.
    49. Vega, C., H.D. Goff, and Y.H. Roos. Casein molecular assembly affects the properties of milkfat emulsions encapsulated in lactose or trehalose matrices[J]. International Dairy Journal,2007,17(6):683-695.
    50. Diftis, N. and V. Kiosseoglou. Physicochemical properties of dry-heated soy proteinisolate? dextran mixtures[J]. Food Chemistry,2006,96(2):228-233.
    51. Mu, M., et al. Acidic solution properties of β-casein-graft-dextran copolymer prepared throughMaillard reaction[J]. Journal of colloid and interface science,2006,301(1):98-106.
    52. Nakamura, S., A. Kato, and K. Kobayashi. New antimicrobial characteristics oflysozyme-dextran conjugate[J]. Journal of agricultural and food chemistry,1991,39:647-650
    53. Khan, M.A.S., et al. Molecular Mechanism of the Excellent Emulsifying Properties ofPhosvitin Galactomannan Conjugate[J]. Journal of agricultural and food chemistry,1999,47:2262-2266.
    54. Taborsky, G. Interaction Between Phosvitin and Iron and Its Effect on a Rearrangement ofPhosvitin Structure[J]. Biochemistry,1963,2(2):266-271.
    55. Grizzuti, K. and G.E. Perlmann. Binding of magnesium and calcium ions to thephosphoglycoprotein phosvitin[J]. Biochemistry,1973,12(22):4399-4403.
    56. Greengard, O., A. Sentenac, and N. Mendelsohn. Phosvitin, the iron carrier of egg yolk[J].Biochimica et biophysica acta,1964,90:406-7.
    57. Albright, K., D. Gordon, and O. Cotterill. Release of ion from phosvitin by heat and foodadditives[J]. Journal of food science,1984,49:78-81.
    58. Taborsky, G. Iron binding by phosvitin and its conformational consequences[J]. Journal ofBiological Chemistry,1980,255(7):2976-2984.
    59. Baumy, J. and G. Brule. Effect of pH and ionic strength on the binding of bivalent cations toβ-casein[J]. Lait,1988,68(4):409-417.
    60. Gaucheron, F. Iron fortification in dairy industry[J]. Trends in food science&technology,2000,11(11):403-409.
    61. Taborsky, G. On the interaction of phosvitins with ferric ion: solubility of the Fe(III)-phosphoprotein complex under acidic conditions is a function of the iron/phosphate ratioand the degree of phosvitin phosphorylation[J]. Journal of inorganic biochemistry,1991,44(1):65-77.
    62. Castellani, O., et al. Influence of physicochemical conditions and technological treatments onthe iron binding capacity of egg yolk phosvitin[J]. Food chemistry,2004,85(4):569-577.
    63. Lu, C.-L. and R.C. Baker. Characteristics of egg yolk phosvitin as an antioxidant for inhibitingmetal-catalyzed phospholipid oxidations[J]. Poultry science,1986,65(11):2065-2070.
    64. Lee, S., J. Han, and E. Decker. Antioxidant activity of phosvitin in phosphatidylcholineliposomes and meat model systems[J]. Journal of food science,2006,67(1):37-41.
    65. Nakamura, S., et al. Antioxidant activity of a Maillard-type phosvitin-galactomannanconjugate with emulsifying properties and heat stability[J]. Journal of agricultural and foodchemistry,1998,46(10):3958-3963.
    66. Ishikawa, S.-i., et al. Egg yolk phosvitin inhibits hydroxyl radical formation from the Fentonreaction[J]. Bioscience, biotechnology, and biochemistry,2004,68(6):1324-1331.
    67. Khan, M.S., et al. Bactericidal action of egg yolk phosvitin against Escherichia coli underthermal stress[J]. Journal of agricultural and food chemistry,2000,48(5):1503-1506.
    68. Ma, J., et al. Endotoxin-neutralizing activity of hen egg phosvitin[J]. Molecular immunology,2013,53(4):355-362.
    69. Allen, R.J.L. The estimation of phosphorus[J]. Biochemical Journal,1940,34(6):858.
    70. Spackman, D.H., W.H. Stein, and S. Moore. Automatic recording apparatus for use inchromatography of amino acids[J]. Analytical Chemistry,1958,30(7):1190-1206.
    71. Kato, A. and S. Nakai. Hydrophobicity determined by a fluorescence probe method and itscorrelation with surface properties of proteins[J]. Biochimica et Biophysica Acta(BBA)-Protein Structure,1980,624(1):13-20.
    72. Pearce, K.N. and J.E. Kinsella. Emulsifying properties of proteins: evaluation of aturbidimetric technique[J]. Journal of agricultural and food chemistry,1978,26(3):716-723.
    73. Akintayo, E., A. Oshodi, and K. Esuoso. Effects of NaCl, ionic strength and pH on thefoaming and gelation of pigeon pea ( Cajanus cajan) protein concentrates[J]. FoodChemistry,1999,66(1):51-56.
    74. Jiang, J., J. Chen, and Y.L. Xiong. Structural and emulsifying properties of soy protein isolatesubjected to acid and alkaline pH-shifting processes[J]. Journal of agricultural and foodchemistry,2009,57(16):7576-7583.
    75. Haskard, C.A. and E.C. Li-Chan. Hydrophobicity of bovine serum albumin and ovalbumindetermined using uncharged (PRODAN) and anionic (ANS-) fluorescent probes[J]. Journal ofagricultural and food chemistry,1998,46(7):2671-2677.
    76. Zhuo, X.Y., et al. Formation of soy protein isolate-dextran conjugates by moderate Maillardreaction in macromolecular crowding conditions[J]. Journal of agricultural and food chemistry,2012.
    77. Dickinson, E., et al. Effect of high-methoxy pectin on properties of casein-stabilizedemulsions[J]. Food hydrocolloids,1998,12(4):425-432.
    78. Moreau, L., et al. Production and characterization of oil-in-water emulsions containingdroplets stabilized by β-lactoglobulin-pectin membranes[J]. Journal of agricultural and foodchemistry,2003,51(22):6612-6617.
    79. Cerdeira, M., et al. Factors affecting initial retention of a microencapsulated sunflower seedoil/milk fat fraction blend[J]. Journal of the American Oil Chemists' Society,2007,84(6):523-531.
    80. Palazolo, G.G., P.A. Sobral, and J.R. Wagner. Freeze-thaw stability of oil-in-water emulsionsprepared with native and thermally-denatured soybean isolates[J]. Food Hydrocolloids,2011,25(3):398-409.
    81. Dickinson, E. and L. Matia Merino. Effect of sugars on the rheological properties of acidcaseinate-stabilized emulsion gels[J]. Food Hydrocolloids,2002,16(4):321-331.
    82. McClements, D. Food emulsions: principles, practices, and techniques[J]. CRC series incontemporary food science,2005.
    83. Moschakis, T., B.S. Murray, and C.G. Biliaderis. Modifications in stability and structure ofwhey protein-coated o/w emulsions by interacting chitosan and gum arabic mixeddispersions[J]. Food Hydrocolloids,2010,24(1):8-17.
    84. Lorenzo, G., N. Zaritzky, and A. Califano. Modeling rheological properties of low-in-fat o/wemulsions stabilized with xanthan/guar mixtures[J]. Food Research International,2008,41(5):487-494.
    85. Torres, L., et al. Preparation of o/w emulsions stabilized by solid particles and theircharacterization by oscillatory rheology[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2007,302(1):439-448.
    86. Jiménez-Casta o, L., M. Villamiel, and R. López-Fandi o. Glycosylation of individual wheyproteins by Maillard reaction using dextran of different molecular mass[J]. FoodHydrocolloids,2007,21(3):433-443.
    87. Qi, J.-r., et al. Formation of acid-precipitated soy protein-dextran conjugates by Maillardreaction in liquid systems[J]. International Journal of Food Science&Technology,2010,45(12):2573-2580.
    88. Aminlari, M., R. Ramezani, and F. Jadidi. Effect of Maillard-based conjugation with dextranon the functional properties of lysozyme and casein[J]. Journal of the Science of Food andAgriculture,2005,85(15):2617-2624.
    89. Kato, A. Industrial Applications of Maillard-Type Protein-Polysaccharide Conjugates[J]. Foodscience and technology research,2002,8(3):193–199.
    90. Sun, W.-W., et al. Properties of whey protein isolate–dextran conjugate prepared using pulsedelectric field[J]. Food Research International,2011,44(4):1052-1058.
    91. Zhu, D., S. Damodaran, and J.A. Lucey. Physicochemical and emulsifying properties of wheyprotein isolate (WPI)-dextran conjugates produced in aqueous solution[J]. Journal ofagricultural and food chemistry,2010,58(5):2988-94.
    92. Zhu, D., S. Damodaran, and J.A. Lucey. Formation of whey protein isolate (WPI)-dextranconjugates in aqueous solutions[J]. Journal of agricultural and food chemistry,2008,56:7113-7118.
    93. Liu, Y., et al. Improvement of functional properties of peanut protein isolate by conjugationwith dextran through Maillard reaction[J]. Food Chemistry,2012,131(3):901-906.
    94. Kato, A. Preparation and functional properties of protein-polysaccharide conjugates[J].Surface activity of proteins: Chemical and physicochemical modifications,1996:115-129.
    95. Kato, A., et al. Functional casein-polysaccharide conjugates prepared by controlled dryheating[J]. Bioscience, biotechnology, and biochemistry,1992,56(4):567-571.
    96. Anton, M. Structure and functional properties of hen egg yolk constituents[J]. RecentResearch Developments in Agricultural and Food Chemistry,1998,2:839-64.
    97. Dickinson, E. Interfacial structure and stability of food emulsions as affected byprotein–polysaccharide interactions[J]. Soft Matter,2008,4(5):932.
    98. Yadav, M.P., et al. Corn fiber gum and milk protein conjugates with improved emulsionstability[J]. Carbohydrate Polymers,2010,81(2):476-483.
    99. Zhang, J.-B., et al. Improvement of emulsifying properties of Maillard reaction products fromβ-conglycinin and dextran using controlled enzymatic hydrolysis[J]. Food Hydrocolloids,2012,28(2):301-312.
    100. Vigo, M., et al. Spectrophotometric assay using o-phthaldialdehyde for determination ofreactive lysine in dairy products[J]. Food Chemistry,1992,44(5):363-365.
    101. Mohanty, B., D. Mulvihill, and P. Fox. Hydration-related properties of caseins at pH2.0-3.0[J].Food Chemistry,1988,27(3):225-236.
    102. Wong, B.T., L. Day, and M.A. Augustin. Deamidated wheat protein–dextran Maillardconjugates: Effect of size and location of polysaccharide conjugated on steric stabilization ofemulsions at acidic pH[J]. Food Hydrocolloids,2011,25(6):1424-1432.
    103. Allerton, S.E. and G.E. Perlmann. Chemical characterization of the phosphoproteinphosvitin[J]. Journal of Biological Chemistry,1965,240(10):3892-3898.
    104. Dickinson, E. and M.G. Semenova. Emulsifying properties of covalent protein-dextranhybrids[J]. Colloids and surfaces,1992,64(3):299-310.
    105. Corzo-Martínez, M., et al. Characterization and improvement of rheological properties ofsodium caseinate glycated with galactose, lactose and dextran[J]. Food Hydrocolloids,2010,24(1):88-97.
    106. Xu, K. and P. Yao. Stable oil-in-water emulsions prepared from soy protein-dextranconjugates[J]. Langmuir,2009,25(17):9714-20.
    107. Mu, L., et al. Effect of ultrasonic treatment on the graft reaction between soy protein isolateand gum acacia and on the physicochemical properties of conjugates[J]. Journal of agriculturaland food chemistry,2010,58(7):4494-9.
    108. Ma, H., et al. Charge modifications to improve the emulsifying properties of whey proteinisolate[J]. Journal of agricultural and food chemistry,2011,59(24):13246-53.
    109. Wooster, T.J. and M.A. Augustin. Beta-lactoglobulin-dextran Maillard conjugates: their effecton interfacial thickness and emulsion stability[J]. Journal of Colloid and Interface Science,2006,303(2):564-72.
    110. Dunlap, C.A. and G.L. Co te. β-Lactoglobulin Dextran conjugates: effect of polysaccharidesize on emulsion stability.pdf[J]. Journal of agricultural and food chemistry,2005,53:419-423.
    111. O’Regan, J. and D.M. Mulvihill. Preparation, characterisation and selected functionalproperties of sodium caseinate–maltodextrin conjugates[J]. Food Chemistry,2009,115(4):1257-1267.
    112. Magdassi, S. and O. Toledano. Enhanced hydrophobicity[J]. Surface activity of proteins:chemical and physicochemical modifications. Mercel Dekker, NY,1996:39-60.
    113. Lakkis, J. and R. Villota. Effect of acylation on substructural properties of proteins: A studyusing fluorescence and circular dichroism[J]. Journal of agricultural and food chemistry,1992,40(4):553-560.
    114. Haque, Z., T. Matoba, and M. Kito. Incorporation of fatty acid into food protein: palmitoylsoybean glycinin[J]. Journal of agricultural and food chemistry,1982,30(3):481-486.
    115. Matemu, A.O., et al. Improving surface functional properties of tofu whey-derived peptides bychemical modification with fatty acids[J]. Journal of food science,2012,77(4): C333-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700