用户名: 密码: 验证码:
水平定向钻孔孔壁稳定性分析及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻孔技术广泛应用于地质勘察、钻探工程、油气开发、隧道超前探测、管棚支护、瓦斯抽放和非开挖铺设等工程领域。钻孔在钻进及使用过程中孔壁稳定性问题是钻孔工程技术人员最关注的问题之一。钻孔失稳会阻碍钻孔施工的正常进行,延长施工周期,增加工程成本。严重的孔内事故往往会造成严重的后果:一方面钻孔失稳将被迫报废钻孔和钻具,造成人力、物力和时间的极大浪费;另一方面钻孔失稳会导致无法获得地下蕴藏的真实地质资料,也会导致油气资源泄漏而造成资源浪费和环境污染。目前,绝大多数钻孔稳定性研究以钻探工程和油气开发工程中的竖直钻孔为研究对象,许多专家学者在竖直钻孔稳定性方面进行深入研究,得到大量有价值的研究成果。然而,随着水平定向钻进技术在隧道超前探测、瓦斯抽放和非开挖铺设等工程领域的应用日益增多,使水平钻孔稳定性问题成为当前亟待研究的课题。
     本文以水平定向钻孔稳定性问题为主要研究对象,主要完成以下研究工作:
     ⑴根据弹性理论建立原始地应力和钻孔液压力共同作用下水平定向钻孔稳定性问题的力学模型;
     ⑵分析钻孔液压力、钻孔埋深和侧压力系数对水平定向钻孔孔壁应力场的影响;
     ⑶应用库仑准则和最大拉应力理论推导出不同侧压力系数下地层坍塌压力和地层破裂压力的计算公式;
     ⑷由地层坍塌压力和地层破裂压力确定钻孔液压力范围,进一步提出最优钻孔液压力概念,研究最优钻孔液压力的确定方法并推导出计算公式;
     ⑸将以上研究成果应用于明垭子特长隧道超前探测和乌兰煤矿瓦斯抽放工程中,通过计算分析确定最优钻孔液压力。
     本文的研究成果为水平定向钻进工程中选择钻孔液压力提供了科学的参考。
Drilling technology is widely used in geological prospecting, drilling engineering, oil and gas exploration and development, tunnel advanced detection, pipe shed support, gas drainage, non excavation laying and other engineering fields. Drilling in the process of use and drilling hole-wall stability problem is drilling engineering and technical personnel of most concern. Hole-wall instability hinders the boring construction, and extend the boring construction period and increase the project cost. Serious hole accidents often causes serious consequences: On the one hand, drilling instability will be forced to scrap drilling and drilling tools, causing human, material and the waste of time, On the other hand, drilling instability will lead to cannot get the real geologic data of underground gas resources, also can cause leakage and resource waste and environmental pollution. At present, most drilling hole-wall stability study in the vertical drilling for research object. Many experts and scholars in the vertical drilling hole-wall stability, get a thorough study of the results have value. However, with the drilling technology in tunnel advanced detection, pipe shed support, gas drainage, trenchless laid and other engineering application fields are increasing. Horizontal directional drilling hole-wall stability problem has become urgent research topic.
     This article takes horizontal directional drilling hole-wall stability problems as the main research object. Complete the following main research work:
     ⑴According to the theory of elasticity and establish a primitive geostress and drilling fluid pressure effect of horizontal directional drilling hole-wall stability problem of mechanics model.
     ⑵Influence of horizontal directional drilling hole-wall stress distribution with drilling fluid pressure,drilling depth and lateral pressure coefficient was analyzed.
     ⑶According to the Coulomb criterion and maximum normal stress theory derived the calculation formula of caving pressure and formation fracture pressure under different lateral pressure coefficient.
     ⑷Drilling fluid pressure was to determine by the collapse pressure and fracture pressure. Put forward the concept about optimal drilling fluid pressure, and the calculation formula is deduced.
     ⑸More research will be used during the advanced detection of the Mingyazi extra-long tunnel and Wulan coal gas drainage engineering, through calculation and analysis to determine the optimal drilling fluid pressure.
     This research project for the horizontal directional drilling holes in the fluid pressure selection provides a scientific reference.
引文
[1]曾祥熹,陈志超,何玉明.钻孔护壁堵漏与减阻,地质出版社,1981
    [2]郑有成.川东北部飞仙关组探井地层压力测井预测方法与工程应用研究[D].西南石油学院博士论文,2004
    [3]刘之的.碳酸盐岩地层井壁稳定性测井评价方法研究[D].西南石油学院硕士论文,2004
    [4]梁利喜.深部应力场系统评价与油气井井壁稳定性分析研究[D].成都理工大学博士论文,2008
    [5]邓金根,张洪生编著.钻井工程中井壁失稳的力学机理[M].北京:石油工业出版社,1998
    [6]慈建发.钻前井壁力学稳定性研究[D].西南石油学院硕士论文,2005
    [7] Westergaard, H. M. Plastic State of Stress around a Deep Well.J.Boston Soc. of Civ. Engrs. 1940, 21(1)1-5.
    [8] Hubbert, M. K. and Willis, D. G. Mechanics of Hydraulic Fracturing, JPT, June 1957.
    [9] M. R. McLean and M. A. Addis (1990), We1lBore Stability Analysis: A Review of Current Methods of Analysis and Their Field Application IADCI. SPE 1994.1
    [10] Aadony, B. S. and Chenevert, M. E. Stability of Highly Inclined Bore-holes, SPE/IADC Drilling Conf. New Orleans, La, 1987, Mar. 25-41. SPE/IADC 16052
    [11]蔚宝华,王治中,郭彬.泥页岩地层井壁失稳理论研究及其进展[J].钻采工艺,2007,30(3):16-20
    [12] S. K. Choi and M. B. Wold, Simulation of Fluid in Coal Using a Discrete Fracture Network Model, SPE 28781.
    [13] A. Milard, Discrete andContinuam Approaches to Simulate Thermo-Hydro-Mechanical Coupling in a Large, Fractured Rock Mass, Int. J, the Rock Mech.Min.Sci. & Geomech. Abstract,Vol 32,No. 5, 1995
    [14]赵忠举.井壁稳定理论和方法的新进展[J].石油情报,1995,(5):16-20
    [15]黄荣樽.地层破裂压力模式的探讨[J].华东石油学院学报,1984,第4期:5(1):335-347
    [16]赵小龙.井壁稳定性传统方法与有限元数值模拟对比研究[J].重庆科技学院学报(自然科学版),2008,10(4):35-38
    [17] Carroll, M. M. Mechanical Response of Fluid-Saturated Porous Materials. Proc.15th Intl. Cong. Theoretical and Applied Mechanics, Toronto (Aug.17-23, 1980)251-262
    [18] Biot, M. A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. (Ten.1941)12. 144-164
    [19] Biot, M. A. Theory of Elasticity and Consolidation for a Porous Anisotropic Solid. J. Appl. Phys. (Feb.1955)26. 182-185
    [20] Bowen, R. M. Compressible Porous Media Models by Use of the Theory of Mixtures. Intl. J. Eng. Science (1982)20,679-736
    [21] Lubinski, A.The Theory of Elasticity for Porous Bodies Displaying a Strong Pore Structure. Proc. Science U. S. Natl. Cong. Applied Mechanics, ASME (1954)247-256
    [22] Weidler, J. B. and Parlay, P. R. Analytical Description of Behavior of Granular Media”J. Eng. Mech. Div. Proc. ASCE (April 1954)379-395
    [23] Bradley, W. B. Failure of Inclined Boreholes. J. Energy Resources Tech. (Dec. 1979) 233-249
    [24] Bradley, W. B. Mathenmatical Concept-Stress Cloud. O. G. J. Feb. 1979
    [25] W. B. Yew.孔隙流体和井眼稳定性. SPE 22381
    [26] Paslay, P. R. and Cheatham, J. B. Rock Stress Induced by Flow of Fluids into Boreholes. SPEJ. (Mach 1963) 85-94
    [27] Risnes, R. Bratli, R. K. and Horsrud, P. Sand Stress around a Wellbore. SPEJ. (Dec. 1982) 883-894
    [28] Fahrenthold, E. P. Elastic and Plastic Stress.In a Porous Medium Containing Spherical and Cylindrical Cavities. Houston. (May. 1984)
    [29] Outmans, H. D. Mechanics of Static and Dynamic Filtration in the Borehole.SPEJ. Sept. 1963
    [30] Fist, J. V.The Use of Filtration Theory in Devoloping a Mechanism for Filter-Cake Deposition by Drilling Fluids in Laminar Flow. SPE Drill. Eng. (Sept. 1991) 196-202
    [31] Fordham, E. J. Crossflow Filtration of Bentonite Suspensions. J. of Colloid & Inter. Sci. (Jan. 1992) Vol. 48. No. 1, 29-34
    [32] Jiao, D. and Sharma, M. M. Formation Damage due to Static and Dynamic Filtration of water Based Muds.SPE. 23823
    [33] Jiao, D. and Sharma, M. M. Investigation of Dynamic Mud Cake Formation: The Concept of Minimum Overbalance Pressure.SPE. 26323
    [34] T. Kumar and A. C. Todd. A New Approach for Mathematical Modeling of Formation Damage Due to Invasion of Solid Suspensions.SPE. 18203
    [35] Faruk Civan.A Multi-Phase Mud Filtrate Invasion and Wellbore Filter Cake Formation Model”SPE. 28709
    [36] G. O. Suman.Sand Control Handbook.Gulf Publishing Company 1983
    [37]何顺利.变形骨架的多孔介质渗流研究.博士论文,1995,6
    [38] M. A. Addis.Laboratory Studies on the Stability of Vertical and Deviated Boreholes.SPE. 20406
    [39] A. Guenoct.Borehole Breakouts and Stress Fields. Int. J. Rock Mech. Sci .& Geomech. Vol. 26, No 3, 1989
    [40] R. T. Ewy.Deformation and Fracture Around Cylindrical Openings in Rock.Observation and Analysis of Deformations. Int. J. Rock Mech. Sci .& Geomech. Vol. 27, No 5, 1990
    [41] L. W. Ledgerwood. Bit Balling and Wellbore Instability of Downhole Shales.SPE. 22578
    [42]唐林.井壁力学稳定性及其扰动应力研究.博士论文(导师罗平亚),1996,5
    [43]伍放等.岩土工程材料的卵形屈服函数.岩土工程学报,1993,15(4)
    [44]俞茂宏.岩土类材料的统一强度理论及其应用.岩土工程学报,1994,16(2)
    [45]沈珠江.几种屈服函数的比较.岩土力学,1993,(1)
    [46]俞茂宏.双剪应力强度理论研究.西安交大出版社,1988,1
    [47] Matsouka H.On the Signifigance of the Spatial Mobilized Plane.Soils and Foundation, 1976, 16(1)
    [48] Lade, P. V. Elasto-Plast Stress-Strain Theory for Cohesionless Soil with Curved Yield Surfaces.J. Solids Structures, 1977, 13(11)
    [49]郑颖人等.岩土塑性力学.建筑工业出版社,1989,6
    [50]沈珠江.关于破坏准则和屈服函数的总结.岩土工程学报,1995, Vol. 17, No 1
    [51] M. R. Meclean.Wellbore Stability Analysis: A Review of Current Methods of Analysis and Their Field Application.SPE. 1994, 1
    [52]范军.井壁力学稳定性及机理研究.硕士论文,1995, 6
    [53] C.H.Yew, Wellbore Stress Distribution Produced By Moisture Adsorption.SPE 19536.
    [54] Chenevert. M. E. Adsoption Pore pressure of Argillaceous Rocks, Proceeding, 11th Symposi-um on Rock Mechanics, Berkeley, California, June, 1969,16-19
    [55] Chenevert, M. E. Shale Control with Balanced Activity Oil-continuous Muds.JPT, Oct. 1970
    [56]张克勤.井壁稳定技术译文集.中国石油天然气总公司情报研究所.1991.163
    [57] Mody, F. K, and Hale, A. H. A Borehole Stability Model To Couple the Mechanics And Chemistry of Drilling Fluid Shale Interaction.SPE 25728, 1992
    [58]黄荣樽,陈勉,邓金根,等.泥页岩井壁稳定力学与化学的耦合研究[J].钻井液与完井液,1995,12(3)15-21、25
    [59]孟英峰.泥页岩水化反应系统的仿真模型研究[A].北京:中国科学技术出版社,1999:50-60
    [60]刘向君,罗平亚.水敏性泥页岩地层与钻井液接触时水化能力的实验研究[J].西南石油学院学报,1996,18(3)31-37
    [61]孙玉学,刘平德,宋文明,等.斜井中泥页岩井眼稳定的力学化学耦合模型[J].石油钻探技术,1998,26(4)51-53
    [62]林永学.预测井眼稳定性的力学化学耦合方法[J].石油钻探技术,1998,26(3):19-21
    [63]马丽,倪文学,丁丰虎.胜北构造泥页岩水敏性与井眼稳定性关系[J].西安石油学院学报,1999,14(3):1-5
    [64]罗健生,鄢捷年.页岩水化对其力学性质和井壁稳定性的影响[J].石油钻采工艺,1999,21(2):7-13
    [65]刘平德,张梅,孙明鑫,等.泥页岩井眼稳定的力学及化学耦合方法研究[J].钻采工艺,2000,23(6):10-12
    [66]刘向君,叶仲斌.滤饼质量对井壁周围应力和井壁稳定性的影响[J].石油钻采工艺,2002,24(3):11-13
    [67]邓虎,孟英峰.泥页岩稳定性的化学与力学耦合研究综述[J].石油勘探与开发,2003,30(1):109-111
    [68]邓金根,郭东旭,周建良,等.泥页岩井壁应力的力学-化学耦合计算模式及数值求解方法[J].岩石力学与工程学报,2003,22(增1):2250-2253
    [69]邓虎,孟英峰.泥页岩稳定性的化学与力学耦合研究[J].石油钻探技术,2003,31(1):33-36
    [70]邓虎.裂缝性泥页岩的水化稳定性研究及其应用[D].西南石油学院博士论文,2004
    [71]刘厚彬.泥页岩井壁稳定性研究[D].西南石油大学硕士论文,2006
    [72]王兴隆,程远方,赵益忠.钻井作业中泥页岩地层井壁稳定受温度影响的规律研究[J].石油钻探技术,2007,35(2):42-45
    [73]王京印.泥页岩井壁稳定性力学化学耦合模型研究[D].中国石油大学博士论文,2007
    [74]薛世峰,马国顺,葛洪魁,等.液-固-水化耦合形式的井眼稳定性模型研究[J].石油钻探技术,2007,35(1):41-44
    [75]孙文化,楼一珊,李忠慧,等.水化应力和滤饼质量对地层坍塌压力的影响分析[J].石油钻探技术,2008,36(1):28-29
    [76]刘玉石.用损伤力学方法研究硬脆性泥页岩井壁稳定[A].石油勘探开发研究院钻井所专题报告,1994
    [77]郑贵.井壁稳定问题的断裂损伤力学机理的研究[D].哈尔滨工程大学博士论文,2005
    [78] Bernt S.Aadnoy, J. Sebastian Bel Classification of Drilling-induced Fractures and Their Relationship to In-situ Stress Direction.The Log Analyst.November-Dec ember, 1998
    [79]李世忠.钻探工艺学(中册)[M].地质出版社,1989
    [80]汤凤林.钻孔护壁堵漏和封孔止水.岩心钻探学[M].中国地质大学出版社,1997
    [81]沈明荣.岩体力学[M].上海:同济出版社,1999(1):120.
    [82]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002,(1):131-133.
    [83]徐芝纶.弹性力学简明教程(第三版) [M].北京:高等教育出版社,2002:67-71.
    [84]沈明荣.岩体力学[M].上海:同济出版社,1999(1):147.
    [85]同济大学数学教研室.高等数学(第四版) [M].北京:高等教育出版社,2002:190-193.
    [86]张景和,孙宗颀.地应力、裂缝测试技术在石油勘探开发中的应用.石油工业出版社,2001(3):13~15.
    [87]李贺等编著.岩石断裂力学.重庆大学出版社,1988(8):125~135, 177~183.
    [88]宋惠珍,曾海容,孙君秀等.地震地质,储层构造裂缝预测方法及其应用,1999,21(3):205~213.
    [89]朱庆杰,朱而勤,尹万泉等.松辽盆地西部张裂缝的预测方法.青岛海洋大学学报,1995(7):359~366.
    [90]俞茂宏.双剪强度理论及其应用.科学出版社,1998(6):195~197.
    [91]昝月稳,俞茂宏,王思敬.岩石的非线性统一强度准则.岩石力学与工程学报,2002,21(10):1435~1441.
    [92]刘鸿文主编.材料力学(第四版)[M].北京:高等教育出版社,2004:243.
    [93]沈明荣.岩体力学[M].上海:同济出版社,1999,(1).17
    [94] SL264—2001水利水电工程岩石试验规程[S].北京:中国水利水电出版社,2003.
    [95]张少华,缪协兴,赵海云.试验方法对岩石抗拉强度测定的影响[J].中国矿业大学学报, 1999, 28(3): 243~246
    [96]叶明亮.岩石抗拉强度试验方法的探讨[J].贵州工业大学学报(自然科学版),2001,30(6): 19~25.
    [97]窦庆峰,等.岩石直接拉伸试验与劈裂试验的对比研究[J].地下空间,2004,24(2): 178~181.
    [98]陶纪南.岩石轴向拉伸与劈裂法试验结果的比较分析[J].金属矿山,1995(3): 28~31.
    [99]Мусхелишьили. HИ.数学弹性力学的几个基本问题(赵惠元译)[M].北京:科学出版社,1958, 249~251.
    [100]李先炜.岩块力学性质[M].北京:煤炭工业出版社,1983.271~273
    [101]闫萍.利用测井资料计算地应力及其在山前构造带的应用研究[D].中国石油大学硕士论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700