用户名: 密码: 验证码:
黄河三角洲粉土的力学特性及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河三角洲粉土是由新老堆积体反复淤积形成的,因此它不同于其它地区的粉土。该地区粉土不仅颗粒均匀,磨圆度很高,孔隙率高,相互之间的咬合作用很差,而且长期的冲刷作用使得粉土里面的粘粒含量极低,这些性质导致了其强度很低。更为重要的是由于黄河三角洲地处渤海湾附近,海水的倒渗作用使得粉土里面的含盐量很高。这些特殊的成因及特性,造成了使得该类土难以压实,压实含水量不易控制,且压实后表面松散,强度不高,且粉粒不能像粘粒那样与各种稳定剂有效的发生作用,也不能在土中起到骨架作用,所以该地区的粉土路基灾害很多。因此,很有必要开展黄河三角洲粉土的力学特性研究,并在此基础上提出解决的对策。
     论文以黄河三角洲高含盐粉土为研究对象,从室内物性试验、化学试验和微观分析入手,进行了大量的现场原位力学试验和原状样的室内力学试验,充分分析其力学性质及工程特性;在此基础上,选用廉价、环保的添加剂对黄河三角洲粉土进行改性试验,找到了适合黄河三角洲粉土的固化剂最优配比方案;最后,结合试验和数值分析,研究了改性后的粉土路基的力学响应以及变形特征。本文主要研究内容及结论如下:
     (1)利用现场取得的黄河三角洲原状粉土试样进行了室内物性试验和化学试验,并与普通粉土对比分析了其微观结构,弄清了黄河三角洲粉土特殊工程特性及本质原因。
     (2)基于现场勘探、静力触探试验的基础上,进行了原位旁压试验和扁铲试验,综合分析了粉土的工程特性。得到了该地区土层的临塑压力、极限压力和地基承载力随深度的变化情况,推导得到了地基土的旁压模量Em随深度的变化情况;扁铲试验得到了扁铲指数ID、静止侧压力系数K0、水平应力指数KD、压缩模量Es和扁铲模量ED与该地区土层深度的变化关系。
     (3)根据现场取得的不同钻孔、不同深度的原状试样,进行了室内力学试验,得到了该地区不同深度试样的应力应变关系和强度指标。推导得到了不同深度试样破坏点的拟合方程;不同钻孔试样的稳态内摩擦角,以及该地区粉土的峰值强度与残余强度之间的关系式。
     (4)开展了黄河三角洲高含盐粉土的改性试验,基于粉土物理化学成分和力学特性,选取了廉价环保的添加剂,分别进行单掺试验、双掺试验和正交试验,在此基础上,进行优化分析,建立了线性规划的数学模型,找到了适合该地区粉土路基改性的一种最优配比方案,其7d抗压强度值能达到842.64kPa,为改性前其强度的12.98倍。
     (5)选取了典型的高速公路路基模型,分析了改性后粉土路基的力学响应和变形特性。在静力和动力、单次动力荷载和循环动荷载作用情况下,分析了不同循环荷载作用时间,不同行车速度,不同动荷载幅值下路基的变形情况,并得到了这些因素与路面沉降的关系式。
Silt in Yellow River Delta is formed by repeated siltation of old and new accumulation body. Therefore, it varies from silt in other areas. Silt in Yellow River Delta has some special characteristics, such as homogeneous particle size, high degree of roundness, poor interlocking with each other, and high porosity; meanwhile, there are so little clay particles in the silt due to long-term erosion. All of these properties lead to the greatly low strength. More important, the geographical position of Yellow River Delta is near Bohai bay, so the content of soluble salt in this silt is very high due to the reverse permeability of seawater. Because of these special causes of formation and characteristics, this silt has some unsatisfactory engineering properties, such as hard to compaction and controlling of water content, loose of surface after consolidation and low degree of strength. Also, the silt particle will militate against efficient affecting with stabilizer like clay particle. In the meantime, the silt granule can not play a skeleton role in the soil. As a result of these special properties, many of roadbed diseases happen in this area. Therefore, it is necessary to carry out research on mechanical properties for silt in Yellow River Delta, and then put forward a countermeasure.
     Taking the silt in Yellow River Delta as a research object, laboratory physical tests, chemical tests and micro-analysis were conducted. A lot of in-suit tests and mechanical tests of undisturbed samples were also finished. The mechanical and engineering properties were comprehensively analyzed. Based on this, cheap and environmental protection additives were selected and used to enhance the strength of this special silt soil. The optimal matching program of solidified agent was founded after lots of tests. Finally, mechanical responses and deform characteristics of modified silt were studied. The main research contents and conclusions are as follows:
     (1) Laboratory physical tests and chemical tests of silt in Yellow River Delta were accomplished. Comparing with ordinary silt, micro-analysis was conducted. The essential reason for the special engineering properties of this silt was clarified.
     (2) Based on ground investigation and cone penetration test(CPT), pressure meter test(PMT) and dilatometer test(DMT) were carried out. The engineering properties were comprehensively analyzed. The relationship between pro-plastic and ultimate pressure with the depth was obtained. The variation features of bearing capacity of foundation changing with depth were also discovered. Then the variety law between pressuremeter modulus Em and depth was conduced. As for DMT, the changes of dilatometer index ID, static lateral pressure coefficient K0 and horizontal stress index KD with depth are studied; meanwhile, the variations of ED and Es with depth of soil stratum are analysed.
     (3) Laboratory mechanical tests were carried out for different drilling holes and depth of undisturbed samples. The stress-strain relationship and strength indexes were obtained for this area. Fitted equation of critical failure points for varies depth samples were derived; then internal frictional angle of steady-state for different drilling holes was calculated. Finally, the relationships between peak strength and residual strength were derived for different drilling holes in this region.
     (4) Improved tests for silt with high content of soluble salt in Yellow River Delta were carried out. Based on the physical and mechanical tests, cheap and environmental protection additives were selected. Then, single-doped tests, double mixed tests, and orthogonal tests were finished. Due to these tests results, the mathematical model of linear programming was founded through optimization analysis. Finally, the optimal matching program of solidified agent was founded, with which the 7d strength can come to 842.64kPa. This value is 12.98 times to the strength of this silt before treated.
     (5) A typical foundation model of highway was selected. Mechanical responses and deform characteristics of improved silt foundation were studied. The deformation properties of foundation for different actuation duration, running speed, and dynamic load amplitude of cyclic loading were analyzed under static and dynamic, single dynamic load and cyclic dynamic load. The relationships between these factors with surface subsidence were deduced.
引文
[1]黄河三角洲科研信息网http://www.yrdsd.com/index.htm
    [2]朱志铎,刘松玉,孙海军.江苏徐宿地区粉土的基本性质及加固方法研究[J].岩土力学,2004,25(7):1155-1158.
    [3]李治平,王洪波.粉土地区公路病害与防治对策研究[J].交通科技,2003,No.4:48-50.
    [4]王俊超,贾永刚,史文君等.差异水动力导致黄河口粉质土微结构分形特征变化实例研究[J].海洋科学进展,2004,22(2):177-183.
    [5]郭秀军,张志阔,贾永刚,等.黄河口饱和粉土的电性特征及其工程地质应用[J].岩土力学,2007,28(3):593-598.
    [6]王小花,刘红军,贾永刚.黄河口粉质土矿物成分特征及对水动力条件响应的研究[J].研究报告,2008,32(2):42-46.
    [7]Milda Kairyte and Rodney L. Stevensa. Quantitative provenance of silt and clay within sandy deposits of the Lithuanian coastal zone (Baltic Sea). Marine Geology(2008)
    [8]杨占宝.黄河三角洲地震地质特征研究[硕士学位论文][D].青岛:中国海洋大学,2003.
    [9]景立平,崔杰,李立云,等.粉土液化的小型振动台试验研究[J].地震工程与工程振动,2004,24(3):145-151.
    [10]马德翠,单红仙,周其健.黄河三角洲粉质土的动模量和阻尼比试验研究[J].工程地质学报,2005,13(3):353-360.
    [11]陈勇,单红仙,贾永刚.黄河沉积粉土渗透系数变化研究[J].海洋湖沼通报.2005,No.4:51-22.
    [12]贾永刚,史文君,单红仙,许国辉,刘红军,郑建国.黄河口粉土强度丧失与恢复过程现场振动试验研究[J].岩土力学.2005,20(3):351-358.
    [13]李立云,崔杰,景立平等.饱和粉土振动液化分析[J].岩土力学,2005,26(10):1663-1667.
    [14]单红仙,段兆臣,刘正银等.粉质土重复振动液化与效果研究[J].水利学报,2006,37(1):57-08
    [15]赵淑萍,何平,朱元林等.冻结粉土的动静蠕变特征比较[J].岩土工程学报,2006,Vol.28,No.12:2160-2163
    [16]曾长女.细粒含量对粉土液化及液化后影响的试验研究[博士学位论文][D].南京:河海大学,2006.
    [17]曾长女,刘汉龙,丰土根等.饱和粉土空隙水压力性状试验研究[J].岩土力学,2005,26(12):1963-1967.
    [18]刘汉龙,曾长女,周云东.饱和粉土液化后变形特性试验研究[J].岩土力学,2007,28(9):1866-1871.
    [19]景立平,姚运生,郑志华.饱和粉土液化特性的大型振动台模型试验研究[J].地震工程 与工程振动,2007,27(6):160~561
    [20]景立平,罗强,崔杰.饱和粉土液化和应变特性试验研究[J].地震工程与工程振动,2006,26(5):252-852.
    [21]孟凡丽,卢成原,王姗姗.波浪载荷下粉质土动应变和动强度的试验研究[J].浙江工业大学学报,2007,35(6):176-476.
    [22]刘茜,郑西来,刘红军等.黄河三角洲粉土液化的试验研究[J].世界地震工程,2007,23(2):161-166.
    [23]孙永福,董立峰,宋玉鹏.黄河水下三角洲粉质土扰动土层特征及成因探析[J].岩土力学,2008,29(6):1494-1499.
    [24]Prior D B, Yang Z S, Lu N Z. Active slope failure, sediment collapse, and silt flows on the modern subaqueous Yellow River delta[J]. Geo-marine,1986,6:85-89.
    [25]Dumas,Jean C.Dynamic compaction of saturated silt and silty sand-A case history. Geotechnical Special publication,1994,45(10):9-13.
    [26]Drumm E C. Reeves J S. Madgett M Ret al. Subgrade Resilient Modulus Correction for Saturation Effects[J]. Journal of Geotechnical and Geo-environmental Engineering,1997 123(7):663-670.
    [27]Muhanna A S. A Testing Procedure and a Model for Resilient Modulus and Accumulated Plastic Strain of Cohesive Subgrade Soil[D]. North Carolina State Unviersity.1994.
    [28]Hua Li.The Family of Compaction Curves for Fine-grained Soils and Their Engineering Behaviors:[A thesis for the degree of Doctor in University of Alberta].Edmonton:University of Alberta,2001,191-196.
    [29]S.L. Yang, R. Sandvenb and L. Grande. Instability of sand-silt mixtures[J]. Soil Dynamics and Earthquake Engineering. Volume 26, Issues 2-4, February-April 2006, Pages 183-190.
    [30]M.V. Sanina and D. Wijewickreme. Cyclic shear response of channel-fill Fraser River Delta silt. Soil Dynamics and Earthquake Engineering. Volume 26, Issue 9, September 2006, Pages 854-869.
    [31]Medina J, Guida H N. Stabilization of lateritic soils with phosphoric acid[J]. Geotechnical and Geological Engineering,1995,13(4):199-216.
    [32]Tomohisa S, Sawa K, Naitoh N. Hedorl hardening treatment by industrial wastes [J]. Journal of the Society of Materials Science,1995,44(503):1023-1026.
    [33]Bell F G. Assessment of cement PFA and lime-PFA used IO stabilize clay-size materials [J]. Bulletin of the international Association of Engineering Geology,1994,49:25-32.
    [34]Attom M F. Al-Sharif M M. Soil stabilization with burned olive waste[J]. Applied Clay Science,1998,13:219-230.
    [35]Byung Sik Chun, Jin Chun Kim. A Study on the Soil Improvement Properties of FGC Stabilizing Agent[C]. Melbourne Australia:Proceeding of GeoTech,2000.
    [36]邵玉芳.含腐殖酸软土的加固研究[D].杭州:浙江大学,2006.
    [37]朱志铎.粉土路基稳定理论与工程应用技术研究[D].南京:东南大学,2006.
    [38]杨世基,石采亭.NCS固化材料在道路工程中的应用[J].东北公路,1998,21(2):46-51
    [39]董邑宁,徐日庆,龚晓南.固化剂ZDYT-1加固土试验研究[J].岩土工程学报,2001,23(4):472-475
    [40]王银梅.新型高分子固化材料在治沙中的应用研究[D].兰州:兰州大学,2004.
    [41]朱志铎,刘松玉,孙海军.江苏徐宿地区粉土的基本特性及加固方法研究[J].岩土力学,2004,25(7):1155-1158.
    [42]朱志铎,刘松玉,邵光辉等.粉土及其稳定土的三轴试验研究[J].岩土力学,2005,26(12):1967-1971.
    [43]朱志铎,刘松玉.SEU-2型固化剂稳定粉质土路基的试验研究[J].公路,2007(7):177-181.
    [44]朱志铎,郝建新,周礼红.固化粉质土应力应变特性试验研究[J].岩土力学,2008,29(8):2199-2202.
    [45]ZHU Z D, LIU S Y. Utilization of a new soil stabilizer for silt subgrade[J]. Engineering Geology,2008,97(3/4):192-198.
    [46]李迎春,钱春香,刘松玉等.粉土固化稳定机理研究[J].岩土工程学报,2004,26(2):268-271.
    [47]曹玉,滕伟福.高速铁路粉土路基改良试验研究及分析[J].岩土工程界,2004,7(3):71-72.
    [48]互动百科:http://www.hudong.com
    [49]东营市勘察测绘院.东营飞机场航站楼岩土工程勘察报告[R],东营,2008.
    [50]中华人民共和国行业标准编写组.SL237-1999土工试验规程[S].北京:中国水利水电出版社,1999.
    [51]中华人民共和国建设部.岩土工程勘察规范GB50021-2001.北京:中国建筑工业出版社,2002.
    [52]肖军华,刘建坤,彭丽云等.黄河冲积粉土的密实度及含水率对力学性质影响[J].岩土力学,2008,29(2):409-414.
    [53]曹卫东.低液限粉土填筑路基压实性能的研究[D].济南:山东大学,2002.
    [54]姚占勇.黄河冲淤积平原土的工程特性研究[D].天津:天津大学,2006.
    [55]徐东升,汪稔,孟庆山等.黄河三角洲粉土原位力学性能试验研究[J].岩石力学与工程学报.2010,29(2):409-416.
    [56]孟高头.土体原位测试机制、方法及工程应用[M].北京:地质出版社,1997.
    [57]Paul W. Mayne, Barry R. Christopher, and Jason DeJong. Manual on Subsurface Investigations[M]. USA:Federal Highway Administration,2001.
    [58]中华人民共和国行业标准编写组.SL237-1999土工试验规程[S].北京:中国水利水电出版社,1999.
    [59]《岩土工程手册》编写委员会.岩土工程手册[M].北京:中国建筑工业出版社,1994.
    [60]汪稔,胡建华.旁压试验在苏通大桥地质勘察工程中的应用[J].岩土力学,2003,24(6):887-891.
    [61]MARCHETTI S. The flat dilatometer(DMT) and its application to geotechnical design[R]. [S. l.]:[s.n.],1999:56-61.
    [62]MARCHETTI S. In-situ tests by flat dilatometer[J]. Journal of the Geotechnical Engineering Division, ASCE,1980,106(3):299-321.
    [63]刘红军,吕文芳,杨俊杰等.黄河三角洲粉质土初始干密度和粘粒含量对稳态强度的影响研究[J].岩土工程学报,2009,31(8):1287-1291.
    [64]杨振茂,赵成刚,王兰民等.饱和黄土的液化特性与稳态强度[J].岩石力学与工程学报,2004,23(22):3853-3860.
    [65]余湘娟,姜朴,魏松.砂土的稳态强度试验研究[J].河海大学学报,.2001,29(1):50-54.
    [66]王星华,周海林.砂土液化动稳态强度分析[J].岩石力学与工程学报,2003,22(1):96-102.
    [67]魏松,朱俊高,王俊杰等.砂土的稳态强度估计不排水三轴试验研究[J].岩石力学与工程学报,2005,24(22):4151-4157.
    [68]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [69]Zhang XJ,Chen WF.Stability analysis of slopes with general nonlinear failure criterion. International Journal for Numerical and Analytical Methods in Geomechanics 1987,11: 33-50.
    [70]Xiao-Li Yang, Jian-Hua Yin. Estimation of seismic passive earth pressures with nonlinear failure criterion. Engineering Structures 2006,28:342-348.
    [71]Casagrande A. Characteristic of cohesionless soils affecting the stability of earth fills[J]. Contribution to Soil Mechanics,1940,1925-1940; 275-276.
    [72]Taylor D W. Fundamentals of Soil Mechanics[M]. New Yourk:John Wiley and sons, Inc, Chapter 14.
    [73]Zhang Huiming, Garga, V.K. and Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J].Chinese Journal of Geotechnical Engineering,1999,21(2):230-235.
    [74]Roscoe K H, Schofield A N, Wroth C P. On the yielding of soils[J]. Geotechnique,1958,8(1), 22-53.
    [75]Poulos, S.J. The steady state of deformation[J]. Journal of Geotechnical Engineering, ASCE, 1981,107(5):553-562.
    [76]黄茂松,危萍,钱建固.基于材料状态相关砂土临界状态理论的应变局部化分析[J].岩土工程学报,2008,30(8),1133-1139.
    [77]John Krahn. Procedures and Methods for a Liquefaction Assessment using GeoStudio 2007. GEO-SLOPE International Ltd, Calgray, Alberta, Canada.
    [78]Poulos S J, Castro G, France J W. Liquefaction evaluation procedure[J]. Journal of Geotechnical Engineering, ASCE,1985, 111(6):722-792.
    [79]朱建群.含细粒砂土的强度特征与稳态性状研究[D].中科院武汉岩土力学研究所,2007.
    [80]陈希哲.土力学地基基础[M].北京:清华大学出版社,2004.
    [81]Castro G, Poulos S J. Factors affecting liquefaction and cyclic mobility[J]. J. Geotech. Engrg. Div., ASCE,1977,103(GT6):501-516.
    [82]Ishihara K. Evaluation of residual strength of sandy soils[A]. In:XIII ICSMFE[C]. New Delhi, India:[s. n.],1994.175-181.
    [83]Vaid Y P, Chung E K F, Keurbis R H. Stress path and steady state[J]. J. Can. Geotech.,1990, 27(1):1-7.
    [84]Sladen, J.A, D'Hollander, R.D, and Krahn, J. The liquefaction of sands, a collapse surface approach[J]. Can. Geotech. J.,1985(22):522-526.
    [85]张权.粉土路基常见病害的预防与处治[J].科技咨询导报,2007,24:175-176.
    [86]任继仓.粉土地区路基路面病害调查与防治对策研究[D].山东:山东大学,2006.
    [87]中华人民共和国行业标准编写组.JTJ057-94公路工程无机结合料稳定材料试验规程[S].北京:人民交通出版社,1994.
    [88]中华人民共和国行业标准编写组.CJJ/T80-98固化类路面基层和底层技术规程[S].北京:中国建筑工业出版社,1998.
    [89]建设部标准定额研究所.RISN-TG003-2007土壤固化剂应用技术导则[S].北京:中国建筑工业出版社,2007.
    [90]苏金明,阮沈勇,王永利.MATLAB工程数学[M].北京:电子工业出版社,2005.
    [91]张军.重型车辆与刚性路面结构的动力相互作用理论分析和试验研究[D].湖南大学,2003.
    [92]刘建坤.路基工程[M].北京:中国建筑工业出版社,2006.
    [93]刘建坤,肖军华,杨献永等.提速条件下粉土铁路路基动态稳定性研究[J].岩土力学,2009,30(2):399-405.
    [94]Itasca Consulting Group, Inc. Manual of FLAC 3D-Fast Lagrangian Analysisof Continua in 3 Dimensions[R]. [s.l.]:[s.n.],2002.
    [95]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [96]陈育民,徐鼎平.FLAC/FLAC 3D基础与工程实例[M].北京:中国水利水电出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700