用户名: 密码: 验证码:
包覆型纳米铁的制备及用于地下水污染修复的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着三氯乙烯(TCE)等卤代烃类污染物在环境中,尤其是在地下水中的不断积累,水体的卤代烃类污染已经成为了非常严重的环境问题。地下水的卤代烃污染修复也已成为全球环境污染修复的重要内容。
     纳米技术的发展给污染物的处理带来了一种颇具潜力的新方法,其中纳米铁材料具有粒径小,比表面积大,表面活性高,还原能力强等特点,能够有效去除有机物、重金属和硝酸盐等多种污染物,已越来越多的被应用于土壤和地下水污染修复的研究。
     但是,目前纳米铁在地下水环境修复中的应用尚存在一些问题。高活性的纳米铁暴露在空气中会发生自燃,当缓慢接触空气时会被氧化,在其表面生成氧化铁膜而损失其表面活性。在液相中处理疏水性有机物时,由于纳米铁极性与其不同,两者难于接触而使反应速率低。这些因素使得纳米铁在实际应用中受到了很大的限制。
     本论文针对这些问题,结合国家自然科学基金“乳化炭载纳米铁原位修复地下水中有机氯代烃”的部分内容,制备了表面包覆型纳米铁材料,研究了包覆型纳米铁在空气中的稳定性;并考察了其对TCE的还原脱氯性能;探讨了脱氯反应的动力学和反应机理。论文的主要研究内容和结果有:
     1.用乳液聚合法制备了聚甲基丙烯酸甲酯(PMMA)包覆型纳米铁材料,发现经过包覆的纳米铁表面亲油性和抗氧化性均有所提高,接触空气未发生自燃,但于空气中放置一周后仍发生了明显氧化。将纳米材料制备与微乳聚合相结合,开发出一种新型的微乳原位聚合法制备包覆型纳米铁,该方法可将纳米粒子的生成、粒径控制、抗团聚、抗氧化保护在一个体系中一次性实现,在生成的纳米粒子外层形成稳定的PMMA包覆层。用这种新型微乳液原位聚合法制备的包覆型纳米铁的抗氧化性更强,能够在空气中放置两周不被氧化。
     2.用微乳液原位聚合法制备的包覆型纳米铁进行了TCE降解实验。探讨了溶液初始pH,纳米铁投加剂量,TCE初始浓度,溶解氧等因素对反应的影响。包覆型纳米铁在反应中同时发挥吸附和还原降解的作用,吸附在包覆型纳米铁表面的TCE分子溶胀、穿透PMMA包覆层到达铁表面与其发生反应,但由于包覆层的存在,这种材料的降解速率比未包覆的材料有所降低。
     溶液初始pH越低,TCE去除速率越大;振荡速度的提高可加快传质过程,提高反应速率;溶液中纳米铁剂量的增加可以加快反应的进行;TCE初始浓度的越大,TCE的去除速率越慢;反应体系中有溶解氧存在时,溶解氧作为电子受体与TCE进行竞争消耗纳米铁,减慢反应速率;共存离子的存在会降低铁还原TCE的能力;周期实验显示,反应中生成的铁氧化物和氢氧化物沉积在铁的表面,逐渐将有活性的零价铁包覆,使其还原性能逐渐减弱。
     柱实验研究表明,TCE溶液流速越慢,与填充铁的接触时间越长,接触越充分,柱的去除率越高。
     3.研究了微乳原位聚合包覆型纳米铁去除TCE的反应动力学,探讨了其对TCE的脱氯还原机理。
     通过线性回归验证纳米铁对TCE的还原脱氯较好的符合准一级反应动力学模型。分析了包覆型纳米铁与TCE反应的固-液相反应动力学模型,证明化学还原是控制该反应速率的最主要步骤。
     在包覆型纳米材料还原TCE的过程中,纳米铁是主要的还原剂,纳米铁表面的电子直接转移到吸附在铁表面的氯代烃上发生还原性脱氯。还原性脱氯反应中氯原子与碳原子断开的方式是序贯氢解作用和β消去作用,其中以氢解作用为主。在TCE的去除过程中,还原脱氯占主要部分。无氧环境下包覆型纳米铁在溶液中对TCE进行还原后的最终腐蚀产物为Fe3O4。
In recent years, halogenated hydrocarbons, including chlorinated hydrocarbons such as trichloroethylene(TCE), have been accumulating in the environment, particularly in groundwaters. As a result, pollution of water by halogenated hydrocarbons has become an important environmental problem. Contaminated groundwaters represent a large portion of environmental remedial action plans throughout the world.
     Due to their small particle size and high reactivity, the nanoscale zero valent iron (nZVI) has increasingly been utilized in the remediation of soils and groundwater.
     nZVI has been proved to be one of the latest innovative technologies for environmental remediation. Laboratory studies have demonstrated that nZVI can effectively transform a wide array of environmental contaminants including chlorinated organic compounds, toxic metals, and nitrate. The use of nZVI in the reaction affords little environmental threat. Thus, it is desirable to be able to efficiently dechlorinate groundwater contaminates using nZVI.
     However, Fe nanoparticles were easily oxidized, e.g. by air, and thereby significantly lost their main advantage of a very high surface reactivity. Freshly synthesized iron nanoparticles often ignited spontaneously upon exposure to air. When slowly exposed to air, a coating of iron oxide was formed on the surface of particles. Furthermore, it was hard for nanoiron to touch TCE in solution. The characters of this material have been serious drawbacks in practical application.
     To overcome these drawbacks, the study aims to: (1) synthesize polymer coated nanoiron particles and assess their air stability; (2) research the removal efficiency of TCE by polymer coated nanoiron particles; and (3) study the kinetic and mechanisms of the TCE removal by the synthesized polymer coated nanoiron particles. The research work is a part of the project named“The In-situ Remediation of Chlorinated Hydrocarbons in Groundwater with Supported Nanoscale Iron Emulsion”, which is funded by the National Natural Science Foundation of China (NNSFC).
     There were three main parts in our study:
     1. nanoscale iron particles were entrapped successfully in poly(methyl methacrylate) (PMMA) by emulsion polymerization. It was found that the freshly synthesized polymer coated nanoiron particles did not ignite spontaneously when they were rapidly exposed to air. However, upon subsequent exposure in air for one week, a coating of iron oxide was formed on the surface of particles. And then, we synthesize PMMA coated nanoiron particles via a modified in-situ inverse microemulsion polymerization. The remarkable characteristic of nanoparticles in-situ synthesizing is which can synchronously bring to success in a single system for the growth of particles, granularity control, agglomeration control, high degree dispersion and long lasting stability. In this study, the polymer coated nanoiron particles produced by microemulsion polymerization have been shown to be more stable in air.
     2. The polymer coated nanoiron particles were used for TCE removal from aqueous solution. The effects of some factors were discussed, such as initial pH, dispersion intensity, nanoiron particles content, initial concentration of TCE, dissolved oxygen and so on.
     The batch studies showed that the reaction between the polymer coated nanoiron particles and TCE was composed of two processes: (a) TCE molecules was adsorped on the surface of particles; (b) Adsorped TCE molecules moved through the polymer membranes and participate in the redox reaction. The reaction of TCE removal by nanoiron particles was fater than that by polymer coated nanoiron particles.
     The TCE removal rate was strongly dependent on intensity of dispersion. Great intensity would accelerate the reaction when a rotary shaker was used. The greater the polymer coated nanoiron particles content was, the greater the reaction rate would be. Under the same content of polymer coated nanoiron particles, reaction rate would decrease with the increase of the pH and the initial nitrate concentration. Dissolved oxygen would retard the reduction of TCE by consuming electrons released from iron. The co-exist ion could weaken the dechlorination efficiency of polymer coated nanoiron particles. The generation of OH- in the reaction would cause the precipitation of Fe2+ during the experiment.
     The column studies indicated that the greater the dechlorination efficiency was, the longer the contact time in column was.
     3. The kinetics and mechanisms of TCE removal by the synthesized polymer coated nanoiron particles investigated.
     In this study, the experimental data could be fit to pseudo first-order kinetic model. In the solid-liquid interface reaction between polymer coated nanoiron particles and TCE, the main factors that control the reaction rate was the chemical reduction. The nanoiron is the main reducing agent in the reaction. The possible reaction pathways for TCE reduction by nanoiron were hydrogenolys and reductiveβelimination, but the hydrogenolysis was the main reaction pathway for TCE. The polymer membranes appeared to have no obvious impact on the final efficiency and products of the denitrification. In anaerobic system, Fe3O4 was the final iron corrosion product.
引文
[1] 王大纯. 水文地质学基础. 北京: 地质出版社,1998
    [2] 冯尚友. 水资源持续利用与管理导论. 北京: 科学出版社,2000
    [3] 陈传友, 王春元, 窦以松. 水资源与可持续发展. 北京: 中国科学技术出版社,1999
    [4] 孙景云, 左犀. 地下水饮用水源地的保护. 环境科学, 1996, 17 (5): 20~24
    [5] Evgenii V P. A recent concept of hydrogeology and its ecological problems. 地学前沿,1995, 3 (1 ~2 ): 49~56
    [6] 赵胜玉. 我国一半城市地下水污染较重. 城市管理, 2004, (2 ): 44~47
    [7] 周学志. 地下水开发利用的环境问题及防治措施研究. 环境科学丛刊, 1992, 13 (3 ): 1~4
    [8] 李海明. 浅层地下水有机污染研究-以某城市近郊为例: [博士学位论文]. 北京: 中国地质大学, 2002
    [9] 刘明柱. 氯代烃在浅层地下水中运移转化的数值模拟研究: [博士学位论文]. 北京: 中国地质大学, 2002
    [10] Shoe S H. Permeable reactive barriers, In: Rumer R R, Mitchell J K, eds. Assessment of barrier containment technologies. Baltimore Maryland: International Containment Technology Workshop, 1995, 301~353
    [11] Sivavec T M. Redox-active media for permeable reactive barriers [A]. In: International Containment Technology conference, St. Florida: Petersburg. 1997, 753~759
    [12] 刘兆昌, 聂永丰, 朱锟. 地下水系统的污染与控制. 北京: 环境出版社,1991
    [13] 郭永海. 河北平原地下水有机氨污染及其与防污性能的关系. 水文地质工程地质, 1996, (1): 40~42
    [14] 张达政, 陈鸿汉, 李海明等. 浅层地下水卤代烃污染初步研究. 中国地质, 2002, 29 (3): 326~329
    [15] 孟凡生,王业耀. 三氯乙烯污染地下水和土壤的修复. 中国给水排水, 2005, 21 (4): 34~36
    [16] Belgiorno V, Napoll R M. Groundwater quality monitoring. Water Science Technology, 2000, 42 (1-2): 37~41
    [17] 程元恺. 致癌性多环芳烃. 人民卫生出版社, 1979
    [18] 张坤海. 三氯乙烯对人体健康的影响. 职业与健康, 2003, 19 (3): 5~6
    [19] 陈秀成, 曹瑞钰. 地下水污染治理技术的进展. 中国给水排水, 2001, 17 (4): 23~26.
    [20] Mackay D M, Cherry J A. Groundwater contamination: pump-and-treat remediation. Envirnmental Science and Technology, 1989, 23 (6): 630~636
    [21] Zhu K, Chen H, Li GH, et al. In situ remediation of petroleum compounds in groudnwater aquifer with chlorine dioxide. Water Research, 1998, 32 (5): 1471~1480
    [22] Catherine A S. New processes may replace chlorine, improve in situ remediation. Pollution Engineering, 1994, 26 (8): 52
    [23] 周启星, 林海芳. 污染土壤及地下水修复的 PRB 技术及展望. 环境污染治理技术与设备, 2001, 2 (5): 48~54
    [24] 束善治, 袁勇. 污染地下水原位处理方法: 可渗透反应墙. 环境污染治理技术与设备, 2002, 3 (1): 47~51
    [25] Beitinger E. Permeable treatment walls-design, construction and cost. NATO/CCMS pilot study 1998. Special session, Treatment walls and permeable reactive barriers, U.S. EPA. Report No:542-R-98-003, 1998, (229): 6~16
    [26] 张锡辉, 王慧, 罗启仕. 电动力学技术在受污染地下水和土壤修复中的新进展. 水科学进展, 2001, 12 (2): 249~255
    [27] Shapiro A P, Probstein R F. Removal of contaminants from saturated clay by electroosmosis. Envirnmental Science and Technology, 1993, 27 (2): 283~291
    [28] Bruell C J, Segall B A, Walsh H T. Electro-osmotic removal of gasoline hydrocarbons and TCE from clay. Environmental Engineering, American Society of Civil Engineering, 1992, 118: 84~100
    [29] John K. Hazardous waste microbubbles and electron beams are part of growing arsenal to treat contaminated soils. Pollution Engineering, 1994, 26 (8): 52
    [30] 胡国臣, 地下水硝酸盐氮污染防治研究. 农业环境保护, 1999, 18 (5): 228~230
    [31] 黄国强, 李鑫钢. 地下水有机污染的原位生物修复进展. 化工进展, 2001, 17 (10): 13~16
    [32] 金朝晖, 曹骥赟, 戴树桂. 地下水原位生物修复技术. 城市环境与城市生态, 2002, 15 (1): 10~12
    [33] David F W. Biosparging used in aquifer remediation. Pollution Engineering, 1995, 27 (5): 36~41
    [34] Devlin J F, Barker J F. Field demonstration of permeable wall flushing for biostmulation of a shallow sandy aquifer. Groundwater Monitoring & Remediation, 1999, 19 (1)
    [35] Kao C M, Lei S E. Using a peat biobarrier to remediate PCE/TCE contaminated aquifer. Water Research, 2000, 34 (3): 835~845
    [36] 钟佐燊. 地下水有机污染控制及就地恢复技术研究进展(一). 水文地质工程地质, 2001, 28 (3): 1~3
    [37] Mackay D M, Cherry T A. Groundwater contamination: pump and treat remediation. Environment Science and Technology, 1989, 23 (6): 630~636
    [38] 孟凡生, 王业耀. 三氯乙烯污染地下水修复和土壤的修复.中国给水排水, 2005, 21 (4): 34~36
    [39] 宋汉周, Woodbury A D. 抽出处理措施的有效性评价——某碳酸盐岩含水层中地下水有机污染及其去除研究之三. 河海大学学报, 2000, 28 (4): 67~71
    [40] Amarante D. Applying in-situ chemical oxidation several oxidizers provide an effective first step in groundwater and soil remediation. Pollution Engineering, 2000, 32 (2): 40 ~42
    [41] GatesD D, Siegrist R L, Cline S R. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidation for organically contaminated soils. Journal of Environmental Engineering, 2001, 127 (4): 337~347
    [42] Gates D D, Siegrist R L. In-situ chemical oxidation of trichloroethylene using hydrogen peroxide. Journal of Environmental Engineering, 1995, 121 (9): 639~644
    [43] Yan Y E, Schwartz F W. Kinetics and mechanisms for TCE oxidation by permanganate. Envirnmental Science and Technology, 2000, 34 (12): 2535~2541
    [44] Bruell C J, Segall B A, Walsh M T. Eletroosmotic removal of gasoline hydrocarbons and TCE from clay. Journal of Environmental Engineering, 1992, 118(1): 68~83
    [45] 陶映初, 陶举洲. 环境电化学. 北京: 化学工业出版社, 2003
    [46] 陈翠柏, 杨琦, 沈照理. 地下水三氯乙烯生物修复研究进展. 华东地质学院报, 2003, 26 (1): 10~14
    [47] Oldenhius R, Vink R L, Janssen D B, et al. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium 0B3b expressing soluble methane monooxygense. Applied and Environmental Microbiology, 1989, 55 (2): 2819~2826
    [48] Munakata-Marr J, Matheson V G, Forney L J, et al. Long - term biodegradation of trichloroethylene influenced by bioaugmentation and dissolved oxygen in aquifer microcosms. Environmental Science and Technology, 1997, 31 (3): 786~791
    [49] Duba A G, Jackson K J, JovanovichM C, et al. TCE remediation using an in-situ, resting-state bioaugmentation. Environmental Science and Technology, 1996, 30 (6): 1982~1989
    [50] 崔俊芳. 莱西地区地下水系统硝酸盐污染过程的研究: [硕士学位论文]. 青岛: 中国海洋大学, 2003
    [51] Kao C M, Chen S C, Su M C. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation. Chemosphere, 2001, 44 (5): 925~934
    [52] 刘菲, 钟佐燊. 地下水中氯代烃的格栅水处理技术. 地学前缘, 2001, 8 (2): 309~314
    [53] Gillham R W, O’Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 1994, 32 (6): 958~967
    [54] Sweeny K H. Reductive degradation treatment of industrial and municipal wastewaters. Proc. Water Reuse Symposium; American Water Works Association Research Foundation; Denver, 1981, 2, 1487~1497
    [55] 陈翠柏, 杨 琦, 沈照理.地下水三氯乙烯(TCE)生物修复研究进展. 华东地质学院报, 2003, 26 (1): 10~14
    [56] Orth W S, Gillham R W. Dechlorination of trichloroethene in aqueous solution using Fe0. Environmental Science and Technology, 1996, 30 (1): 66~71
    [57] 何小娟, 刘菲, 黄园英等. 利用零价铁去除挥发性氯代脂肪烃的试验. 环境科学, 2003, 24 (1): 139~142
    [58] O’Hannesin S F, Gillham R W. Long-term performance of an in-situ “iron wall”for remediation of VOCs. Ground Water, 1998, 36 (1): 164~170
    [59] Usepa. An in situ permeable reactive barrier for the treatment for Hexavalent chromium and trichloroethylene in ground water: Volume 1 Design and Installation. US: EPA/ 600/ R299/ 095a, 1999
    [60] Usepa. An in situ permeable reactive barrier for the treatment for Hexavalent chromium and trichloroethylene in ground water: Volume 2 Performance Monitoring. US: EPA/600/ R299/095b, 1999
    [61] Ghittini G M, Malcomsonm Q F. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science and Technology, 1995, 29 (11): 2898~2900
    [62] 吴德礼, 马鲁铭, 徐文英等. Fe/Cu 催化还原法处理氯代有机物的机理分析. 水处理技术, 2005, 31 (5): 30~33
    [63] 何小娟, 汤鸣皋, 李旭东. 镍/铁和铜/铁双金属降解四氯乙烯的研究. 环境化学, 2003, 22 (4): 334~339
    [64] Muftikian R, Fernando Q, Korte N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research, 1995, 29 (10): 2434~2439
    [65] 朱晓军, 朱建华. 脱氯技术现状与研究进展. 化工生产与技术, 2005, 12 (1): 24~28
    [66] 全 燮, 刘会娟, 杨凤林. 二元金属体系对水中多氯有机物的催化还原脱氯特性. 中国环境科学, 1998 , 18 (4): 333~338
    [67] 张立德, 牟季美. 纳米材料和纳米结构. 北京: 科学出版社, 2001
    [68] 牟国栋, 王晓刚等. 纳米科学技术的发展和纳米材料的特性. 西安矿业学院学报, 1998, 18 ( 4): 332~335
    [69] 杜飞鹏, 余颖, 曾艳. 纳米 TiO2 光催化氧化技术研究进展. 环境科学与技术, 2004, 27 (2): 94~97
    [70] Judin. New light on TiO2-reply. Chemistry In Britain, 1993, 29 (11): 947~950
    [71] 施周, 许光眉, 张彬. 纳米颗粒的分散及其在水与废水处理中的应用. 环境污染治理技术与设备, 2003, 4 (11): 1~5
    [72] 陈建化, 单连伟, 单志强. 纳米技术及其在环保领域的应用现状与前景. 重庆工商大学学报(自然科学版), 2003, 20 (3): 74~76 [ 73 ] Lien H. Nanoscale bimetallic particles for dehalogenation of halogenated aliphatic compounds. Unpublished Dissertation, Lehigh University, Bethlehem, Pennsylvania. 2000
    [74] Zhang W X. Nanoscale iron particles for environmental remediation: On overview. Journal of Nanoparticle Research, 2003, (5): 323~332
    [75] Masciangioli T, Zhang W X. Environmental nanotechnology: Potential and pitfalls. Environmental Science and Technology, 2003, 37 (5): 102A~108A
    [76] Sherman M , Ponder, John G, et al. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 2001, 13, (2): 479~486
    [77] Choe S, Chang Y Y, Hwang KY, et al. Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 2000, 41 (8): 1307~1314
    [78] Zhang W X., Wang C B, Lien H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 1998, 40 (4): 387~395
    [79] Ponder S M, Darab J G, Mallouk T E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zero-valent iron. Environmental Science and Technology, 2000, 34 (12): 2564~2569
    [80] Kanchan M, Gautham J, Shashi B L. Removal of selenate by Fe and NiFe nanosized particles. Industrial & Engineering Chemistry Research , 2004, 43 (16): 4922~4934
    [81] Lien H, Zhang W X. Reactions of chlorinated methanes with nanoscale metal particles in aqueous solutions. Journal of Environmental Engineering, 1999, 125 (11): 1042~1047
    [82] Daniel W E, Zhang W X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science and Technology, 2001, 35 (24): 4922~4925
    [83] Bettina S, Bianca W H, Jennifer L B, et al. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of materials, 2004, 16 (21): 2187~2193
    [84] Andrew J F, Sung H J, Jing G, et al. Oxidative transformation of contaminants using colloidal zero-valent iron. Colloids and surfaces A: Physicochemical and Engineering Aspects, 2005, 265 (1-3): 88~94
    [85] Juszczyk W, Pielaszek J, Karpinski Z, et al. Reaction of 2 ,2-dimethylpropane with dihydrogen over silica-supported Pd-Fe catalysts. Applied Catalysis A-General, 1996, 144 (1-2): 281~291
    [86] Lien H L, Zhang W X. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colliods and Surface A: Physiochemical and Engineering Aspects, 2001, 191 (1): 97~105
    [87] Liu Y Q, Majetich S A, Tilton R D, et al. TCE dechlorination rates, pathways and efficiency of nanoscale iron particles with different properties. Environmental Science and Technology, 2005, 39 (5): 1338~1345
    [88] Quinn J, Geiger C, Clausen C, et al. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science and Technology, 2005, 39 (5): 1309~1318 [ 89 ] Kim J W, Ko J Y, Jun J B, et al. Multihollow polymer microcapsules by water-in-oil-in-water emulsion polymerization: morphological study and entrapment characteristics. Colloid and Polymer Science, 2003, 281 (2): 157 ~163
    [90] Lee J E, Kim J W, Jun J B, et al. Polymer/Ag composite microspheres produced by water-in-oil-in-water emulsion polymerization and their application for a preservative. Colloid and Polymer Science, 2004, 282 (3): 295~299
    [91] Chen F X, Xu G Q, Hor T S, et al. Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion. Materials Letters, 2003, 57 (21): 3282~3286
    [92] Rusa M, Whitesell J K, Fox M A, et al. Controlled Fabrication of gold/polymer nanocomposites with a highly structured poly(N-acylethylenimine) shell. Macromolecules, 2004, 37 (8): 2766~2774
    [93] Rong M Z, Zhang M Q, Wang H B, et al. Surface modification of magnetic metal nanoparticles through irradiation graft polymerization. Applied Surface Science, 2002, 200 (1-4): 76~93
    [94] Zheng W M, Gao F, Gu H C, et al. Magnetic polymer nanospheres with high and uniform magnetite content. Journal of Magnetism and Magnetic Materials, 2005, 288 (1): 403~410
    [95] 梁震, 王焰新. 纳米级零价铁的制备及其用于污水处理的机理研究. 环境保护, 2002, 1 (4): 14~16
    [96] 刘小虹, 颜肖慈, 李伟. 纳米铁微粒制备的新进展. 金属功能材料, 2002, 9 (2 ): 2~5
    [97] 秦伯雄, 曾悦坚, 张炳范. 等离子体制纳米铁粉技术. 天津大学学报, 1996, 29 (2): 2~5
    [98] Cui Z I, Dong L F, Zhang Z K. Oxidation behavior of nano-Fe prepared by hydrogen arc plasma method. Nanostructured Materials, 1995, 5 (7-8): 829~833
    [99] 古军辉. 高能球磨纳米铁粉的制备及其稳定性分析: [硕士学位论文]. 广州: 华南理工大学, 2002
    [100] Ding X Z, Qi Z Z, He Y Z. Effect of hydrolysis water on the preparation of nano-crystalline titania powders via sol-gel process. Journal of Material Science Letters, 1995, 14 (1): 21~22
    [101] 曾京辉, 郑化桂, 曾恒兴等. 纳米 α-Fe 金属粉合成. 信息纪录材料, 1998, 4 (1): 14~17
    [102] 王翠英, 陈祖耀, 程彬等. 金属铁纳米粒子的液相制备、表面修饰及其结构表征. 化学物理学报, 1999, 12 (6): 670~674
    [103] Gibson C P, Put K L. Synthesis and Characterization of Anisometric Cobalt Nanoclusters. Science, 1995, 267 (5202): 1338~1340
    [104] 曹茂盛, 邓启刚, 鞠刚等. α-Fe 纳米粉末制备及其表征. 化学通报, 2000, 63 (2): 42~43
    [105] 李发伸, 杨文平, 薛德胜等. 纳米 Fe 微粒的制备及研究. 兰州大学学报(自然科学版), 1994, 30 (1): 144~146
    [106] Pileni M P. The role of soft colloidal templates in conrolling the size and shape of inorganic nanocrystals. Nature Materials, 2003, (2): 145~150
    [107] 王莹利. 微乳反应法超细铁铜催化剂的制备及其活性评价:[硕士学位论文].郑州:郑州大学,2005
    [108] Fang li, Cumaraswamy V, Kishoore K. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids and surfaces A: Physiochemical and Engineering Aspects, 2003, 223 (1): 103~112
    [109] Natter L, Schmelzer M L, Effler M S, et al. Grain-Growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time X-ray diffraction. Journal of Physical. Chemistry B, 2000, 104 (11): 2467~2476
    [110] 田春霞, 纳米粉末的制备方法综述. 粉末冶金工业, 2001, 11 (5): 19~24
    [111] 杨勇彬, 高家诚, 王勇等. 铁基纳米粉末的研究. 钢铁研究, 2003, 3 (1): 36~41
    [112] 王宝利, 朱振峰. 无机纳米粉体的团聚与表面改性. 陶瓷学报, 2006, 27 (1): 135~138
    [113] 张心亚, 沈慧芳, 黄洪等. 纳米粒子材料的表面改性及其应用研究进展. 材料工程, 2005, (10): 58~63
    [114] 罗颖, 容敏智, 章明秋等. 纳米粒子表面改性的研究进展. 宇航材料工艺, 2005, 35 (5): 5~10
    [115] Somasuundaran P, Krishnakumar S. Adsorption of surfactants and polymers at the solid-liquid interface. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 1997, 123 (1-3): 491~510
    [116] 李远, 陈建国, 陈腊琼等. PP/纳米 CaCO3 分散体系的研究. 塑料工业, 2001, 29 (1): 16~18
    [117] 张淑霞, 李建保, 张波等. TiO2 表面无机包覆的研究进展.化学通报, 2001, (2): 71~75
    [118] 祖庸, 王训, 敦晓英等. 超细二氧化钛分散性研究. 涂料工业, 1999, 29 (6): 6~8
    [119] 陈平, 左芳, 董星龙等. 聚合物-金属纳米复合材料的制备和应用. 高分子通报, 2006, (2): 18~45
    [120] 邢曦, 李疏芬. 纳米粒子的表面包覆技术. 高分子材料科学与工程, 2003, 19 (6 ): 10~13
    [121] 汤国虎, 叶巧明, 连红芳. 无机纳米粉体研究现状. 材料导报, 2003, 9 (17): 26~30
    [122] 李爱元, 徐国材, 邢宏龙. 纳米粉体表面改性技术及应用.化工新型材料, 2002, 30 (10): 25~28
    [123] Jesionowski T, Krysztafkie W A. Influence of silane coupling agents on surface properties of precipitated silicas. Applied Surface Science, 2001, 172 (1): 18~27
    [124] 李国辉, 李春忠, 吕志敏. 纳米氧化钛颗粒表面处理及表征.华东理工大学学报, 2000, 26 (6): 639~641
    [125] 吴行, 陈家钊, 涂铭旌. 电磁屏蔽涂料镍填料的表面偶联处理研究. 功能材料, 2000, 31 (3): 262~265
    [126] 章文贡, 陈田安, 陈文定. 铝酸酯偶联剂改性碳酸钙的性能与应用.中国塑料, 1988, 2 (1): 23~27
    [127] Fekete E, Pukanszky B, Toth A, et al. Surface modification and characterization of particulate mineral filers. Journal of Colloid Interface Science, 1990, 35 (1): 201~209
    [128] 邹玲, 乌学东, 陈海刚等. 表面修饰二氧化钛纳米粒子的结构表征及形成机理. 物理化学学报, 2001, 17 (4): 305~309
    [129] 杜振霞, 贾志谦, 饶国瑛等. 改性纳米碳酸钙表面性质的研究.现代化工, 2001, 21 (4): 42~44
    [130] 徐存英, 段云彪, 张鹏翔等. 纳米二氧化钛的表面改性. 云南化工, 2000, 27 (5): 6~7
    [131] 杜振霞, 贾志谦, 饶国瑛等. 纳米碳酸钙表面改性及在涂料中的应用研究. 北京化工大学学报, 1999, 26 (2): 33~35
    [132] 王小梅, 潘明旺, 张留成. 类球型纳米粒子的表面修饰改性. 高分子材料科学与工程, 2005, 21 (3): 10~13
    [133] 张径, 杨玉昆. 以 SiO2 纳米粒子为种子的甲基丙烯酸甲酯乳液聚合. 高等学校化学学报, 2002, 3 (3): 481~485
    [134] 陈平, 杜惠, 刘凤歧等. 包覆 Fe2O3 超微粒的苯乙烯/丙烯酸/丙烯酸丁酯核壳型复合共聚物的性能研究. 高等学校化学学报, 1998, 19 (1): 148~151 [ 135 ] Michiel L C, Olsterling M, Arjen S, et al. Grafting of polystyrene and poly(styrene-block-isoprene) onto microparticulate silica and glass slides. Polymer, 1992, 33 (20): 4394~4400
    [136] Norio T, Akira K. Surface grafting of polymers onto inorganic ultrafine particles:reaction of functional poly-mers with acid anhydride groups introduced onto inorganic ultrafineparticles. Journal of Polymer Science , Part A: Polymer Chemistry, 1991, 29 (3): 697~702
    [137] 曾智强, 萧小月, 桂治轮等. Al2O3-SiO2-TiO2薄膜的表面改性—偶联剂反应. 材料研究学报, 1999, 13 (2): 125~128
    [138] 钱翼清, 范牛奔, 孟海兵. TDI 改性纳米 SiO2 表面. 功能材料, 2001, 32 (6): 652~654
    [139] 张超灿, 何东铭, 郝爽. 两亲性聚合物改性二氧化硅及其与聚丙烯酸酯乳液复合体系性能研究. 武汉理工大学学报, 2000, 22 (6): 8~17
    [140] Lin J, Zhou W, O'Connor C J. Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles. Materials Letters, 2001, 49 (5): 282~286
    [141] Carpenter E E, Sims J A, Wienmann J A, et al. Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. Journal of Applied Physics, 2000, 87 (9): 5615~5617
    [142] Seip C T, Carpenter E E, O'Connor C J, et al. Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles. IEEE Transactions on Magnetics, 1998, 34 (4): 1111~1113
    [143] Gan I M, Zhang L H, Chan H S O, et al. Preparation of conducting polyaniline-coated barium sulfate nanoparticles in inverse microemulsions. Materials Chemistry and Physics, 1995, 40 (2):94~98
    [144] Andrey J, Zarur J, Ying Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature, 2000, 403 (6765): 65~67
    [145] Carpenter E E, Sangregorio C, O'Connor C J. Effects of shell thickness on blocking temperature of nanocomposites of metal particles with gold shells. IEEE Transactions on Magnetics, 1999, 35 (5): 3496~3498
    [146] Jeyadevan B, Suzuki Y, Tohji K, et al. Encapsulation of nano particles by surfactant reduction. Materials Science and Engineering, A 1996, (217-218): 54~57
    [147] Shpaisman N, Margel S. Air-stable Fe and Co crystalline nanocomposite particles prepared by a single-step swelling of metal precursors within polystyrene microspheres of narrow size distribution. New Journal of Chemistry, 2007, (31): 1507~1513
    [148] Shpaisman N, Margel S, Synthesis and characterization of air-stable iron nanocrystalline particles based on a single-step swelling process of uniform polystyrene template microspheres. Chemistry of Materials, 2006, 18(2): 396~402
    [149] 王桂香. 铁系元素纳米合金的合成及性能研究: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2002
    [150] Mitov M, Popov A, Dragieva I. Nanoparticles produced by borohydride reduction as precursors for metal hydride electrodes. Journal of Applied Electrochemistry, 1999, 29 (1): 59~63
    [151] Shen J, Li Z, Yan Q. Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles. Journal of Physical Chemistry, 1993, 97 (32): 8504~8511
    [152] 李玲. 表面活性剂与纳米技术. 北京: 化学工业出版社, 2004
    [153] Li Y D, Li C W, Wang H R, et al. Preparation of nickel ultrafine powder and crystalline film by chemical control reduction. Materials Chemistry and Physics, 1999,59 (1): 88~90
    [154] 茹秀玲, 韩焕波, 董国君. 纳米合金与有机氯化物的反应性能研究. 应用科技, 2007, 34 (1): 69~72
    [155] Hashiba M, Okmoto H, Nurishi Y, et al. Dispersion of ZrO2 particles in aqueous suspensions by ammonium polyacrylate. Journal of Materials Science , 1989, 24 (3): 873~875
    [156] 许迪春, 郝晓春, 朱宣惠. 湿化学法制备 ZrO2 ( Y2O3 ) 超细粉末过程中团聚状态的控制. 硅酸盐学报, 1992, 20 (1): 48~54
    [157] 刘琪, 朱宣惠. 胶粒聚集程度对 ZrO2MgO 超细粉末团聚状态的影响. 硅酸盐学报, 1989, 17 (6): 522~525
    [158] 邹同征, 涂江平, 夏正志等. 聚乙二醇为分散剂的沉淀法制备 IF-MoS2. 无机化学学报, 2005, 21 (8): 1170~1175
    [159] Luo P, Nieht G, Schwartz A J, et al. Surface characterization of nanostructured metal and ceramic particles. Materials Science and Engineering, 1995, A (204): 59~67
    [160] Zhang W X, Wang C B. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environmental Science and Technology, 1997, 31 (7): 2154~ 2157
    [161] 丰平, 熊惟皓. 纳米 TiN 粉末在水溶液和无水乙醇中的分散行为. 过程工程学报, 2005 5 (1 ): 62~65
    [162] Jeong Y U, Manthiram A. Synthesis of Nickel Sulfides in Aqueous Solutions Using Sodium Dithionite. Inorganic Chemistry, 2001, 40 (1): 73~77
    [163] 耿新玲, 袁伟. Ni3S4 纳米粒子的合成与表征. 化学通报, 2002, (65): 1~4
    [164] Chen H I, Chang H Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 2004, 242 (1-3): 61~69
    [165] 王秀宇, 杨桂琴, 严乐美. 醇-水溶液共沉淀法制备纳米尖晶石型 ZnFexCr2xO4.硅酸盐通报, 2004 , 23 (1): 91~95
    [166] 贺拥军, 杨伯伦. 微乳液和均匀沉淀耦合法制备 CeO2 纳米粒子. 化学通报, 2003, 66 (2): 120~124
    [167] 李玉宝. 纳米生物医药材料. 北京: 化学工业出版社, 2004
    [168] O'Connor C J, Kolesnichenko V, Carpenter E, et al. Fabrication and properties of magnetic particles with nanometer dimensions. Synthetic Metals, 2001, 122 (3) :547~557
    [169] 黄惠忠. 纳米材料分析. 北京: 化学工业出版社, 2003
    [170] 曹同玉. 聚合物乳液合成原理、性能及应用. 北京: 化学工业出版社, 1997
    [171] 梁治齐. 微胶囊技术及其应用. 北京: 中国轻工业出版社, 1999
    [172] 赵德仁. 高聚物合成工艺学. 北京: 化学工业出版社, 1993
    [173] Zheng W, Gao F, Gu H C. Magnetic polymer nanospheres with high and uniform magnetite content. Journal of Magnetism and Magnetic Materials, 2005, (288): 403~410
    [174] 董星龙, 左芳, 钟武波等. 纳米铁粒子表面接枝聚合甲基丙烯酸甲酯. 现代化工, 2005, 25 (6): 40~43
    [175] 汪昆华, 罗清秋, 周啸. 聚合物近代仪器分析. 北京: 清华大学出版, 1991
    [176] Rong M Z, Zhang M Q, Wang H B, et al. Surface modification of magnetic metal nanoparticles through irradiation graft polymerization. Applied Surface Science, 2002, (200): 76~93
    [177] 董炎明. 高分子分析手册. 北京: 中国石化出版社, 2004
    [178] 高家武, 周福珍, 刘士昕等. 高分子材料热分析曲线集. 北京: 科学出版社, 1990
    [179] Wu W, He T B, Chen J F, et al. Study on in situ preparation of nano calcium carbonate/PMMA composite particles. Materials Letters, 2006, 60 (19): 2410~2415
    [180] Kyounghee S, Sung W K, Samyoung A, et al. Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environmental Science and Technology, 2006, 40 (17): 5514~5519
    [181] James T N, Paui G T, Vaishnavi S. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science and Technology, 2005, 39 (5): 1221~1230
    [182] 潘祖仁. 高分子化学. 北京: 化学化工出版社, 2003
    [183] 黄琨, 胡文军, 范敬辉等. 乳液聚合制备纳米银/聚苯乙烯核壳复合粒子. 功能高分子学报, 2003, 3 (16): 304~308
    [184] 崔正刚. 微乳化技术及应用. 北京: 中国轻工业出版社, 1999
    [185] 李丹. 反相微乳液原位聚合制备有机一无机纳米复合材料: [硕士学位论文]. 西安: 西北工业大学, 2006
    [186] GaloC T, Marcela G G, HernanC. Synthesis and TEM studies of metal clusters dispersed in polymers. Polymer bulletin, 1998, 41(3): 333~339
    [187] 张启凤, 陈国华, 孙明昆. 羟丙基壳聚糖对表面活性剂微乳液相图的影响. 青岛海洋大学学报, 2004, 33 (1): 143~147
    [188] 钱翼清, 范牛奔. 烷基化纳米 SiO2/MMA 核壳无皂乳液聚合、产物表征及其应用. 高分子材料科学于工程, 2002, 48 (4): 69~73
    [189] 刘虎威. 气相色谱方法及应用. 北京: 化学工业出版社, 2000
    [190] 许国旺. 现代实用气相色谱法. 北京: 化学工业出版社, 2004
    [191] 高树梅, 王晓栋, 王宇等. 纳米铁颗粒降解氯代有机污染物的研究进展. 环境科学与技术, 2007, 30 (3): 100~102
    [192] Liu Y Q, Majetich S A, Tilton R D, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science and Technology, 2005, 39 (5) : 1338~1345
    [193] Alessi D S, Zhao H L. Synergistic Effect of Cationic Surfactants on Perchloroethylene Degradation by Zero -Valent Iron. Environmental Science and Technology, 2001, 35(18): 3713~3717
    [194] 夏生平. 甲基丙烯酸甲酯反相微乳液聚合: [硕士学位论文]. 福州: 福建大学, 2005
    [195] Tang E, Cheng G X, Pang X. L, et al. Synthesis of nano-ZnO/poly (methylmethacrylate) composite microsphere through emulsion polymerization and its UV-shielding property. Colloid and Polymer Science, 2006, 284 (4): 422~428
    [196] 蔡璨桦. 零价铁技术去除三氯乙烯之研究: [博士学位论文]. 台湾: 国立中央大学, 2000
    [197] Arnold A W, Robert A L. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe particles. Environmental Science and Technology, 2000, 34 (9): 1794~1801 [ 198 ] Burris D R, Campbell T J, Manoranjan V S. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environmental Science and Technology, 1995, 29 (11): 2850~2855
    [199] 张国俊, 孟洪, 薛峰等. TCE/PCE 的 DNAPL 污染及零价铁墙防治技术. 环境污染治理技术与设备, 2006, 7 (4): 12~18
    [200] 刘菲. 处理地下水中挥发性氯代脂肪烃的零价铁渗透反应格栅研究: [博士学位论文].北京: 中国地质大学, 2002
    [201] Andrew J F, Sung H J, Jing G. Oxidative transformation of contanminants using colloidal zero-valent iron. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 2005, 265 (1-3): 88~94
    [202] Su C, Puls R W. Kinetics of trichloroethene reduction by zero-valent iron and tin: pretreatment effect, apparent activation energy, and intermediate products. Environmental Science and Technology, 1999, 33 (1): 163~168
    [203] Kim Y, Carraway E R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental Science and Technology, 2000, 34 (10): 2014~2017
    [204] Venkatapathy R,Bessingpas D G,Canonica S,et al. Kinetics models for trichloroethylene transformation by zero-valent iron. Applied Catalysis B, 2002, 37 (2): 139~159
    [205] 程荣, 王建龙. 纳米 Fe0 作用下 4-2 氯酚的脱氯特性及机理. 环境科学, 2007, 28 (3): 578~583
    [206] 刘菲, 黄园英, 张国臣. 纳米镍/ 铁去除氯代烃影响因素的探讨. 地学前缘, 2006, 13 (1): 150~154
    [207] Schlicker O, Ebert M, Fruth M, et al. Degradation of TCE with iron: the role of competing chromate and nitrate reduction. Ground Water, 2000, 38 (3): 403~409
    [208] Deng B, Burris D R, Campbell T. Reduction of vinylchlorinated in metallic iron-water system. 1999, 33 (15): 2651~2656
    [209] Lowry G V, Beinhard M. Pd-catalyzed TCE dechlorination in water: effect of [H2](aq) and H2-utilizing competitive solutes on the TCE dechlorination rate and product distribution. Environmental Science and Technology , 2001, 35 (4): 696~702
    [210] Campbell T J, Burris D R, Roberts A L, et al. Tricholroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system. Environmental Toxicology and Chemistry, 1997, 16 (4): 625~630
    [211] Orth S W, Gillham R W. Dechlorination of trichloroethene in aqueous solution using Fe0. Environmental Science and Technology, 1996, 30 (1): 66~71
    [212] 黄园英, 刘菲, 汤鸣臬等. 纳米镍/铁和铜/铁双金属对四氯乙烯脱氯研究. 环境科学学报, 2007, 27 (1): 80~85
    [213] Chin J L, Shang L L. Effect of iron surface pretreatment on sorption and reduction kinetics of trichloroethylenr in a closed batch system. Water Research, 2005, 39 (6): 1037~1046
    [214] 程荣, 王建龙, Zhang Wei-Xian. 纳米 Fe0 颗粒对三种单氯酚的降解. 中国环境科学, 2006, 26 (6): 698~702
    [215] Kyoungja W, Hae-Weon L, Jae-Pyoung A, et al. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chemistry of Materials, 2004, 16 (14): 2814~2818
    [216] 常文保, 李克安. 简明分析化学手册. 北京: 北京大学出版社, 1981
    [217] Mackenzie P D, Horney D P, Sivavec T M. Mineral precipitation and porosity losses in granular iron columns. Journal of Hazardous materials, 1999, 68 (1-2): 1~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700