用户名: 密码: 验证码:
牵引供电系统优化设计与决策评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牵引供电系统是电气化铁路的重要基础,特别是高速铁路(含客运专线)在我国还处于起步阶段,缺乏实践经验,尚存在一系列难题。以前粗线条的牵引供电系统设计方法,已不能满足工程建设的需要。为了保证牵引供电的安全、可靠、高质和经济,必须要更新设计理念,改进设计手段,提高设计水平。本文通过深入研究高速铁路牵引供电系统设计中的不足,探讨适用于工程设计的新理论和新方法,研究满足未来发展要求的新型供电方式和供电设备,有利于提高我国电气化铁路牵引供电系统的整体水平,也为结合国情进行自主技术创新奠定了一定的基础。
     牵引供电系统设计中存在众多方案优选环节,但缺乏有效的综合分析和评估,因此提出了一种改进层次分析(AHP)组合决策模型,首先基于层次分析原理建立方案优选评价指标体系,然后利用粗糙集加权平均属性重要度的计算,改进评价指标权重的求解,通过群决策将专家主客观权重合理组合,集结了决策者的权威性和意见一致性,采用TOPSIS法中垂面距离的定义度量各方案与模糊理想解之间的贴近度,实现了方案的比较和排序,适用于带有一定不确定性的模糊多属性决策。
     通过将新型多属性决策模型应用于牵引供电方案优选和高速铁路牵引变压器综合选型中,以新建客运专线为例进行验证,结果表明新型决策方法理论清晰,可操作性和通用性强,增强了最终方案的科学性和合理性,满足“柔性”设计的需要。
     提出将一种可靠性评估方法—GO法应用到高速铁路牵引变电所可靠性分析中,完善了牵引供电设计的内容。考虑变电所内众多电气设备的可修复特性和停工相关性,以牵引供电不中断为目标,建立了简化GO图,编写了实用的GO法计算程序,实现了牵引变电所可靠性的定量和定性评估,确定了系统薄弱环节,并将最小割集发生概率的总和作为牵引变电所故障概率上限,方便了工程设计中的近似计算。
     分析了高速铁路对牵引变压器的技术要求和现有接线形式存在的不足,提出将YNvd牵引变压器应用到电气化铁道牵引供电系统中,既满足了当前常规供电方式的要求,又便于将来实现同相供电改造。通过建立严格的YNvd变压器数学模型,得到了包含系统阻抗在内的两相等值电路,推导了系统短路电流和电压损失计算公式;分析了变压器绕组阻抗匹配关系和中性点运行方式对其性能的影响;为了便于交互式仿真,构建了YNvd接线带无功、负序综合补偿和滤波装置的牵引供电系统三相等效模型;最后通过数字仿真验证了上述研究成果的正确性。
     常规牵引供电系统存在诸多问题,推荐新型同相牵引供电系统作为未来高速铁路的发展方向。分析了基于无源对称补偿技术和有源潮流控制器的系统结构;给出了有源潮流控制器容量与无功、负序和谐波等电能质量指标补偿度的函数关系,计算了设备选型容量;建立了直接供电和AT供电方式下同相牵引供电系统,提出了一种新型同相AT供电模式;讨论了同相牵引供电系统中潮流控制器的控制模式和牵引变电所的运行方式;定量计算了同相供电系统的直接和间接经济收益,并得到了回收年的计算公式;最后,通过数字仿真和模拟实验验证了新型同相牵引供电系统的基本功能。
Traction power supply system is an important foundation for electrified railway, especially high-speed railway (including passenger dedicated line) in China is still in its infancy with poor experience and series of problems. Previous broad-brush design methodology has been unable to meet the demands of project construction. In order to ensure the safety, reliability, high quality and economy, it is necessary to update the design idea and improve the design method and the design level. This dissertation analyses the defects in the design of the traction power supply system of high-speed railway, discusses new theories and methods and study on new power supply mode and equipment to meet the demands of future development. All the work is significant for improving the overall level of electrified railway in China, and will establish some foundation of independent technical innovation combined with national conditions.
     In the design of traction power supply system, there are many scheme optimization links, but comprehensive analysis and effective evaluation are lack. Therefore, an improved analytic hierarchy process combination decision making model is presented. Based on the analytic hierarchy process (AHP), the layer index system for scheme optimization is established. The index weight is calculated by the definition of the attribute significance based on the weighted sum of rough set theory. The authority and decision consistency of decision-makers are unified by group decision-making. The improved TOPSIS method by the definition of vertical distance is proposed for ranking of alternatives. So the new method satisfies the requirements of fuzzy multiple attribute decision making with uncertainty.
     The new method can be applied in scheme choice of traction power supply in electrified railway and traction transformer comprehensive choice. Taking under construction passenger dedicated lines for example, the analysis shows that the method features clear theory and better generality, and the scientificalness and feasibility of final scheme are enhanced. Therefore, the new method can be used to realize the flexibility design of traction power supply system.
     A new system reliability analysis method, called the GO methodology, is applied in the reliability assessment of traction substation of high speed railway, and the design content of traction power supply system is supplemented. Considering the maintainability and shutdown correlation of electrical equipments in substation, the simplified GO diagram is obtained taking the uninterrupted power supply as its target. Then, the quantitative and qualitative assessment of reliability is realized, the weakness of system is found and the sum of probabilities of minimal cut sets can be calculated as the upper limit of substation failure probability, which is suitable for the approximate computation in engineering design.
     The technical requirements of high-speed railway and the shortcomings of traction transformer are analyzed, and the YNvd transformer is proposed for traction power supply system of electric railway, which can meet the demands of existing power supply mode and is convenient for the cophase power supply transformation.Based on the strict mathematical model set up, system impedance is converted and the two-phase equivalent circuit is presented. The calculation equations of short-circuit currents and two-phase bus bars voltage loss on traction substation are derived, and the influence of the winding-impedance matching relationship and the operation mode of the primary neutral on the performance of transformer are discussed. The three-phase equivalent models of traction power supply system with comprehensive compensator and filter are given unified with power system, which can be used for interactive simulation. The digital simulation shows that the conclusions are correct.
     The existing traction power supply system has some defects, so new cophase traction power supply system is recommended for high-speed railway. The structures of cophase systems based on symmetrical compensation technology and active power flow controller (PFC). The functional relationship between compensation degrees of negative sequence, harmonics, reactive power and PFC capacity is given, and the design capacities of main equipments are calculated. The cophase direct and AT power supply modes of system are set up, and a new AT mode is presented, which can overcome the existing shortcomings. The control modes of PFC and the operation modes of cophase traction substation are discussed. The direct and indirect economic benefits obtained by cophase system are quantitatively evaluated and the calculation equation of investment returning year is derived. Finally, the basic functions of cophase system are proved by simulation and experiment.
引文
[1]曹建猷.电气化铁道牵引供电系统[M].北京:中国铁道出版社,1983.
    [2]李群湛.贺建闽.牵引供电系统分析[M].成都:西南交通大学出版社,2007.
    [3]李群湛,连级三,高仕斌.高速铁路电气化工程[M].西南交通大学出版社,2006.
    [4]何华武.建立中国高速铁路技术体系的研究[J].铁路运输与经济,2006,28(12):1-10.
    [5]TB 10009-2005,铁路电力牵引供电设计规范[S].
    [6]新建时速200-250公里客运专线铁路设计暂行规定,铁建设(2005)140号,2005.
    [7]姜春林.高速铁路牵引供电自动化系统方案研究[J]电力自动化设备,2000,20(5):1-6.
    [8]余心沪.铁路高速客运专线牵引供电系统工程设计原则研究与探讨[J].电气应用,2007,(2):58-61.
    [9]贺威俊.简克良.电气化铁道供变电工程[M].北京:中国铁道出版社,1981.
    [10]谭秀炳,刘向阳.交流电气化铁道牵引供电系统[M].成都:西南交通大学出版社,2002.
    [11]Jiro ITO.高速列车供电系统选择[J].国外铁道车辆,1995(6):46-50.
    [12]水间毅(日).电气化铁路各构成要素的技术[J].交流技术与电力牵引.2003,(2):1-5
    [13]李彦哲.电气化铁道供电系统与设计[M].兰州大学出版社,2006.
    [14]铁道部电气化工程局电气化勘测设计院编.电气化铁道设计手册—牵引供电系统[M].中国铁道出版社,1988.
    [15]李颖红编译.高速铁路干线牵引供电系统的用电特点[J].电气化铁道,1998(1):21-24.
    [16]钱立新.世界高速铁路技术[M].北京:中国铁道出版社,2003.
    [17]邓云川.高速铁路牵引供电系统相关问题的分析与研究[D].西南交通大学,2005.
    [18]Yoshiyasu Hagiwara, Masayuki Ueno. Advance in drive control technology and speeding up of Shinkansen EMUs[J]. Japanese Railway Engineering.2002,(149):6-11
    [19]Yasutaka Mochizuki. West Japan raiway company tackling environmental problems[J]. Japanese Rail way Engineering.2002,(148):10-12
    [20]门汉文.意大利和西班牙高速铁路简介[J].电气化铁道.1998(1):42-45.
    [21]于增、丁为民.国外高速电气化铁路牵引供电系统评述[R].铁道部电 气化工程局建局四十周年学术论文集〈电气化专业〉.1998.
    [22]EN50126, Railway appliaction-specification of railway reliability availability, maintenance and safety(RAMS)[S].
    [23]IEC62278, Railway appliaction-specification of railway reliability availability, maintenance and safety(RAMS)[S].
    [24]Sagareli S. Traction power systems reliability concepts [C]. Procceedings of the 2004 ASME/IEEE Joint Rail Conference, Maryland,2004.
    [25]张小瑜,吴俊勇.高速铁路牵引供电系统的供电可靠性评估方法[J].电网技术,2007.31(11):27-32.
    [26]杨媛,吴俊勇,张小瑜.外部电力系统对高速铁路供电的RAMS评估及其灵敏度分析[J].电力系统自动化,2007,31(20):98-102.
    [27]贾晓楠,吴俊勇,刘海军.高速铁路牵引变电所电气主接线的可靠性评估[J].电气化铁道,2007(6):1-5.
    [28]林飞.牵引供电系统可靠性指标体系与可靠性分析[D].西南交通大学,2006.
    [29]万毅,邓斌,李会杰,田志军,柯坚.基于FTA的接触网系统可靠性研究[J].铁道工程学报,2005,(6):55-59.
    [30]万毅,邓斌,柯坚,等.基于神经网络RBF的接触网可靠性分析[J].铁道学报,2005,27(6):39-42.
    [31]万毅,丁电宽,邓斌,等.应用模糊综合评判对接触网进行可靠性分配[J].铁道工程学报,2006,(6):74-77.
    [32]彭卉,张焰,温兴文,等.输电网供电可靠性的实用化定量评估软件包[J].电力系统自动化,2004,28(21):81-84.
    [33]刘洋,谢开贵,周家启,等.大电力系统可靠性评估高性能计算平台设计与实现[J].电力系统自动化,2006,30(18):89-93.
    [34]HO T.K., CHI Y.L., WANG'J., et al. Probabilistic load flow in AC electrified railways [J].. IEE proceedings:Electric Power Applications,2005, 152(4):1003-1013.
    [35]CHEN S.K., HO T.K., MAO B.H., Reliability evaluations of railway power supplies by fault-tree analysis [J]. IET Electr. Power Appl.,2007,1(2): 161-172.
    [36]沈祖培,黄祥瑞.GO法原理及应用[M].北京:清华大学出版社,2004.
    [37]刘福生,肖乐军,周有庆.阻抗匹配平衡变压器的等值电路及其应用[J].铁道学报,1994,16(3):23-31
    [38]黄足平-YN/v平衡变压器的内部阻抗约束关系及其等值电路[J].铁道学报,1995,17(4):51-56
    [39]张志文,刘福生,熊芝耀,等.阻抗匹配平衡变压器的电量变换和运行计算电工技术学报[J],2000,15(2):7-13.
    [40]张志文,王耀南.星形-三角形联结三相变两相和三相变三相平衡变压 器[J].电工技术学报.2006,21(11):82-86.
    [41]智慧,李群湛,黄咏容.YN/V联结平衡变压器性能分析[J],电气应用,2007,26(11):45-49.
    [42]贺建闽,李群湛.YN/V平衡变压器电气分析计算[J],铁道学报,1994,16(2):28—37
    [43]周勇,王绪雄,刘中元·阻抗匹配平衡变压器的负序电流[J].郑州大学学报(工学版),2002,23(14):43-46.
    [44]周鸿昌.自耦伍德桥结线(AWB)平衡变压器的应用和运行特性[J].铁道学报,1986,(6):20-33.
    [45]刘福生,聂光前.利用阻抗匹配方法构成的新型平衡变压器[J].铁道学报,1988,10(4):16-22.
    [46]刘福生,聂光前,肖乐军.阻抗匹配平衡变压器的模型实验及其性能分析[J].铁道学报,1992,14(1):23-31.
    [47]刘福生,左辰.阻抗匹配平衡变压器牵引负荷的负序电流和谐波分析[J].电网技术,1989,(1):26-32.
    [48]李群湛.牵引变电所供电分析及综合补偿技术[M].北京:中国铁道出版社,2006.
    [49]李群湛,张进思,贺威俊.适于重载电力牵引的新型供电系统的研究[J].铁道学报,1988,10(4):23-31.
    [50]李群湛,贺建闽.电气化铁路的同相供电系统与对称补偿技术[J].电力系统自动化,1996,20(4):9-11.
    [51]曾国宏,郝荣泰.采用有源滤波器实现平衡变换的供电系统研究[J].铁道学报,2003,25(1):48-53.
    [52]曾国宏,郝荣泰.基于有源滤波器和阻抗匹配平衡变压器的同相供电系统[J].铁道学报,2003,25(3):49-54.
    [53]曾国宏,郝荣泰.基于有源滤波器和斯科特变压器的同相供电系统[J].北方交通大学学报,2003,27(4):84-90.
    [54]张秀峰,钱清泉,李群湛,吕晓琴.基于有源滤波器和AT供电方式的新型同相牵引供电系统[J].中国铁道科学,2006,27(6):73-78.
    [55]张秀峰,连级三.基于斯科特变压器的新型同相AT牵引供电系统[J].机车电传动,2006,(4):14-18.
    [56]张秀峰,连级三.基于三相变四相变压器的新型同相牵引供电系统[J].中国电机工程学报,2006,26(15):19-23.
    [57]张秀峰,高仕斌,钱清泉.基于阻抗匹配平衡变压器和AT供电方式的新型同相牵引供电系统[J].铁道学报,2006,28(4):32-37.
    [58]张秀峰,李群湛,吕晓琴.基于有源滤波器的V,v接同相供电系统[J].中国铁道科学,2006,27(2):98-103.
    [59]陈挺.决策分析[M].北京:科学出版社,1997
    [60]徐南荣,仲伟俊.科学决策理论与方法[M].南京:东南大学出版社,1995
    [61]李怀祖.决策理论导引[M].北京:机械工业出版社,1993
    [62]卫民堂,王宏毅,梁磊.决策理论与技术[M].西安:西安交通大学出版社,2000
    [63]刘树林,邱莞华.多属性决策基础理论研究[J].系统工程理论与实践,1998,(1):38-43.
    [64]刘家学,黄德成.多指标决策的最优线性分派法[J].系统工程与电子技术,2000,22(7):25-27.
    [65]Hattori Y. Social choice function with subordinate relations as one variable[J]. International Journal of Systems Science,1996,27(10):957-962.
    [66]Hattori Y. Proposal of one social choice function with subordinate relations and simple games[J]. International Journal of Systems Science,1997,28(8):749-754.
    [67]李荣钧.模糊多准则决策[M].科学出版社,2002.
    [68]胡秦生,郑春勇等.模糊多目标系统实用最优决策法及应用[J].系统工程理论与实践,1996,(3):1-6.
    [69]胡应平.基于模糊语言群体决策的一致性协调技术[J].系统工程学报,2000,15(6):148-152.
    [70]Millet,Ido, Schoner, Bertram. Incorporating negative values into the Analytic Hierarchy Process[J]. Computers and Operations Research. 2005,32(12):3163-3173.
    [71]Ozemir, Mujan Sagir. Validity and inconsistency in the analytic hierarchy process [J]. Applied Mathematics and Computation,2005,161(3):707-720.
    [72]T.L.Saaty, Ozdemir.M. Negative priorities in the analytic hierarchy process[J]. Mathematical and Computer Modelling.2003,145(1):92-108.
    [73]Stam Antonie, Duarte Silva, A.Pedro. On multiplicative priority rating methods for the AHP [J]. European Journal of Operational Research.2003,145(1):92-108.
    [74]Liu Duen-Ren,Shih Ya-Yueh. Integrating AHP and data mining for product recommendation based on customer lifetime value[J]. Information & Management.2005,42(3):387-400.
    [75]Kablan,M.M. Decision support for energy conservation promotion:an analytic hierarchy process approach[J]. Energy Policy, 2004,32(10):1151-1158.
    [76]齐寅峰,多准则决策(Ⅱ)一效用理论初步[J].系统工程,1987,5(4),17-23.
    [77]M.E.格申.采矿方法选择:集成多属性效用理论和专家系统的决策支持系统[J].国外金属矿山,1996,1:24-27.
    [78]Keeney R.L. Multiplicative Utility Functions[J]. Operation Research,1974.
    [79]Keeney R.L. Decision with Mutliple Objectives [M]. Wiley, New York, 1976.
    [80]姜翔程,陈森发.基于AHP的水电工程项目综合效益风险分析[J].电网技术,32(2):220-222.
    [81]肖峻,王成山,周敏.基于区间层次分析法的城市电网规划综合评判决策[J].中国电机工程学报,2004,24(4):50-57.
    [82]辛开远.基于AHP的实用中长期电力负荷预测最优综合模型[J].中国电力,2005,38(3):18-22.
    [83]余健明,燕飞,杨文宇,等.基于模糊多目标多人决策的配电网空间负荷预测[J].电网技术,2006,30(7):69-72.
    [84]储萍.多属性决策若干方法研究[D].浙江大学,2007.
    [85]梅绍祖.模糊控制与变权的确定.系统工程理论与实践,1996,(5):78-82.
    [86]Chen-Tung Chen. Extension of the TOPSIS for group decision-making under fuzzy environment [J]. Fuzzy Sets and Systems,114(20):1-9.
    [87]Hwang C.L. Group decision-making under multiple criteria:Methods and applications[M]. New York:Springer-Verlag.1981.
    [88]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.
    [89]张文修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社,2005.
    [90]王国胤.Rough集理论与知识获取[M].西安:西安交通大学出版社,2001.
    [91]石峰,娄臻亮,张永清.一种改进的粗糙集属性约简启发式算法[J].上海交通大学学报,2002,36(4):478-481.
    [92]征峥,束金龙.基于粗糙集与层次分析法的组合预测方法[J].经济数学,2003,20(4):70-76.
    [93]谢刚,张金隆.基于VPRS的软件项目投标风险规避群决策研究[J].中国管理科学,2006,14(2):71-76.
    [94]华小文,谭景信.基于“垂面”距离的TOPSIS法—正交投影法[J].系统工程理论与实践,2004,(12):114-119.
    [95]张先起,梁川,刘慧卿.基于熵权的改进TOPSIS法在水质评价中的应用[J].哈尔滨工业大学学报,2007,39(10):1670-1672.
    [96]铁二院.新建铁路成都-绵阳-乐山客运专线可行性研究[R].2008.
    [97]Shen Zupei, Gao Jia, Huang Xiangrui. A new quantification algorithm for the GO methodology [J]. Reliability Engineering and System Safety,2000,67(3):241-247.
    [98]Shen Zupei, Gao Jia, Huang Xiangrui.An exact algorithm dealing with shared signals in the GO methodology [J]. Reliability Engineering and System Safety,2001,73(2):177-181.
    [99]Williams R L, Gateley W Y. Use of the GO methodology to directly generate minimal cut sets [J]. In:Fussel I B, eds. Nuclear System Reliability Engineering and Risk Assessment Pennsylvania:Society for Industrial and Applied Mathematics,1977.825-849.
    [100]Wood D E, Becar N J. Risk Analysis of a spent fuel received and storage facility using the GO methodology [J]. KSC-1006-1, Kaman Sciences Corporation, March 1979.
    [101]Chu B B. GO Methodology:Overview manual[J]. EPRI NP-3123,Vol.1, Electric Power Research Institute,1983.
    [102]Chu B B. GO Methodology:Application and comparison of the GO methodology and fault tree analysis[J]. EPRI NP-3123,Vol.2, Electric Power Research Institute,1983.
    [103]Chu B B. GO Methodology:GO modeling manual[J]. EPRI NP-3123,Vol.3, Electric Power Research Institute,1983.
    [104]Chu B B. GO Methodology:GO user's manual[J]. EPRI NP-3123,Vol.4, Electric Power Research Institute,1983.
    [105]Chu B B. GO Methodology:Program and user's manual (IBM Version)[J]. EPRI NP-3123,Vol.5, Electric Power Research Institute,1983.
    [106]Chu B B. GO Methodology:Program and user's manual (CDC Version)[J]. EPRI NP-3123,Vol.6, Electric Power Research Institute,1983.
    [107]Matsuoka T, Kobayashi M. GO-FLOW:A new reliability analysis methodology[J]. Nuclear Science and Engineering,1988,98(1):64-78.
    [108]Matsuoka T, Kobayashi M. GO-FLOW Methodology:A reliability analysis of the emergency core cooling system of a marine reactor under accident conditions [J]. Nuclear Science and Engineering,1989,84(3):285-295.
    [109]Matsuoka T, Kobayashi M. GO-FLOW:A system reliability analysis methodology [J]. In:Apostolakis G, eds. Probability Safety Assessment and Management. Elsevier Science Publising Co.,1991.525-532.
    [110]Matsuoka T, Kobayashi M. GO-FLOW:The incorporation of common cause failures into the GO-FLOW methodology [J]. Proc. of the Probabilistic Safety Assessment International Topical Meeting, Florida, Jan 1993.811-817.
    [111]Matsuoka T, Kobayashi M. The GO-FLOW reliability analysis methodology-analysis of common cause failure with uncertainty[J]. Nuclear Engineering and design,1997,175(3):205-214.
    [112]王超,高鹏,徐政,等.GO法在继电保护可靠性评估中的初步应用[J].电力系统自动化,2007,31(24):52-56.
    [113]徐荆州,李扬.基于GO法的复杂配电系统可靠性评估[J].电工技术学报.2007,22(1):33—37.
    [114]徐荆州,李扬,陈霄.基于GO法的配电网可靠性评估[J].电力系统及其自动化学报.2006,18(5):66-69.
    [115]沈祖培,黄祥瑞.GO法原理及应用[M].北京:清华大学出版社,2004.
    [116]林飞.2003、2004年全国电力牵引供电系统故障统计分析[J].甘肃科技纵横,2006,35(3):27-28.
    [117]王超.电力系统可靠性评估中的几个重要问题研究[D].浙江大学,2007.
    [118]黄足平.客运专线牵引变压器选型综合分析[J].电气化铁道,2005,(6):14-16.
    [119]H.Roussel. Power supply for the Atlantic TGV high speed line[C]. International Conference on main line railway electrification, IEE, York, UK, Sept.1989,pp.388-392.
    [120]吴利仁,郭欲平,易运军等.AT供电方式用单相牵引变压器的研制[J].电气化铁道,1998,(4):9-10.
    [121]杨振龙.V/X接线牵引变压器的研究和应用[J].电气化铁道,2004,(4):12-15.
    [122]铁二院.新建铁路武汉至广州客运专线(韶关-花都段)可行性研究[R].2005
    [123]李群湛,贺建闽.星型—开闭三角形接线牵引变压器[P].实用新型专利,ZL95242921.7,1996.
    [124]刘光晔,周有庆,姚建刚.新型平衡变压器的平衡条件及等值电路研究[J].中国电机工程学报,1999,19(4):84-88.
    [125]吴命利,吴利仁.Scott接线平衡变压器数学模型与阻抗匹配的实验验证[J].铁道学报,2004,24(11):160-166.
    [126]吴命利.牵引供电系统电气参数与数学模型研究[D].北京交通大学,2006.
    [127]Chen T H, Kuo H Y. Network modeling of t raction substation transformers for studying unbalance effects [J].IEE Proceedings, Generation Transmission and Distribution,1995,142 (2):103-108.
    [128]贺建闽,李群湛.用于同相供电系统的对称补偿技术[J].铁道学报,1998,20(6):47-51.
    [129]Morimoto, H., Ando, M., Mochinaga, Y., Kato, T. et al. Development of railway static power conditioner used at substation for Shinkansen[C]. Power Conversion Conference 2002, Osaka,2002, Osaka:Proceedings of Power Conversion Conference,2002,:1108-1111.
    [130]#12
    [131]吴命利.星形三角形接线牵引变压器的运行特性与数学模型[J].北京交通大学学报,2007,31(2):94-98.
    [132]W. Mingli, X. Chengshan, Y. Fan, T.Q. Zheng, Performance and mathematical model of three-phase three-winding transformer used in 2x25kV electric railway[J]. IEE Proc.-Electr. Power Appl,2006,153(2): 271-281.
    [133]林海雪.电压电流频率和电能质量国家标准应用手册[M].北京:中国电力出版社,2001.
    [134]张志涌,刘瑞桢.掌握和精通MATLAB[M].北京:北京航空航天大学出版社,1997
    [135]张秀峰.高速铁路同相AT牵引供电系统研究[D].西南交通大学,2006.
    [136]李群湛.同相供电系统的对称补偿[J].铁道学报,1991:35-43.
    [137]新井浩一. Balancing Circuit for Single Phase Load with Scalene Scott Connection Transformer [J]. Research Information of Railway Technology, 1980,37(6).
    [138]解绍锋,李群湛,贺建闽,等.同相供电系统对称补偿装置控制策略研究[J].铁道学报,2002,24(2):109-113.
    [139]吴命利,李群湛.同相供电对称补偿的接线形式与补偿容量选择[J].机车电传动,2009,(5):15-18.
    [140]魏光,李群湛,黄军,等.新型同相牵引供电系统方案[J].电力系统自动化,2008,32(10):80-83.
    [141]S.T.Senini, P.J.Wolfs. Novel topology for correction of unbalance load in single phase electric traction systems[C]. IEEE 33rd Annual Power Electrionics Specialist Conference, Australia,2002:1208-1212.
    [142]Tetsuo UZUKA, Shouji JKEDO, Keiji UEDA. A static voltage fluctuation compensator for AC electric railway[C]. IEEE 35rd Annual Power Electrionics Specialist Conference, Germany,2004:1869-1873.
    [143]Pee-Chin Tan, Robert E.Morrison, Donald Grahame Holmes. Voltage form factor control and reactive power compensation in a 25-kV electrified railway system using a shunt active filter based on voltage detection[J]. IEEE Transactions on Industry Applications,2003,39 (2): 575-580.
    [144]Peng, F.Z., Jin Wang. A universal STATCOM with delta-connected cascade multilevel inverter[C]. Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual,2004:3529-3533.
    [145]Zhuo Sun, Xinjian Jiang, Dongqi Zhu, Guixin Zhang. A novel active power quality compensator topology for electrified railway [J]. IEEE Transactions on Power Electronics,2004,19(4):1036-1041.
    [146]贺建闽,黄治清.牵引变压器容量的合理选择[J].电气化铁道,2005,(6):1-5.
    [147]贺建闽,黄治清,高师湃.洛阳东牵引变电所电能质量初步评价[J].电气化铁道,2000,(3):1-4.
    [148]贺建闽,黄治清,李群湛.牵引变电所固定并联电容补偿有效性评价[J].铁道学报,2004,26(3):41-45.
    [149]解绍锋,李群湛,贺建闽.牵引变压器温升与寿命损失研究[J].机车电传动,2003,(4):15-17.
    [150]孙万启,单圣熊,郑国藩.国内外自动过分相装置的比较[J].电气化铁道,2002,(2):12-16.
    [151]林磊.电气化铁路对电力系统影响的分析研究[D].浙江大学,2004.
    [152]徐永海,肖湘宁.电力市场环境下的电能质量问题[J].电网技术,2004,28(22):48-51.
    [153]杨振宇,赵剑锋,唐国庆.成本效益分析在电能质量经济评估中的应用[J].现代电力,2005,22(3):80-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700