用户名: 密码: 验证码:
牵引变电站接入电力系统的电压等级及其系统仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国高速铁路的快速发展,研究新形势下高速铁路供电情况的重要性日益凸显出来。通过采用专业仿真软件PSCAD/EMTDC,对不同接线形式的牵引变压器、不同的供电方式和电气化机车进行各种稳态和暂态的仿真研究。研究了在稳态情况下高速铁路和普速铁路两种不同的冲击负荷接入外部电力系统的电压等级问题,外部电力系统的短路容量大小对接触线末端电压的影响,高速铁路和普通铁路牵引变电站采用不同接线形式和容量的牵引变压器对接触线末端电压的影响,并且研究了牵引供电系统在不同地点发生短路时,接触线、钢轨和正馈线的电压和电流分布。为了验证结论,本文采用解析法和数值仿真两种不同的方法对普速和高速铁路接入电力系统电压等级问题分别进行了研究。
     研究表明:(1)对普速电气化铁路,当牵引变压器的额定容量为31.5或40MVA时,应优先考虑接入110kV电力系统,且接入点的系统短路容量不小于牵引变压器额定容量的25倍;当牵引变压器的额定容量为50MVA时,接入点的系统短路容量不小于牵引变压器额定容量的40倍。(2)对高速电气化铁路,应优先考虑接入220kV系统,且接入点的短路容量不小于牵引变压器额定容量的35倍。在电网比较发达的地区,如果系统短路容量满足要求,高速电气化铁路也可接入110kV系统。(3)普通铁路和高速铁路采用三相变压器的接触线末端电压对最低,V/V接线变压器的最高,高速铁路一般不建议采用三相变压器作为牵引变压器。(4)当发生接触线短路时对钢轨的电压分布影响不大,对接触线的电压分布影响很大,且馈线电流的短路位置越靠前对系统的影响越大,所以应该尽量避免在变电所发生短路事故。
Recently the high-speed railway is developing quickly, so it is important to research the high-speed railway's traction power supply system. Using professional simulation software PSCAD/EMTDC to simulate the steady-state and transient-state of different connection types of traction transformer, traction power supply and electric locomotive. Research is focused on the voltage-level of the bulk power system of the high-speed railway and normal-speed railway injected into at the steady-state, short-circuit capacity of the bulk power system affecting to the terminal voltage of the contact line, and the distribution of voltage and current of the contact line, the rail line and the positive feeder line when the shunt fault happened at different points in the traction power supply system. Using analytical method and digital simulation to verify the results of the voltage-level of the high-speed railway and the normal-speed railway. The results show that: (1) for the normal-speed electrificated railway system, in the case of the rating capacity of the traction transformer is 31.5 or 40MVA it is prior to consider the power system of 110KV and the power system short circuit capacity of the injection point is not less than 25 times of traction transformer's power rating capacity; when the rating capacity of the traction transformer is 50MVA, the power system short circuit capacity of the injection point is not less than 40 times of traction transformer's power rating capacity.(2)for the high-speed railway system, it is prior to consider the power system of 220KV and the power system short circuit capacity of the injection point is not less than 35 times of traction transformer's power rating capacity. The high-speed railway system can also be injected into the the power system of 110KV in some developed area where the power system short circuit capacity can match the requirement.(3) The terminal voltage of the contact line of the normal-speed railway and the high-speed railway is minimum when using the 3-phase transformer, opposited to the result of using the single-phase transformer, so the 3-phase transformer is not recommended. Because of the merits of the single-phase transformer ,we can choose the V/V transformer in some cases. For the normal-speed railway, it is suitable to choose the 3-phase transformer, but not to the high-speed railway. When the shunt fault happened on the contact line, the voltage's distribution of the contact line is affected remarkably, and less affected to the voltage's distribution of the rail line; the colser of the distance between the shunt fault point and the transformer, the worse influence to the power system,so we should avoid the shunt fault at the traction substation.
引文
[1]铁路部电气化工程局电气化勘测设计院.电气化铁路设计手册:牵引供电系统[M].北京:中国铁路出版社,1988.
    [2]电气化铁路供电接入电压等级及谐波治理问题的研究报告[R].北京:中国电力科学研究院,2006.
    [3]姚李孝,姚金雄,安源.基于Matlab/Simulik的高压输电线路故障定位的仿真研究[J].电网技术,2005,29(10).
    [4]贺威俊,高仕斌.电力牵引供变电技术[M].成都:西南交通大学出版社.
    [5]鄂志君,房大中,王立伟.基于EMTDC的混合仿真算法研究[J].继电器.2005,33.
    [6]张小瑜,吴俊勇.电气化铁路接入电力系统的电压等级问题[J].电网技术,2007,3l(07):12-17.
    [7]《电气化铁路牵引供电系统分析》,机车电传动,No2.2007,周春晓,沈斐,卜庆华
    [8]卢志海,厉吉文,周剑.电气化铁路对电力系统的影响[J].继电器,2006,32(11):33-36.
    [9]电气化铁路供电接入电压等级及谐波治理问题的研究报告[R].北京:中国电力科学研究院,2006.
    [10]刘光哗,周有庆,姚建刚.新型平衡变压器的平衡条件及等值电路研究[J].中国电机工程学报,1999,19(4):84-88.
    [11]高仕斌,钱清泉,电气化铁路应用三相变四相电力变压器的理论分析[J].中国电机工程学报,2004,24(3):174-177.
    [12]娄奇鹤,高仕斌.三相变四相变压器在AT供电系统中的应用研究[J].中国电机工程学报,2005,25(1):124-130.
    [13]林海雪.电力系统的三相不平衡[M].北京:中国电力出版社,1998.
    [14]林海雪.电气化铁路的谐波标准问题[J].中国电力,1999,32(9):55-58.
    [15]范瑞祥,罗安,李欣然.并联混合型有源电力滤波器的系统参数设计及应用研究[J].中国电机工程学报,2006,26(2):106-111.
    [16]罗安,付青,王丽娜,等.变电站谐波抑制与无功补偿的大功率混合型电力滤波器[J].中国电机工程学报,2004,24(9):115-123.
    [17]李战鹰,任震,杨泽明.有源滤波装置及其应用研究综述[J].电网技术,2004,28(22):40-43.
    [18]夏向阳,张一斌.新型谐振型混合有源电力滤波器及其在中高压变电站中的应用[J].电网技术,2006,30(1):75-79.
    [19]戴朝波,林海雪,雷林绪,单相并联型电力有源滤波器的仿真分析[J].电网技术,2001,25(8):28-32.
    [20]张剑辉,姜齐荣,赵地,等.有源滤波器控制器的设计[J].电网技术,2002,26(10):47-52.
    [21]铁路部电气化工程局电气化勘测设计院.电气化铁路设计手册:牵引供电系统[M].北京:中国铁路出版社,1988.
    [22]GB 1402-1998.铁路干线电力牵引交流电压[S].北京:全国电压电流等级和频率标准化技术委员会,1998.
    [23]GB/T 15543-1995.电能质量三相电压允许不平衡度[S].北京:全国电压电流等级和频率标准化技术委员会,1996.
    [24]《电力牵引供变电技术》,贺威俊、高仕斌等主编,西南交通大学出版社;
    [25]《铁路常用电力图形符号》,桂庆年、田瑞环、王帆编;中国铁道出版社;
    [26]《电力系统仿真软件综述》,李广凯编,《电力电子教学学报》2005年6月第3期;
    [27]《基于EMTDC的混合仿真算法研究》,鄂志君,房大中,王立伟,宋文南,《继电器》第33卷2005年4月16日;
    [28]《电气化铁道并联综合补偿及应用技术》,李群湛,西南交通大学,中国铁道出版社;
    [29]《电力牵引供电系统技术及装备》,铁道部人事司组织编写,西南交通大学出版社;
    [30]《电气化铁道出版社》,中铁电气化局集团有限公司 译,中国电力出版社;
    [31]He weiJun.The Significance and Technical Economic Benefits of Developing Railway Electrification in China,IEE International Conference MAIN LINE R.E.Publication,No.312.27-30,York,U.K,Sept.1989;
    [32]IEC Standard Insulation Co-ordination.Publications 71-1,71-2,71-3
    [33]PSCAD的使用手册

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700