用户名: 密码: 验证码:
广藿香酮及广藿香醇的抗炎、抗真菌活性及药物代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     广藿香Pogostemon cablin (Blanco) Benth为唇形科刺蕊草属植物,以干燥地上部分入药,是临床常用芳香化湿中药,其味辛、性微温,归脾、胃、肺经,具有芳香化浊、和中止呕、发表解暑的功效。临床上用于治疗湿浊中阻、脘痞呕吐、暑湿表证、湿温初起、发热倦怠、胸闷不舒、寒湿闭暑、腹痛吐泻、鼻渊头痛等。广藿香属于我国“十大南药”之一,是41种中成药制剂的重要组成药味。广藿香油,是广藿香的挥发油部位,也作为药用提取物,在市场上占有重要的份额。因此,广藿香是重要的岭南道地药材,有巨大的开发潜力。
     过去几十年来,国内外研究者对广藿香进行了广泛的研究,尤其是印度、中国、日本、美国等国家,基本阐明广藿香的化学成分组成、药理活性、栽培技术、生物遗传学等。然而,迄今为止国内外对广藿香的有效成分研究报道甚少,尚未清楚广藿香的有效成分及其作用机制。因此,亟需开展其有效成分物质基础的研究。
     广藿香醇及广藿香酮是广藿香油中含量较高的化学成分。长期以来,国家和地方的药材标准将广藿香醇(百秋李醇)的含量作为分析广藿香质量的指标成分,2010年版《中国药典》增加了另一化学成分广藿香酮作为检测指标成分。可见,广藿香醇和广藿香酮是广藿香重要的化学成分。那么广藿香醇和广藿香酮的药理活性如何?它们是否能代表广藿香功效的物质基础呢?解决上述疑惑无疑具有重要的学术价值和重大的应用价值。
     因此,本论文选择广藿香醇及广藿香酮,进行抗真菌、抗炎的药理活性研究,为探讨广藿香物质基础提供依据。此外,对广藿香醇及广藿香酮在大鼠体内外代谢产物进行研究,推测其在体内的代谢途径和转化过程,有助于阐明二者在体内的作用机制。本研究旨在初步探索广藿香的药效物质基础,以期为日后进一步研究广藿香药效的其他物质基础提供参考。
     方法与结果:
     1.广藿香酮和广藿香醇的抗炎活性研究
     研究采用LPS诱导的RAW264.7巨噬细胞炎症模型,测定广藿香酮和广藿香醇对LPS诱导巨噬细胞产生的过量炎症介质(TNF-α、IL-1β、IL-6、PGE2、NO)的影响,并检测二者对炎症介质相关基因(TNF-α、IL-1β、IL-6、COX-2、iNOS)表达的影响。结果显示,广藿香酮(1、10、30μM)和广藿香醇(10、20、40μM)对LPS诱导的细胞炎症具有显著抑制作用,且显著抑制LPS诱导的炎症介质相关基因的过度表达。提示它们的作用途径可能是,通过抑制LPS诱导的炎症介质相关基因的过度表达,抑制了炎症介质的过度产生。
     采用二甲苯致小鼠耳廓肿胀模型、角叉菜胶致大鼠足肿胀模型,测定广藿香酮和广藿香醇对小鼠耳廓、大鼠足趾肿胀度的影响,以及对大鼠足肿胀组织中炎症介质(IL-1β、TNF-α、PGE2、NO)的影响,以评价广藿香酮和广藿香醇对非感染性炎症的影响。结果显示,广藿香酮(10、20、40mg/kg)和广藿香醇(20、40、80mg/kg)口服给药对二甲苯致小鼠耳廓肿胀和角叉菜胶致大鼠足肿胀具有显著抑制作用,此外,广藿香酮(10、20、40mg/kg)和广藿香醇(10、20、40mg/kg)口服给药可显著抑制大鼠足肿胀组织中炎症介质的过度产生。
     采用LPS诱导的内毒素休克小鼠模型,测定广藿香酮和广藿香醇对内毒素休克小鼠死亡率的影响,并测定内毒素休克小鼠生化指标、组织损伤、血清中炎症介质的含量、及组织中炎症介质相关基因表达,评价广藿香酮和广藿香醇对感染性炎症的影响。结果显示,广藿香醇(10、20、40mg/kg)口服给药对内毒素休克小鼠未表现出保护作用;广藿香酮(5、10、20mg/kg)静脉注射给药可提高LPS诱导的内毒素休克小鼠的存活率,下调内毒素休克小鼠血清中的ALP、AST、ALT水平,改善内毒素导致的小鼠肝、肺损伤;广藿香酮可抑制内毒素休克小鼠血清中的炎症介质(TNF-α、IL-1β、 IL-6、IFN-γ、IL-12、PGE2、NO)过量产生,并下调内毒素休克小鼠肝、肺组织中炎症介质相关基因(TNF-α、IL-1β、IL-6、IFN-γ、IL-12、COX-2、iNOS)的表达,提示广藿香酮对内毒素休克小鼠的保护作用,可能通过与其抑制内毒素引起的炎症介质瀑布样级联反应而实现的。
     为了进一步研究广藿香酮对LPS诱导的炎症反应的抑制作用机理,检测了广藿香酮对LPS诱导的巨噬细胞内细胞信号通路的影响。结果显示,广藿香酮可抑制LPS诱导的巨噬细胞内NF-κB、JNK/SAPK及p38MAPK信号转导通路的激活。提示广藿香酮对LPS诱导内毒素休克小鼠的保护作用的机制,可能是其阻断了LPS激活细胞的NF-κB和MAPK信号转导通路,进而调控炎症介质相关基因的表达,最终抑制炎症介质的过度产生。
     2.广藿香酮和广藿香醇的抗真菌活性研究
     采用琼脂稀释法和微量液基稀释法测定广藿香酮和广藿香醇对11株临床皮肤癣菌的影响。结果显示,广藿香酮对各受试皮肤癣菌均有明显抗菌作用,MIC介于24.38~195μg/ml之间,而广藿香醇对受试菌株的MIC>1560μg/ml。在相同条件下所有受试菌株对氟康唑和伊曲康唑均有耐药性(MIC>1560μg/ml),广藿香酮对部分皮肤癣菌有杀菌作用。
     采用微量液基稀释法,测定广藿香酮和广藿香醇对临床念珠菌属真菌的影响,并通过测定白色念珠菌的生长曲线、生物被膜活性,初步探讨作用机理。结果显示,广藿香醇对所有受试菌株的MIC>400μg/ml;广藿香酮对受试白色念珠菌的MIC在3.13至50μg/ml之间,广藿香酮对所有受试白色念珠菌株均有杀菌作用,其MFC介于100至400μg/ml之间,而伏立康唑的最高浓度(400μg/m1)仅对其中一株有杀菌作用。对于其他念珠菌属菌种,广藿香酮的MIC介于12.5至400μg/ml之间,均小于伏立康唑;而广藿香酮对其他受试念珠菌种无杀菌作用。广藿香酮可在白色念珠菌的生长初期迅速将其抑制或杀灭,广藿香酮可显著抑制白色念珠菌成熟生物被膜的生长。说明抑制生物膜的生长和形成可能是广藿香酮抗耐药白色念珠菌的作用机制之一
     采用雌激素化白色念珠菌小鼠阴道炎模型,测定两种给药方式的广藿香酮(即局部给药和口服给药)对阴道真菌载荷量、阴道粘膜真菌感染的影响,评价广藿香酮体内抗白色念珠菌活性。结果显示,广藿香酮阴道给药(1、2、4mg/kg)和口服给药(20、40、80mg/kg)都能有效减少小鼠阴道真菌载量、缓解雌激素化白色念珠菌小鼠的阴道炎,且受试剂量下广藿香酮阴道给药效果优于口服给药。
     3.广藿香酮和广藿香醇的代谢研究
     采用肝微粒体体外孵育模型,应用LC-MS/MS法研究广藿香酮在大鼠体外的代谢情况。结果显示,浓度为1.0mg/ml的广藿香酮在大鼠肝微粒体中孵化100min,可检测到广藿香酮的单一羟基化、双羟基化、氧化、水解的代谢产物。采用大鼠口服给药,考察了广藿香酮在大鼠体内的代谢行为。选择健康雄性大鼠,灌胃给予广藿香酮80mg/kg,采集给药后100min时的血液,连续收集24h的尿液、粪便、胆汁,经液-液萃取后用LC-MS/MS法分析。检测到血液、尿液、粪便和胆汁中总共存在5种代谢类型的产物:单一羟基化、双羟基化、氧化、羟基化+氧化、水解产物。
     采用肝微粒体体外孵育模型,应用LC-MS/MS法研究广藿香醇在大鼠体外的代谢情况。结果显示,浓度为1.0mg/ml的广藿香醇在大鼠肝微粒体中孵化100main,未检测到广藿香醇代谢产物。采用大鼠口服给药,考察了广藿香醇在大鼠体内的代谢行为。选择健康雄性大鼠,灌胃给予广藿香醇80mg/kg,采集给药后100min时的血液,连续收集24h的尿液、粪便,经液-液萃取后用LC-MS/MS法分析。检测到尿液、粪便中存在1种代谢产物:羧酸化产物。
     结论:
     广藿香酮和广藿香醇作为广藿香油的主要成分,对二者生物活性的研究颇少。通过体内外抗炎活性试验,首次发现广藿香酮和广藿香醇均有明显的抗炎活性,证实二者均属于广藿香发挥抗炎作用的主要物质基础;广藿香酮作用机制的探索,提示广藿香酮在幽门螺旋杆菌胃炎、炎性肠炎等方面疾病潜在疗效的可能性。通过内外抗真菌试验,证实广藿香酮具有明显的抗皮肤癣菌和抗念珠菌作用,且广藿香酮有用于抗念珠菌外用制剂的潜力。结果发现广藿香酮与广藿香醇对皮肤癣菌的抑菌活性差异较大,提示了“石牌藿香”与“海南藿香”在抗皮肤癣菌方面存在较大差异的可能性。本研究有利于日后广藿香药材在抗皮肤癣菌方面合理应用的研究探索。历版《中国药典》均采用广藿香醇作为分析评价广藿香和广藿香油质量的指标成分,现行版《中国药典》(2010年版)增加了广藿香酮作为检测广藿香油的指标成分,然而广藿香药材仍仅采用广藿香醇作为指标成分。本研究或可为日后提高广藿香药材标准的研究提供理论依据。此外,本文首次采用LC-MS/MS法对广藿香酮和广藿香醇在大鼠体内外的代谢情况进行研究,发现广藿香酮可在大鼠体内迅速代谢为多个一相代谢产物,广藿香醇在大鼠体内可迅速代谢。提示广藿香酮和广藿香醇在体内的药效还可能是由其代谢产物发挥的,研究结果为进一步探讨广藿香酮和广藿香醇抗炎等作用的机制奠定了基础,也为广藿香酮和广藿香醇构效关系的研究提供参考。
Objectives:
     Pogostemonis Herba is the dried aerial part of Pogostemon cablin (Blanco) Benth.(Labiatae), commonly known as'Guang-Huo-Xiang'in Chinese. It has been traditionally used in Chinese medicine to resolve dampness, whet appetite, arrest vomiting, release the exterior and expel summer-dampness. Pogostemonis Herba is a common Chinese herbal medicine frequently used to treat for common cold, nausea, diarrhea, rhinitis, headaches and fever. To date, Pogostemonis Herba has been used as the main compositions in41kinds of traditional Chinese medicine (TCM) preparations on the market. Moreover, patchouli oil, the essential oil of Pogostemonis Herba, is also used in cosmetics, deodorants and insecticides.
     Over the last several decades, various studies were conducted to investigate the chemical composition, pharmacological activities, cultivation techniques, genetic characteristics of Pogostemonis Herba. Therefore, the chemical composition, pharmacological activities, cultivation techniques, genetic characteristics of Pogostemonis Herba were almost known. However, many problems are also needed to be further resolved to improve its better development for human health. It is important that, few molecular mechanisms of bioactivities of Pogostemonis Herba compounds are known, which goes against its further clinical application.
     Pogostone (PO) and Patchouli alcohol (PA) are the major chemical constituents of the essential oil of Pogostemonis Herba. In China, both of them are chemical markers required by law for the quality control of the essential oil of Pogostemonis Herba. However, it remains unclear whether PO and PA have the biological activities of Pogostemonis Herba. Therefore, the aim of this study was to determine the anti-fungal and anti-inflammatory effects of PO and PA to investigate the material basis for efficacy of Pogostemonis Herba. Furthermore, the in vitro and in vivo metabolism of PO and PA were also studied.
     Methods and Results:
     1. The anti-inflammatory effect of PO and PA
     The in vitro anti-inflammatory effects of PO and PA were investigated in lipopolysaccharide (LPS)-stimulated RAW264.7cells. Results showed that both PO treatment (at the concentrations of1,10or30μM) and PA treatment (at the concentrations of10,20or40μM) could dose-dependently decrease the production of tumor necrosis factor-a (TNF-a), interleukin (IL)-1β, IL-6, nitric oxide (NO) and prostaglandin E2(PGE2) in LPS-stimulated RAW264.7cells. In addition, both PO treatment and PA treatment also reversed the increased mRNA expression of TNF-a, IL-1(3, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2(COX-2) caused by LPS in RAW264.7cells. These results indicate that PO and PA are important anti-inflammatory constituents of Pogostemonis Herba, and that its anti-inflammatory effect may be mediated, at least in part, by down-regulation of the mRNA expression of a panel of inflammatory mediators such as TNF-α, IL-1β, IL-6. iNOS and COX-2.
     The in vivo anti-inflammatory effects of PO and PA were investigated using two common inflammatory animal models i.e., xylene-induced ear edema in mice and carrageenan-induced paw edema in rats. The degree of edema in both inflammatory animals, as well as the protein and mRNA expression of some inflammatory mediators including TNF-a, IL-1β, PGE2and NO in the hind paw of carrageenan-treated rats were measured. Results showed that both PO (20,40,80mg/kg) and PA (10,20,40mg/kg) significantly inhibited the ear edema induced by xylene in mice and the paw edema induced by carrageenan in rats. In addition, treatment with PO (10,20,40mg/kg) or treatment with PA (10,20,40mg/kg) also dose-dependently decreased the production of TNF-a, IL-1β, PGE2and NO in the hind paw of carrageenan-treated rats.
     The in vivo anti-inflammatory effects of PO and PA were also investigated in LPS-induced endotoxic shock in mice. Results showed that intravenous injection of PO (5,10.20mg/kg) protected mice against endotoxin-mediated mortality, whereas oral administration of PA (20,40,80mg/kg) did not show any protective effect against the endotoxin-mediated mortality. In addition, treatment of PO significantly reduced the serum concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), and attenuated LPS-induced liver and lung injury. Furthermore, PO significantly inhibited LPS-induced proinflammatory mediators including TNF-a, IL-1β, IL-6, IFN-y, IL-12, PGE2, and NO in serum. PO potently inhibited the production of the proinflammatory gene expression including TNF-a, IL-1(3, IL-6, IFN-y, IL-12, COX-2and iNOS.
     To elucidate the underlying mechanism of action associated with anti-inflammatory effect of PO, the intracellular pathways including NF-κB and MAPKs signaling pathways were studied in LPS-stimulated RAW264.7cells. Results showed that pretreatment of PO (1,10,30μM) significantly inhibited the phosphorylation of JNK, p38MAPK, and NF-κB p65in LPS-stimulated RAW264.7cells. Taken together, these results demonstrate that PO has a protective effect against endotoxin-induced shock, it may be mediated, at least in part, by blocking the activation of NF-κB and MAPKs signaling pathways.
     2. The anti-fungal effect of PO and PA
     PO and PA were screened for anti-dermatophytes activities by both agar diffusion test and broth dilution test. Results showed that PA did not exhibit any effect on the tested Candida spp. isolates. The MICs for PO against these clinical dermatophytes isolates were between24.38μg/ml and195μg/ml. All dermatophytes strains were resistant to fluconazole (FLC) and itraconazole (MIC>1560μg/ml), and PO was fungicidal against some isolates tested in this study.
     The efficacies of PO and PA were tested against clinical Candida spp. isolates (differentially sensitive to FLC) and one standard FLC-resistant C. albicans strain (ATCC10231) by broth dilution test. Kill-curve of PO was studied at different concentrations in a clinical strain, and anti-biofilm property was also studied. Results showed that PA did not exhibit any effect on the tested Candida spp. isolates. The MICs for PO against these clinical C. albicans isolates were between3.13μg/ml and50μg/ml. And PO was fungicidal against all isolates tested in this study between50μg/ml and400μg/ml. However, voriconazole (VRC) was fungistatic and the highest concentration (400μg/ml) failed to elicit a fungicidal effect against these Candida spp. isolates. Moreover, the other Candida spp. exhibited from12.5μg/ml to400μg/ml of PO as MICs. By contrast, VRC showed higher activity than PO against these Candida isolates. Furthermore. PO at a concentration of0.5times the MIC could significantly affect the growth of C. albicans. At a sub-MIC concentration (mg/ml) of PO could significantly inhibit the formation of mature (48-h old) biofilm. These results suggest that PO has fungistatic and fungicidal activity against C. albicans. it may be related, at least in part, to its anti-biofilm action.
     The therapeutic efficacy of oral versus intravaginal PO on experimental vaginitis caused by a fluconazole-resistant Candida albicans isolate were studied, and the effect of PO were compared with VRC. Results showed that oral PO administration (20,40,80mg/kg) and topical PO treatment (1,2,4mg/kg) effectively reduced the fungal load in vagina of vulvovaginal candidiasis mouse models. Furthermore, topical PO administration demonstrated higher activity against the vulvovaginal candidiasis than VRC.
     3. The metabolism of PO and PA
     High performance liquid chromatography coupled with ion trap mass spectrometry supported with high resolution LTQ-Orbitrap was employed to analyze the metabolism of PO by virtue of the high sensitivity and high selectivity in the measurement. In vitro experiment was carried out using rat liver microsomes while the in vivo study was conducted in rats, which were orally administered with PO (80mg/kg). Through the mass spectrometric characterization of the structural information for the metabolites, three mono-hydroxylated PO, one di-hydroxylated PO and one hydrolyzation metabolite were found in rat liver microsomes. In addition to the aforementioned metabolites, one di-oxygenated metabolite and one mono-oxygenated metabolite were detected in rat plasma. However, no PO and metabolite was found in feces samples in the current work. As a result, a total of seven metabolites of PO were described and hydroxylation was demonstrated to be a major metabolic pathway of PO.
     High performance liquid chromatography coupled with ion trap mass spectrometry supported with high resolution LTQ-Orbitrap was employed to analyze the metabolism of PA by virtue of the high sensitivity and high selectivity in the measurement. In vitro experiment was carried out using rat liver microsomes while the in vivo study was conducted in rats, which were orally administered with pogostone (80mg/kg). Through the mass spectrometric characterization of the structural information for the metabolite, one carboxylated metabolite was found in urine and feces samples. No metabolite was found in rat liver microsomes.
     Conclusion:
     PO and PA are the major chemical constituents of the essential oil of Pogostemonis Herba. However, to the best of our knowledge, the biological activities of PO and PA have been rarely reported. The present study assessed the in vitro and in vivo anti-inflammatory activities of PO and PA. and found that both PO and PA have significant ant i-inflammatory effect. The results demonstrate that PO and PA are important parts of the material basis of Pogostemonis Herba for dampness-induced diseases.
     Moreover, the study tested the in vitro and in vivo anti-fungal effects of PO and PA, and found that PO possess potent activities against dermatophytes and Candida spp., whereas PA did not exhibit any effect against these funguses. The results suggest that although the content of PO is less than that of PA in the essential oil of Pogostemonis Herba, PO has been proved to be important material basis of Pogostemonis Herba against funguses. PA has long been used as a chemical marker required by law for the quality control of Pogostemonis Herba and the essential oil of Pogostemonis Herba. Since2010, PO has also been used as a chemical marker required by law for the quality control of the essential oil of Pogostemonis Herba, but it have not been used for Pogostemonis Herba yet. This study may provide an evidence for the demand to improve the quality standard for Pogostemonis Herba.
     Furthermore, the study characterized the metabolism of pogostone in vitro and in vivo using liquid chromatography-mass spectrometry, and found that PO and PA could be rapidly metabolized in rat. These suggest that the underlying mechanism of action of PO and PA may be associated with their metabolites.
引文
[1]王智民.中药药效物质基础的系统研究是中药现代化的关键[J].中国中药杂志,2003(12):11-13.
    [2]中华人民共和国国家药典委员会.中华人民共和国药典2010年版(一部)[S].北京:化学工业出版社,2010:42.
    [3]Chen M, Zhang J, Lai Y, et al. Analysis of Pogostemon cablin from pharmaceutical research to market performances[J].Expert Opin Investig Drugs,2013.22(2):245-57.
    [4]罗集鹏,冯毅凡,何冰,等.广藿香的道地性研究[J].中药材,2005.(12):1121-1125.
    [5]Srikrishna A, Satyanarayana G. An enantiospecfic total synthesis of (-)-patchouli alcohol[J].Tetrahedron:Asymmetry, 2005.16:3992-3997.
    [6]Ujihara, Kazuya, Minoo. Process for producing pyrone compounds:United States,6420569Bl [P]. 2002-7-16.
    [7]彭绍忠,李耿,秦臻,等.广藿香不同提取部位体内抗流感病毒作用研究[J].时珍国医国药,2011.22(11):2578-2579.
    [8]Lu TC, Liao JC, Huang TH, et al. Analgesic and Anti-Inflammatory Activities of the Methanol Extract from Pogostemon cablin[J].Evid Based Complement Alternat Med,2011.2011:671741.
    [9]刘琥琥,罗集鹏,赖沛炼.广东高要与吴川产广藿香提取物对肠道致病菌抗菌作用的比较研究[J].中药材,1999.(08):408-411.
    [10]罗超坤.广藿香水提物的抗菌实验研究[J].中药材,2005.(08):700-701.
    [11]罗集鹏,刘玉萍,冯毅凡,等.广蕾香的两个化学型及产:地与采收期对其挥发油成分的影响[J].药学学报,2003.(04):307-310.
    [12]中国医学科学院药用植物资源开发研究所等.中药志(第四册)[M].第二版.北京:人民卫生出版社,1988:130.134-135.
    [13]关玲,权丽辉,徐丽珍,等.广藿香化学成分的研究[J].中国中药杂志,1994.(06):355-35683.
    [14]Trifilieff E. Isolation of the postulated precursor of nor-patchoulenol in Patchouli leaves[J].Phytochemistry,1980.19(11):2467.
    [15]张强,李章万,朱江粤.广藿香挥发油成分的分析[J].华西药学杂志,1996.(04):249-250.
    [16]藤田真一等.药学杂志(日)[J].1970.09:1514.
    [17]赵书策,贾强,廖富林.广藿香提取物的抗炎、镇痛药理研究[J].中成药,2007.(02):285-287.
    [18]苏镜娱,张广文,李核,等.广藿香精油化学成分分析与抗菌活性研究(1)[J].中草药,2001.(03):14-15.
    [19]王星兰.藿香煎剂治疗霉菌性阴道炎118例[J].浙江中医杂志,1997.32(7):307.
    [20]范瑞强,梁剑辉,卢玉贞.中药香莲复方外用治疗股癣及外阴念珠菌病的实验和临床研究[J].广州中医学院学报,1991.(Z1):170-175.
    [21]杨得坡Jean-Pierre Chaumont, Millet J藿香和广蓿香挥发油的抗皮肤细菌活性与化学成分的研究[J].1998.(4):1-4.16.
    [22]齐珊珊,胡丽萍,陈文娜,等.广蓿香叶挥发油对小鼠免疫调节作用的实验研究[J].中华中医药学刊,2009.(04):774-776.
    [23]谢肄聪,唐方,藿香对肢体缺血—再灌注模型大鼠肠屏障功能保护作用的机理研究[J].中国中药杂志,2004.29(5):61-63.
    [24]Tang F.广藿香水提物对锌异常小鼠豁膜的作用[J].国外医学·中医中药分册,1996.18(2):40.
    [25]陈小夏,何冰,李显奇,等.广藿香胃肠道药理作用[J].中药材,1998.(09):462-466.
    [26]陈小夏,何冰,李显奇,等.广藿香三种提取物对肠道功能作用的比较[J].中药药理与临床,1998.(02):32-34.
    [27]杜一民,陈汝筑,胡本荣.广藿香的化学成分及其药理作用研究进展[J].中药新药与临床药理,1998.(4):238-241.
    [28]朱金照,冷恩仁,桂先勇,等.白术、藿香等中药对胃排空、肠推进影响的实验研究[J].中国中医基础医学杂志,2000.(01):24-26.
    [29]陆茵,陈文星,盂政杰,等.加味藿香正气软胶囊调节胃肠运动功能的作用[J].中药新药与临床药理,2003.(06):381-383.
    [30]杨国汉,胡德耀,戴裕光,等.藿香正气液及其组方药物对大鼠胃排空和肠推进作用的影响[J].实用中医药杂志,2005.(09):521-523.
    [31]朱金照,张捷,张志坚.藿香提取液对大鼠小肠一氧化氮合酶分布的影响[J].福建医药杂志,2002.(03):99-100.
    [32]Ichikawa K, Kinoshita T, Sankawa U. The screening of Chinese crude drugs for Ca2+antagonist activity: identification of active principles from the aerial part of Pogostemon cablin and the fruits of Prunus mume[J].Chem Pharm Bull (Tokyo),1989.37(2):345-8.
    [33]高相雷,熊盛,王一飞,等.广藿香三种有效部位体外抗柯萨奇病毒B3作用的初步研究[J].中药材,2009.(05):761-764.
    [34]魏晓露,彭成,万峰.广蕾香油体外抗呼吸道病毒效果研究[J].中药药理与临床,2012(06):65·68.
    [35]中华人民共和国国家药典委员会.中华人民共和国药典2010年版(一部)[S].北京:化学工业出版社,2010:42-373.
    [36]Ferdinand N, Giinther OA. Short Stereoselective Total Synthesis of Racemic Patchouli Alcohol[J].Helvetica chimica acta,1974.57:1868-1870.
    [37]Magee TV, Stork G, Fludzinski P. A Total Synthesis of rat-PatchouliAlcohol[J].Tetrahedron letter,1995. 36:7607-7610.
    [38]Kaliappan KP. Rao GS. Formal syntheses of patchouli alcohol and norpatchoulenol[J].Perkin Trans,1997: 1386-1389.
    [39]Zhu BC, Henderson G, Yu Y, et al. Toxicity and repellency of patchouli oil and patchouli alcohol against Formosan subterranean termites Coptotermes formosanus Shiraki (Isoptera:Rhinotermitidae)[J].J Agric Food Chem.2003.51(16):4585-8.
    [40]Rucker D, Tautges J, Maheswari ML, et al. Norseychelanone α-and β-patchoulenes and patchouli alcohol from nardostachys jatamansi.[J].phytochemistry,1976.15:224.
    [411郭放,王忠华,郭文生.主客体包结结晶法高选择性分离藿香挥发油中的广藿香醇[C].2005年全国药物化学会议论文,2005:131-132.
    [42]Wu S, Schalk M, Clark A, et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants[J].Nat Biotechnol.2006.24(11):1441-7.
    [43]唐克轩,王玥月,唐岳立.利用pts基因和RNA干扰ads基因提高青蒿广藿香醇含量的方法:中国,200910050782[P].2009-12-09.
    [44]刘志华.周德英.超临界CO2萃取法与水蒸气蒸馏法提取广藿香油的化学成分比较[J].安徽农业科学,2009.(19):8816-881 7.
    [45]陈慧,张金巍,朱合伟,等.分子蒸懈法纯化广藿香挥发油中广藿香醇[J].中草药,2009.(01):60-63.
    [46]黄晓舞、白林,徐风华,等.广藿香醇对β-淀粉样蛋白神经毒性的抑制作用[J].解放军药学学报、2008.(04):338-340.
    [47]Mirko W, Anja S, Bockmuehl AB, et al. Agents agains microorganisms containing patchouli oil, patchouli alcohol and/or the derivatives thereof:United States,0134239Al[P].2006-6-22.
    [48]王洋.广藿香中新的具抗锥虫活性的倍半萜氢过氧化物[J].国外医学(中医中药分册),2005.(06):40.
    [49]Ngampong Kongkathip, Pornpat Sam-ang, Boonsong Kongkathip, et al. Development of Patchouli Extraction with Quality Control and Isolation of Active Compounds with Antibacterial Activity[J].Kasetsart J.(Nat.Sci.),2009.43:519-525.
    [50]赖小平,苏子仁,张奉学,等.百秋李醇在制备药物中的用途:中国,200910037440[P].2009-07-22.
    [51]刘青,江波,于宗渊.气相色谱法测定广藿香挥发油中广藿香醇的含量[J].山东医药,2007.(02):3.
    [52]魏刚,符红GC-MS法建立广藿香挥发油指纹特征图谱研究[J].中成药,2002.24(5):407-410.
    [53]杨甫传,徐丽珍,邹忠梅,等.广藿香醇及广藿香油中广藿香醇在大鼠体内药代动力学比较[J].药学学报,2004.39(9):726-729.
    [54]Luu B, Ourisson G. Hydroxylation of patchoulol by rabbits,hemi-synthesis of nor-patchoulenol.The odour carrier of patchouli oil[J].Tetrahedron letter,1975.26:2211-2214.
    [55]中华人民共和国国家药典委员会.中华人民共和国药典2010年版(一部)[S].北京:化学工业出版社,2010:373.
    [56]李立忠,胡朝凤,全载哲.藿香中广藿香酮的分离及鉴定[J].中南民族大学学报(自然科学版),2005.(01):14-16.
    [57]杨賛熹,谢培山.中药广藿香抗真菌成分-广藿香酮(Pogostone)的分离及结构测定[J].科学通报,1977.22(7):318-320.
    [58]Yi YY, He JJ, Su JQ, et al. Synthesis and antimicrobial evaluation of pogostone and its analogues[J].Fitoterapia,2013.84:135-9.
    [59]南京药学院中草药学编写组.中草药学(下册)[M].江苏:江苏人民出版社,1980.
    [60]孔庚星.广藿香酮的分离及其在药剂中的应用[J].中国医院药学杂志,1986.(01):32-33.
    [61]莫小路、严振,王玉生,等.广藿香精油对植物病原真菌的抑菌活性研究[J].中药材,2004.(11):805-807.
    [62]刘乡乡,黄晓玲,宋力飞,等.GC法测定广藿香提取物中百秋李醇和广藿香酮的含量[J].中药材,2005.(01):30-31.
    [63]汪小根,邹玉繁,王玉生GC-MS联用技术测定广藿香油中广藿香酮的含量[J].药物分析杂志,2005.(05):582-584.
    [64]易宇阳,陈海明,秦臻,等HPLC法测定广藿香油中广藿香酮的含量[J].中药新药与临床药理,2011.(05):560-562.
    [65]李玉林.病理学[M].北京:人民卫生出版社,2008.
    [66]Kumar V, Abbas AK, Fausto N, et al.Robbins and Cotran pathologic basis of disease[M].Philadelphia:Elsevier Saunders,2005:xv,1525 p.
    [67]Lee JY, Lee MS, Choi JW, et al. Dichloromethane fraction of Laminaria japonica ethanolic extract inhibits lipopolysaccharide-induced nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 cells via NF-kappaB pathway[J],Inflammation,2012.35(5):1650-8.
    [68]Su JY, Tan LR, Lai P, et al. Experimental study on anti-inflammatory activity of a TCM recipe consisting of the supercritical fluid CO2 extract of Chrysanthemum indicum, Patchouli Oil and Zedoary Turmeric Oil in vivo[J].J Ethnopharmacol,2012.141(2):608-14.
    [69]Maeda H, Akaike T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer[J].Biochemistry (Mosc),1998.63(7):854-65.
    [70]Bradley JR. TNF-mediated inflammatory disease[J].J Pathol,2008.214(2):149-60.
    [71]Bull HA, M. P. Dowd Prostaglandins, Interleukins, and Cutaneous Inflammation[J].ImmunoMethods, 1993.2(3):219-226.
    [72]Ricciotti E, FitzGerald GA. Prostaglandins and inflammation[J].Arterioscler Thromb Vase Biol,2011. 31(5):986-1000.
    [73]Henderson WR, Jr. The role of leukotrienes in inflammation[J].Ann Intern Med,1994.121(9):684-97.
    [74]MacGlashan D, Jr. Histamine:A mediator of inflammation[J].J Allergy Clin Immunol,2003.112(4 Suppl):S53-9.
    [75]Kalavacherla US, Ishaq M, Rao UR, et al. Malondialdehyde as a sensitive marker of inflammation in patients with rheumatoid arthritis[J].J Assoc Physicians India,1994.42(10):775-6.
    [76]Dunn KL, Espino PS, Drobic B, et al. The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling[J].Biochem Cell Biol,2005.83(1):1-14.
    [77]Jiang Y, Chen C, Li Z, et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta)[J].J Biol Chem,1996.271(30):17920-6.
    [78]Jiang Y, Gram H, Zhao M, et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta[J]J Biol Chem,1997.272(48):30122-8.
    [79]New L, Jiang Y, Zhao M, et al. PRAK, a novel protein kinase regulated by the p38 MAP kinase[J].EMBO J,1998.17(12):3372-84.
    [80]Shen YH, Godlewski J, Zhu J, et al. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors[J].J Biol Chem,2003.278(29): 26715-21.
    [81]Chang L, Karin M. Mammalian MAP kinase signalling cascades[J].Nature,2001.410(6824):37-40.
    [82]Beg AA, Baldwin AS, Jr. The I kappa B proteins:multifunctional regulators of Rel/NF-kappa B transcription factors[J].Genes Dev,1993.7(11):2064-70.
    [83]Karin M, Lin A. NF-kappaB at the crossroads of life and death[J].Nat Immunol,2002.3(3):221-7.
    [84]Sevilla L, Zaldumbide A, Pognonec P, et al. Transcriptional regulation of the bcl-x gene encoding the anti-apoptotic Bcl-xL protein by Ets, Rel/NFkappaB, STAT and API transcription factor families[J].Histol Histopathol,2001.16(2):595-601.
    [85]Duronio V, Scheid MP, Ettinger S. Downstream signalling events regulated by phosphatidylinositol 3-kinase activity[J].Cell Signal,1998.10(4):233-9.
    [86]Philo JS, Wen J, Wypych J, et al. Human stem cell factor dimer forms a complex with two molecules of the extracellular domain of its receptor, Kit[J].J Biol Chem,1996.271(12):6895-902.
    [87]Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation[J].N EngI J Med,1995.332(20):1351-62.
    [88]Samuelsson B. Arachidonic acid metabolism:role in inflammation[J].Z Rheumatol,1991.50 Suppl 1: 3-6.
    [89]Marcos JY, Pincus DH. Fungal diagnostics:review of commercially available methods[J]. Methods Mol Biol,2013.968:25-54.
    [90]Sardi JC, Scorzoni L, Bernardi T, et al. Candida species:current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options[J].J Med Microbiol,2013.62(1):10-24.
    [91]Kathiravan MK, Salake AB. Chothe AS, et al. The biology and chemistry of antifungal agents:a review[J].Bioorg Med Chem,2012.20(19):5678-98.
    [92]Rios JL, Recio MC, Villar A. Screening methods for natural products with antimicrobial activity:a review of the literature[J].J Ethnopharmacol,1988.23(2-3):127-49.
    [93]Carson CF, Riley TV. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia[J].J Appl Bacteriol,1995.78(3):264-9.
    [94]Inouye S, Tsuruoka T, Uchida K, et al. Effect of sealing and Tween 80 on the antifungal susceptibility testing of essential oils[J].Microbiol Immunol,2001.45(3):201-8.
    [95]Mann CM, Markham JL. A new method for determining the minimum inhibitory concentration of essential oils[J].J Appl Microbiol,1998.84(4):538-44.
    [96]Scorzoni L, Benaducci T, Almeida A, et al. Comparative study of disk diffusion and microdilution methods for evaluation of antifungal activity of natural compounds against medical yeasts Candida spp and Cryptococcus sp[J].Rev.Cienc.Farm Basica Apl,2007.28:25-34.
    [97]Pauli A. Anticandidal low molecular compounds from higher plants with special reference to compounds from essential oils[J].Med Res Rev,2006.26(2):223-68.
    [98]Pfaller MA, Messer SA, Mills K, et al. In vitro susceptibility testing of filamentous fungi:comparison of Etest and reference microdilution methods for determining itraconazole MICs[J].J Clin Microbiol,2000.38(9): 3359-61.
    [99]徐瑞龙.抗真菌药物敏感性试验方法学研究进展[J].浙江检验医学,2001.(1):21-24.
    [100]Li RK, Elie CM, Clayton GE, et al. Comparison of a new colorimetric assay with the NCCLS broth microdilution method (M-27A) for antifungal drug MIC determination[J]. J Clin Microbiol,2000.38(6): 2334-8.
    [101]Svecova D. [Experimental Trichophyton rubrum infection in animals][J].Epidemiol Mikrobiol Imunol, 2000.49(2):75-9.
    [102]Gonzalez GM, Portillo OJ, Uscanga GI, et al. Therapeutic efficacy of voriconazole against a fluconazole-resistant Candida albicans isolate in a vaginal model[J].J Antimicrob Chemother,2009.64(3): 571-3.
    [103]Calderon L, Williams R, Martinez M, et al. Genetic susceptibility to vaginal candidiasis[J].Med Mycol, 2003.41(2):143-7.
    [104]De Bernardis F, Amacker M, Arancia S, et al. A virosomal vaccine against candidal vaginitis: immunogenicity, efficacy and safety profile in animal models[J].Vaccine,2012.30(30):4490-8.
    [105]Tashiro M, Kimura S, Tateda K, et al. Pravastatin inhibits farnesol production in Candida albicans and improves survival in a mouse model of systemic candidiasis[J].Med Mycol,2012.50(4):353-60.
    [106]Karrer HE. Virulence of Coccidiodes immitis determined by intracerebral inoculation in mice[J].Proc Soc Exp Biol Med.1953.82(4):766-8.
    [107]余晓东、刘维达.动物模型与真菌病研究[J].国际皮肤性病学杂志,2006.32(2):79-82.
    [108]Duran A, Nombela C. Fungal cell wall biogenesis:building a dynamic interface with the environment [J].Microbiology,2004.150(10):3099-103.
    [109]Adams DJ. Fungal cell wall chitinases and glucanases[J].Microbiology,2004.150(7):2029-35.
    [110]Odds FC, Brown AJ, Gow NA. Antifungal agents:mechanisms of action[J].Trends Microbiol,2003. 11(6):272-9.
    [111]Tada R, Latge JP, Aimanianda V. Undressing the fungal cell wall/cell membrane-the antifungal drug targets[J].Curr Pharm Des,2012.
    [112]Diaz MR. Dunbar SA, Jacobson JW. Multiplexed detection of fungal nucleic acid signatures[J].Curr Protoc Cytom,2008. Chapter 13:Unit139.
    [113]Biondo C, Malara A, Costa A, et al. Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis[J].Eur J Immunol,2012.42(10):2632-43.
    [114]Rodrigues AD, Lewis DF, Ioannides C, et al. Spectral and kinetic studies of the interaction of imidazole anti-fungal agents with microsomal cytochromes P-450[J].Xenobiotica,1987.17(11):1315-27.
    [115]Zhang YQ, Gamarra S, Garcia-Effron G, et al. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs[J].PLoS Pathog,2010.6(6):e1000939.
    [116]Ben-Ami R, Lewis RE, Kontoyiannis DP. Immunocompromised hosts:immunopharmacology of modern antifungals[J].Clin Infect Dis,2008.47(2):226-35.
    [117]李好枝.体内药物分析[M].第二版,北京:中国医药科技出版社,2011:22-43.
    [118]阿基业,王广基.药物代谢研究与药物设计及结构修饰[J].药学进展,2002.(02):80-86.
    [119]李文东,马辰,药物体外肝代谢研究进展[J].中国药学杂志,2003.(10):9-12.
    [120]Kuperman AV, Kalgutkar AS, Marfat A, et al. Pharmacokinetics and metabolism of a cysteinyl leukotriene-1 receptor antagonist from the heterocyclic chromanol series in rats:in vitro-in vivo correlation, gender-related differences, isoform identification, and comparison with metabolism in human hepatic tissue[J].Drug Metab Dispos,2001.29(11):1403-9.
    [121]Vickers AE, Zollinger M, Dannecker R, et al. In vitro metabolism of tegaserod in human liver and intestine:assessment of drug interactions[J].Drug Metab Dispos,2001.29(10):1269-76.
    [122]阳长明,侯世祥,张志荣.中药代谢化学研究新进展[J].中草药,2000.(09):4-7.
    [123]曾苏,程翼宇.药物分析学研究进展[J].浙江大学学报(医学版),2004.(01):4-9.
    [124]Mao YY, Bai JQ, Chen JH, et al. A pilot study of GC/MS-based serum metabolic profiling of acute rejection in renal transplantation[J].Transpl Immunol,2008.19(1):74-80.
    [125]Zheng X, Shen J, Liu Q, et al. Plasma fatty acids metabolic profiling analysis of coronary heart disease based on GC-MS and pattern recognition[J].J Pharm Biomed Anal,2009.49(2):481-6.
    [126]Luengwilai K, Saltveit M, Beckles D M. Metabolite content of harvested Micro-Tom tomato (Solanum lycopersicum L.) fruit is altered by chilling and protective heat-shock treatments as shown by GC-MS metabolic profiling[J].Postharvest Biology and Technology.2012.63(1):116-122.
    [127]Spagou K, Theodoridis G, Wilson I, et al. A GC-MS metabolic profiling study of plasma samples from mice on low- and high-fat diets[J].J Chromatogr B Analyt Technol Biomed Life Sci,2011.879(17-18): 1467-75.
    [128]Kammerer B, Kahlich R, Ufer M, et al. Achiral-chiral LC/LC-MS/MS coupling for determination of chiral discrimination effects in phenprocoumon metabolism[J].Anal Biochem,2005.339(2):297-309.
    [129]Lee SK, Kim DH, Yoo HH. Comparative metabolism of sildenafil in liver microsomes of different species by using LC/MS-based multivariate analysis[J].J Chromatogr B Analyt Technol Biomed Life Sci, 2011.879(28):3005-11.
    [130]Bhoopathy S, Xin B, Unger SE, et al. A novel incubation direct injection LC/MS/MS technique for in vitro drug metabolism screening studies involving the CYP 2D6 and the CYP 3 A4 isozymes[J].J Pharm Biomed Anal,2005.37(4):739-49.
    [131]Wang L, Zhang Q, Li X, et al. Pharmacokinetics and metabolism of lithospermic acid by LC/MS/MS in rats[J].Int J Pharm,2008.350(1-2):240-6.
    [132]Durand S, Sancelme M, Besse-Hoggan P, et al. Biodegradation pathway of mesotrione: complementarities of NMR, LC-NMR and LC-MS for qualitative and quantitative metabolic profiling[J].Chemosphere,2010.81(3):372-80.
    [133]龙芳羽,王宝维,张旭晖.同位素示踪技术在动物消化代谢研究中的应用[J].农业科学研究,2005.(03):70-73.
    [134]赖小平、苏子仁,黎玉翠.一种广藿香醇的分离纯化方法:中国,200910193088[P].201 0-04-07.
    [135]Fujihara M, Muroi M, Tanamoto K, et al. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide:roles of the receptor complex[J].Pharmacol Ther,2003.100(2):171-94.
    [136]Ralph P, Nakoinz I. Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines:enhancement by PPD and LPS[J].J Immunol,1977.119(3):950-54.
    [137]Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays[J].J Immunol Methods,1983.65(1-2):55-63.
    [138]Shohami E, Ginis I, Hallenbeck JM. Dual role of tumor necrosis factor alpha in brain injury[J].Cytokine Growth Factor Rev,1999.10(2):119-30.
    [139]Arend W. The balance between IL-1 and IL-IRa in disease[J].Cytokine Growth Factor Rev,2002. 13(4-5):323-340.
    [140]Van Snick J. Interleukin-6:an overview[J].Annu Rev Immunol,1990.8:253-78.
    [141]Rocca B, FitzGerald GA. Cyclooxygenases and prostaglandins:shaping up the immune response[J].Int Immunopharmacol,2002.2(5):603-30.
    [142]Zhang XJ, Li Y, Tai GX, et al. Effects of activin A on the activities of the mouse peritoneal macrophages[J].Cell Mol Immunol,2005.2(1):63-7.
    [143]Gayathri B, Manjula N, Vinaykumar KS, et al. Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFalpha, IL-1 beta, NO and MAP kinases[J].Int Immunopharmacol,2007.7(4):473-82.
    [144]Hu XD, Yang Y, Zhong XG, et al. Anti-inflammatory effects of Z23 on LPS-induced inflammatory responses in RAW264.7 macrophages[J].J Ethnopharmacol,2008.120(3):447-51.
    [145]Palmer RM, Rees DD, Ashton DS, et al. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation[J].Biochem Biophys Res Commun,1988.153(3):1251-6.
    [146]周光炎.免疫学原理[M].上海:上海科学技术出版社,2007:52.
    [147]Qi L, Kash JC, Dugan VG, et al. The ability of pandemic influenza virus hemagglutinins to induce lower respiratory pathology is associated with decreased surfactant protein D binding[J],Virology,2011.412(2): 426-34.
    [148]Lee KY, Rhim JW, Kang JH. Hyperactive immune cells (T cells) may be responsible for acute lung injury in influenza virus infections:a need for early immune-modulators for severe cases[J].Med Hypotheses, 2011.76(1):64-9.
    [149]Ferrero-Miliani L, Nielsen OH, Andersen PS, et al. Chronic inflammation:importance of NOD2 and NALP3 in interleukin-lbeta generation[J].Clin Exp Immunol,2007.147(2):227-35.
    [150]Loving CL, Brockmeier SL, Vincent AL, et al. Influenza virus coinfection with Bordetella bronchiseptica enhances bacterial colonization and host responses exacerbating pulmonary lesions[J].Microb Pathog,2010.49(5):237-45.
    [151]Lee LN, Dias P, Han D, et al. A mouse model of lethal synergism between influenza vims and Haemophilus influenzae[J].Am J Pathol,2010.176(2):800-11.
    [152]Chen YC. Lo CP, Chang TP. Novel influenza A (H1N1)-associated encephalopathy/encephalitis with severe neurological sequelae and unique image features--a case report[J].J Neurol Sci,2010.298(1-2):110-3.
    [153]Mamas MA, Fraser D, Neyses L. Cardiovascular manifestations associated with influenza virus infection[J].Int J Cardiol,2008.130(3):304-9.
    [154]Charlotte W.G., Liam S., H. AC. Influenza as a trigger for acute myocardial infarction or death from cardiovascular disease:a systematic review[J].The Lancet Infectious Diseases,2009.9(10):601-610.
    [155]周光炎.免疫学原理[M].上海:上海科学技术出版社,2007:76-83.
    [156]Fassbender K, Pargger H, Muller W, et al. Interleukin-6 and acute-phase protein concentrations in surgical intensive care unit patients:diagnostic signs in nosocomial infection[J].Crit Care Med,1993.21(8): 1175-80.
    [157]Butler J, Chong GL, Baigrie RJ, et al. Cytokine responses to cardiopulmonary bypass with membrane and bubble oxygenation[J].Ann Thorac Surg,1992.53(5):833-8.
    [158]Debandt JP, Cholletmartin S, Hernvann A, et al. Cytokine response to burn injury:relationship with protein metabolism[J].Journal of Trauma,1994.36(5):624-628.
    [159]Despond O, Proulx F, Carcillo JA, et al. Pediatric sepsis and multiple organ dysfunction syndrome[J].Curr Opin Pediatr,2001.13(3):247-53.
    [160]Ek M, Engblom D, Saha S, et al. Inflammatory response:pathway across the blood-brain barrier[J].Nature,2001.410(6827):430-1.
    [161]Borovikova LV, Ivanova S, Nardi D, et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation[J].Auton'Neurosci,2000.85(1-3):141-7.
    [162]Tracey KJ. The inflammatory reflex[J].Nature,2002.420(6917):853-9.
    [163]Salvemini D, Wang ZQ, Wyatt PS, et al. Nitric oxide:a key mediator in the early and late phase of carrageenan-induced rat paw inflammation[J].Br J Pharmacol,1996.118(4):829-38.
    [164]Benavides U, Gonzalez-Murguiondo M, Harii N, et al. Phenylmethimazole inhibits production of proinflammatory mediators and is protective in an experimental model of endotoxic shock[J].Crit Care Med, 2012.40(3):886-894.
    [165]Wang Y, Yu C, Pan Y, et al. A novel compound Cl2 inhibits inflammatory cytokine production and protects from inflammatory injury in vivo[J].PLoS One,2011.6(9):e24377.
    [166]Agelaki S, Tsatsanis C, Gravanis A, et al. Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice[J].Infect Immun,2002.70(11):6068-74.
    [167]Yamamoto M, Sato S, Hemmi H, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4[J],Nature,2002.420(6913):324-9.
    [168]Li X, Qin J. Modulation of Toll-interleukin I receptor mediated signaling[J].J Mol Med (Berl),2005. 83(4):258-66.
    [169]Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition[J].Clin Microbiol Rev,2003. 16(4):637-46.
    [170]Bolz DD, Sundsbak RS, Ma Y, et al. MyD88 plays a unique role in host defense but not arthritis development in Lyme disease[J].J Immunol,2004.173(3):2003-10.
    [171]Yamamoto M, Takeda K, Akira S. TIR domain-containing adaptors define the specificity of TLR signaling[J].Mol Immunol,2004.40(12):861-8.
    [172]李琦.钱桂生,张青,等.递增剂量脂多糖致伤对大鼠SIRS肺损伤的影响[J].第三军医大学学报,2001.(11):1264-1266.
    [173]田维毅,杨娟,王平,等.四物汤等复方多糖组分对小鼠腹腔巨噬细胞释放细胞因子的影响[J].中华中医药杂志,2009.24(4):515-517.
    [174]Hortelano S, Castrillo A. Alvarez AM, et al. Contribution of cyclopentenone prostaglandins to the resolution of inflammation through the potentiation of apoptosis in activated macrophages[J].J Immunol,2000. 165(11):6525-31.
    [175]庞然,张淑玲,赵雷,等.草木犀正丁醇提取物对小鼠巨噬细胞促炎介质的影响[J].中国现代医学杂志,2009.19(19):2893-2896.
    [176]Wright SD, Ramos RA, Tobias PS, et al. CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein[J].Science,1990.249(4975):1431-3.
    [177]Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene[J].Science,1998.282(5396):2085-8.
    [178]Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4[J].J Exp Med,1999.189(11):1777-82.
    [179]Browder W, Ha T, Chuanfu L, et al. Early activation of pulmonary nuclear factor kappaB and nuclear factor interleukin-6 in polymicrobial sepsis[J].J Trauma,1999.46(4):590-6.
    [180]Williams DL, Ha T, Li C, et al. Early activation of hepatic NFkappaB and NF-IL6 in polymicrobial sepsis correlates with bacteremia, cytokine expression, and mortality[J].Ann Surg,1999.230(1):95-104.
    [181]Arnalich F, Garcia-Palomero E, Lopez J, et al. Predictive value of nuclear factor kappaB activity and plasma cytokine levels in patients with sepsis[J].Infect Immun,2000.68(4):1942-5.
    [182]Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation[J].Am J Physiol Lung Cell Mol Physiol,2006.290(4):L622-L645.
    [183]Pande V, Ramos MJ. NF-KappaB in human disease:current inhibitors and prospects for de novo structure based design of inhibitors[J].Curr Med Chem,2005.12(3):357-74.
    [184]Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs[J].Trends Biochem Sci, 1995.20(3):117-22.
    [185]Dziarski R, Jin YP, Gupta D. Differential activation of extracellular signal-regulated kinase (ERK) 1, ERK2, p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinases by bacterial peptidoglycan[J].J Infect Dis,1996.174(4):777-85.
    [186]Lee JC, Laydon JT, McDonnell PC, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis[J].Nature,1994.372(6508):739-46.
    [187]Kawai T, Takeuchi O, Fujita T, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes[J].J Immunol,2001.167(10):5887-94.
    [188]O'Sullivan AW, Wang JH, Redmond HP. NF-kappaB and p38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy[J].J Surg Res,2009.152(1):46-53.
    [189]吴绍熙.现代医学真菌检验手册[M].第2版.北京:中国协和医科大学出版社,2005.
    [190]National Committee for Clinical Laboratory Standards.1998. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium Forming Filamentous Fungi, proposed standard. NCCLS document M38-P, National Committee for Clinical Laboratory Standards, Wayne, PA.
    [191]National Committee for Clinical Laboratory Standards.2002. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. Approved Standard. NCCLS document M38-A, National Committee for Clinical Laboratory Standards, Wayne, PA.
    [192]陈剑,张静,易金玲,等.参照CLSI M38-A方案测定皮肤癣菌临床株对4种抗真菌药物的敏感性[J].中国真菌学杂志,2009.(04):214-217.
    [193]杨得坡Jean-Pierre C, Jolle M藿香和广藿香挥发油对皮肤癣菌和条件致病真菌的抑制作用[J].中国药学杂志,2000.(01):9-11.
    [194]Barry AL, Brown SD. Fluconazole disk diffusion procedure for determining susceptibility of Candida species[J].J Clin Microbiol,1996.34(9):2154-7.
    [195]Sandven P. Detection of fluconazole-resistant Candida strains by a disc diffusion screening test[J].J Clin Microbiol,1999.37(12):3856-9.
    [196]Coleman DC, Moran GP, McManus BA, et al. Mechanisms of antifungal drug resistance in Candida dubliniensis[J].Future Microbiol,2010.5(6):935-49.
    [197]National Committee for Clinical Laboratory Standards.2002. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard. NCCLS document M27-A2, National Committee for Clinical Laboratory Standards, Wayne, PA.
    [198]Rex JH, Rinaldi MG, Pfaller MA. Resistance of Candida species to fluconazole[J].Antimicrob Agents Chemother,1995.39(1):1-8.
    [199]Lamfon H, Porter SR, McCullough M, et al. Susceptibility of Candida albicans biofilms grown in a constant depth film fermentor to chlorhexidine, fluconazole and miconazole:a longitudinal study[J].J Antimicrob Chemother,2004.53(2):383-5.
    [200]Donlan RM, Costerton JW. Biofilms:survival mechanisms of clinically relevant microorganisms[J].Clin Microbiol Rev,2002.15(2):167-93.
    [201]胡辉,张永信.白色念珠菌生物被膜形成和由其产生的耐药机制[J].国外医药抗生素分册,2008.29(1):1-6.
    [202]Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance[J].J Bacteriol,2001.183(18):5385-94.
    [203]Costa-de-Oliveira S, Pina-Vaz C, Mendonca D, et al. A first Portuguese epidemiological survey of fungaemia in a university hospital[J].Eur J Clin Microbiol Infect Dis,2008.27(5):365-74.
    [204]Palmeira-de-Oliveira A, Salgueiro L, Palmeira-de-Oliveira R, et al. Anti-Candida activity of essential oils[J].Mini Rev Med Chem,2009.9(11):1292-1305.
    [205]Mardh PA, Rodrigues AG, Genc M, et al. Facts and myths on recurrent vulvovaginal candidosis--a review on epidemiology, clinical manifestations, diagnosis, pathogenesis and therapy[J].Int J STD AIDS, 2002.13(8):522-39.
    [206]Hamad M, Muta'eb E, Abu-Shaqra Q, et al. Utility of the oestrogen-dependent vaginal candidosis murine model in evaluating the efficacy of various therapies against vaginal Candida albicans infection[J].Mycoses,2006.49(2):104-8.
    [207]Robinson JR, Bologna WJ. Vaginal and reproductive system treatments using a bioadhesive polymer[J] Journal of Controlled Release,1994.28:87-94.
    [208]朱道银.念珠菌微观生态学[J].实用妇产科杂志,2000.(04):171-172.
    [209]武忠弼.病理学第四版[M].北京:人民卫生出版社,1996.
    [210]Intini G, Aguirre A, Bobek LA. Efficacy of human salivary mucin MUC7-derived peptide and histatin 5 in a murine model of candidiasis[J].Int J Antimicrob Agents,2003.22(6):594-600.
    [211]杨甫传.常用中药广藿香和胡黄连药物代谢动力学研究[D].北京:中国协和医科大学,2004.
    [212]Lai Y, Cai Z. In vitro metabolism of hydroxylated polybrominated diphenyl ethers and their inhibitory effects on 17beta-estradiol metabolism in rat liver microsomes[J].Environ Sci Pollut Res Int,2012.19(8): 3219-27.
    [213]陈晓红,赵永纲,姚删珊,等.超快速液相色谱-串联质谱法测定黄酒和葡萄酒中的9种防腐剂和甜味剂[J].色谱,2011.(12):1147-1154.
    [214]Zhang NR, Yu S, Tiller P, et al. Quantitation of small molecules using high-resolution accurate mass spectrometers-a different approach for analysis of biological samples[J].Rapid Commun Mass Spectrom, 2009.23(7):1085-94.
    [215]Chen H, Li Y, Wu X, et al. LC-MS/MS determination of pogostone in rat plasma and its application in pharmacokinetic studies[J].Biomed Chromatogr,2013.
    [216]Santa T. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry[J].Biomed Chromatogr,2011.25(1-2):1-10.
    [217]彭绍忠.广藿香抗甲型流感病毒有效成分筛选及评价研究[D].广州:广州中医药大学,2011.
    [218]Danner RL, Elin RJ, Hosseini JM, et al. Endotoxemia in human septic shock[J].Chest,1991.99(1): 169-75.
    [219]冼彦芳,索娟,黄晓丹,等.精制藿胆方及拆方抗炎药理作用研究[J].中国实验方剂学杂志,2007.(04):54-56.
    [220]Jeong JB, Shin YK, Lee SH. Anti-inflammatory activity of patchouli alcohol in RAW264.7 and HT-29 cells[J].Food Chem Toxicol,2013.55:229-33.
    [221]Beck IM, Vanden Berghe W, Vermeulen L, et al. Crosstalk in inflammation:the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases[J].Endocr Rev,2009.30(7):830-82.
    [222]Schetter AJ, Heegaard "NH, Harris CC. Inflammation and cancer:interweaving microRNA, free radical, cytokine and p53 pathways[J].Carcinogenesis,2010.31(1):37-49.
    [223]Yanai A, Maeda S, Shibata W, et al. Activation of IκB Kinase β and NF-KB Is Essential for Helicobacter pylori-Induced Chronic Gastritis in Mongolian Gerbils[J].Infection and immunity,2008.76(2):781-787.
    [224]Rau TT, Rogler A, Frischauf M, et al. Methylation-Dependent Activation of CDX1 through NF-κB:A Link from Inflammation to Intestinal Metaplasia in the Human Stomach[J].The American journal of pathology, 2012.181(2):487-498.
    [225]Nenci A, Becker C, Wullaert A, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation[J].Nature,2007.446(7135):557-61.
    [226]Zhou Y, Wang Q, Mark Evers B, et al. Oxidative stress-induced intestinal epithelial cell apoptosis is mediated by p38 MAPK[J].Biochemical and biophysical research communications,2006.350(4):860-865.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700