用户名: 密码: 验证码:
面向化学非平衡流的CFD并行计算技术和大规模并行计算平台研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸气式高超声速技术是指飞行马赫数大于5、以吸气式发动机及其组合发动机为动力、在大气层和跨大气层中实现高超声速远程飞行的飞行器技术。吸气式高超声速技术的核心是超燃冲压发动机技术和机体/推进一体化飞行器技术。吸气式高超声速飞行包含许多复杂的物理、化学现象,大幅度增加了地面试验的费用、周期和难度。随着计算技术的发展,计算流体力学(CFD)可以在相对较短的时间内完成流动参数的分析研究,提供流场的详细特征,弥补风洞试验的局限性,因此在超燃冲压发动机的设计和性能研究方面得到了广泛的应用。与此同时,超燃冲压发动机流场模拟对计算流体力学也提出了更高的要求,超燃冲压发动机流场模拟涉及到各种组分方程、化学非平衡效应、湍流方程、输运系数的计算等,其计算量相当大,一般都需要在高性能并行计算机系统上进行大规模并行计算。
     实际的CFD并行计算必须考虑串并行结果是否一致、大规模并行时的并行效率以及并行可扩展性等问题,在功能扩充方面要求CFD计算支持多种物理化学模型、差分格式和隐式求解方法并能适用于不同的网格体系。本文主要从以上几个方面对超燃冲压发动机流场模拟的CFD并行计算进行了研究,针对每个方面均提出了创新的见解,开发了主要应用于超燃冲压发动机流场模拟的面向化学非平衡流的三维大规模并行软件平台AHL3D。
     在大规模并行技术方面,本文提出了一种静态负载平衡策略,采用一维优先的规则分块算法和基于自动重分块的不规则分块算法分别处理大规模和中小规模并行的问题。为保证复杂计算区域问题的通信效率和正确性,将通信分为三步:面通信、物理边界面棱通信、通信边界面棱通信,保证了通信时点对的对应关系,避免了复杂拓扑结构时某些特殊网格点的重复通信和通信的奇异性。
     将流水线并行技术与CFD相结合,提出了一种基于流水关系有向图的多维流水线并行实现算法,根据各求解子域的邻接几何关系和变量依赖关系分析,自动判断流水线并行是否可行,自动确定流水方向和流水维数,实现了复杂计算区域问题不同并行规模串并行结果的完全一致。
     实现了对接网格、错位拼接网格和重叠网格的多块并行计算。提出了一种“迷路算法”应用于重叠网格“挖洞”,解决了其它算法难以处理凹型包络面的问题,算法的健壮性较好,实现简单,而且算法计算复杂度低,计算效率高。在多层次嵌套重叠情况下的通信时序控制方面,提出了重叠关系有向图避免通信等待和重复插值。
     在大规模线性代数方程组的迭代求解方法上,提供了三种Krylov子空间迭代
Airbreathing hypersonic technology studies the technology of flight vehicle for long-distance hypersonic flight in atmosphere layer or trans-atmosphere layer at flight Mach number above 5. The core of airbreathing technology is scramjet and airframe/propulsion integrated hypersonic flight vehicle. Airbreathing hypersonic flight involves a lot of complicated physical and chemical phenomena, which impose high requirements on ground testing. These requirements significantly increase the expense, period and difficulty of ground testing. With the development of computing technology, Computational Fluid Dynamics (CFD) can complete the analysis of flow parameters in a relatively shorter time, provide the detailed characteristics of flow field, and remedy the deficiency of wind tunnel and measurements, and has been widely used in the design and performance research of scramjet. Meanwhile, the scramjet flowfield simulation needs huge calculation arising from the computation of various special equations, chemical non-equilibrium flow, turbulence flow equations and transport coefficients so that it must be performed on high performance parallel computer systems by massively parallel computation.
    The real-world CFD parallel computation must take several important problems into accounts, such as the problem of whether the parallel result is consistent with sequential result, the parallel efficiency problem of massive parallel computing and the parallel scalability problem, etc. Furthermore, it should not only support various physical & chemical models, differential format and implicit solution method but also has the ability of dealing with different grid types. This dissertation puts forward some innovational researches on these aspects and develops a high efficient 3D parallel computing software platform AHL3D which is mainly used in non-equilibrium flow fields simulation of scramjet.
    On the aspect of massive parallel computation, the dissertation deploys the 1D-first regular partition algorithm and the irregular partition algorithm based on auto repartition to respectively handle the problems of large-scale and medium & small scale parallel computing. To ensure communication efficiency and data validity for complicated computation area problem, the communication is divided into three steps: dummy boundary communication, physical boundary edge communication and dummy boundary edge communication. This strategy avoids the communication singularity and repetition of some special grid points.
    To keep the consistency of parallel result with sequential result, a kind of pipeline technology is applied in the CFD parallel computation. A multi-dimensional pipelined parallel solution is supplied which is based on pipelined relationship directional graph.
引文
[1].王承尧,王正华,杨晓辉编著.计算流体力学及其并行算法.国防科技大学出版社,2000
    [2].朱自强等.应用计算流体力学.北京航空航天大学出版社,1998
    [3]. John J. Bertin, Russel M. Cummings. Fifty years ofhypersonics: where we've been, where we're going, progress in aerospace sciences, vol.39, 2003, pp.511-536
    [4]. William H. Heiser, David T. Pratt. Hypersonic airbreathing propulsion. Washington DC, AIAA, 1994
    [5]. http://www.aerosft.com
    [6]. Charles E. Cockrell Jr., Walter C. Engelund, Robert D. Bittner, et al. Intgerated aeropropulsive computational fluid dynamics methodology for the Hyper-X flight experiment. AIAA paper No. 2000-4010, 2000
    [7]. Frederic Thivet, Doyle D. Knight, Alexander A. Zheltovoldov and Alexander I. Maksimov. Some insights in turbulence modeling for crossing-shock-wave/ boundary-layer interactions. AIAA paper No. 2000-0131, 2000
    [8]. http://vulcan-cfd.larc.nasa.gov/index.html
    [9]. D.K. Litton, J. R. Edwards and J. A. White. Algorithmic enhancements to the VULCAN Navier-Stokes solver. AIAA paper No. 2003-3979, 2003
    [10]. http://www.grc.nasa.gov/WWW/wind
    [11]. C. C. Nelson, et al. Recent improvements to the WIND(-US) code at AEDC. AIAA paper No. 2004-527, 2004
    [12]. R.H. Bush, G.D. Power and C. E. Towne. WIND: The production flow solver of the NPARC alliance. AIAA paper No. 1998-0935,1998
    [13]. John W. Slater, John M. Abbott, Richard H. Cavicchi. Validation of WIND for a series of inlet flows. AIAA paper No. 2002-0669, 2002
    [14]. http://www.onera.fr/dsna-en/msdmsdh/msd.html
    [15]. Emmanuel Dufour. Computational analysis of a kerosene-fuelled scramjet. AIAA paper No. 2001-1817, 2001
    [16]. Dmitry Davidenko, et al.. Numerical simulation of hydrogen supersonic combustion and validation of computational approach. AIAA paper No. 2003-7033, 2003
    [17]. http://fmad-www.larc.nasa.gov/~rumsey/CFL3D/cfl3d.html
    [18]. R.J. Ungewitter, J. L. Papp and S.M. Dash. High fidelity design oriented scramjet propulsive flowpath analysis. AIAA paper No. 2001-3203, 2001
    [19]. http://www.asm-usa.com/index.html
    [20]. http://www.cerfacs. fr/cfd
    [21].郑忠华.双模态冲压发动机燃烧室流场的大规模并行计算及试验验证[博士学位论文],国防科学技术大学,长沙,2003
    [22]. Yuanyuan He, Jialing Le, Hongli Ni. Numerical Research of Airframe/Engine Integrative Hypersonic Vehicle. International Conference on the Methods of Aerophysical Research, 2004, Novosibrisk Russia
    [23].刘陵等编著.超声速燃烧与超声速燃烧冲压发动机.西北工业大学出版社
    [24].刘欧子,胡欲立等.超声速燃烧凹槽火焰稳定的研究动态.推进技术,24(3),2003年6月
    [25].徐胜利,刘国昭,曹春丽,黄生洪.煤油两相超燃模型及初步的流场数值模拟.第十一届全国激波与激波管学术会议,2004年9月,四川绵阳
    [26].张鹏,俞刚.超燃燃烧室一维流场分析模型的研究.2003年高超技术研讨会,北京
    [27]. Shibin Luo, Hua Li, Zhenguo Wang. Application of Multidisciplinary Design Optimization in Hypersonic Vehicle. ICHP-2003-18, 2003
    [28].丁猛,余勇,梁剑寒等.碳氢燃料超燃冲压发动机点火技术研究.推进技术,25(6),2004
    [29]. Marcel Vinokur. An analysis of finite-difference and finite-volume formulations of conservation laws. Journal of computational physics, vol.81, pp.1-52, 1989
    [30]. J.H. Ferziger, M. Peric Computational methods for fluid dynamics. Springer-Verlag Berlin Heidelberg, 1996
    [31]. Obayashi S, Kuwahara K. LU Factorization of an Implicit Scheme for the Compressible NS Equations. AIAA paper No. 84-1670,1984
    [32]. Yoon S, Jameson A. An LU-SSOR Scheme for the Euler and Navier-Stokes Equations. NASACR-179556, 1984
    [33]. Jameson A, Yoon S. LU Implicit Scheme with Mutiple Grid for the Euler Equation. AIAA paper No. 86-0105,1986
    [34]. Jack Dongarra, etc. Sourcebook of Parallel Computing. Elsevier Science, 2002
    [35]. Michael J. Quinn, etc. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, 2004
    [36]. Anderson W K, Thomas J L, Van Leer B. A Comparison of Finite Volume Flux Vector Splitting for the Euler Equations. AIAA paper No. 85-0122,1985
    [37]. Antony Jameson. A perspective on computational algorithms for aerodynamic analysis and design. Progress in Aerospace Sciences, vol.37, 2001, pp. 197-243
    [38].黄铠,徐志伟.可扩展并行计算技术、结构与编程.机械工业出版社.2000.5
    [39]. Wilkinsion B.,Allen M.. Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers. Prentice Hall, 2005
    [40]. T. I-P. Shih. Overset Grids: Fundamentals and Practical Issues. AIAA paper No. 2002-3259, 20th AIAA Applied Aerodynamics Conference 24-26 June 2002, St. Louis, Missouri
    [41].刘鑫,陆林生.重叠网格预处理技术研究.计算机工程应用.2006,42(1):23~26
    [42]. Stuart E. Rogers and Karlin Roth,etc. Advances in Overset CFD Progress Applied to Subsonic High-lift AirCraft. AIAA paper No. 2000-4216, 18th AIAA Applied Aerodynamics Conference 14-17 August 2000 / Denver, Colorado
    [43]. Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston, MA, 1996
    [44]. Jun Zhang. Preconditioned Krylov subspace methods for solving nonsymmetric matrices from CFD applications. Comput. Methods Appl. Mech. Engrg. 189(2000), 825~840
    [45].吕晓斌,朱自强.跨、超音速流动的区域分解方法与并行算法.航空学报,2000,21(4).-322-325
    [46].况正谦,傅游.CFD程序自动并行化的相关性分析和通信策略.西北工业大学学报.2000,18(3).341-344
    [47].楼世博等.图论及其应用.人民邮电出版社.1982.7
    [48]. B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. on Scientific Computing, 16(1995),452-469
    [49]. G.L. Miller, S.H. Teng, S.A. Vavasis. A unified geometric approach to graph separators, in: Proceedings of the Symposium on Foundations of Computer Science,1991,538-547
    [50]. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. on Scientific Computing, 20(1998), 359-392
    [51]. G. Karypis and V. Kumar. A parallel algorithm for multilevel partitioning and sparse matrix ordering. J. Parallel Distribute Comput. 48(1998),71-85
    [52]. Anthony T. Chronopoulos, Daniel Grosu. An efficient 3D grid based scheduling for heterogenous systems. J. Parallel Distrib. Comput. 63(2003),827-837
    [53].郑哲明,程建钢.有限元并行计算中网格自动区域划分的研究.工程力学,119(6),2002,54-57
    [54]. Ytterstrom, A. MB-Split A structured mesh partitioning tool for load balancing on MIMD-Computers. Proceedings of the Second ECCOMAS Conference on Numerical Methods in Engineering, September 1996, Paris, France, 803-809
    [55].刘鑫,陆林生.数据不规则问题并行计算的负载平衡策略的研究.计算机应用.2004,24(10):108~111
    [56].莫则尧.实用的并行程序性能分析方法.数值计算与计算机应用.2000年12月
    [57]. J. U. Schl uter_, X. Wu, E. v. d. Weide. Multi-Code Simulations: A Generalized Coupling Approach. AIAA paper No. 2005-4997, 17th AIAA CFD Conference, June 2005, Toronto, ON
    [58]. A.M. Wissink and R. Meakin. Computational fluid dynamics with adaptive overset grids on parallel and distributed computer platforms, in: Proc. Intl. Conf. on Parallel and Distributed Processing Techniques and Applications,(1998) 1628-1634
    [59].陆林生,董超群等.并行程序概念设计方法的研究.计算机学报.2003.9,26(9),1086-1093
    [60]. M. EHTESHAM HAYDER, CONSTANTINOS S. IEROTHEOU, AND DAVID E. KEYES. Three Parallel Programming Paradigms: Comparisons on An Archetypal PDE Computation. Technical report, ICASE, September 1999
    [61]. M. Yarrow and R. Van der Wijngaart. Communication Improvement for the LU NAS Parallel Benchmark. NAS Technical Report NAS-97-032, NASA Ames Research Center, Moffett Field, CA, 1997
    [62]. Michael Frumkin. Data Flow Pattern Analysis of Scientific Applications. Intel Corporation. February 28, 2005
    [63].张林波.关于采用流水线方式进行一簇递推关系式的并行计算.数值计算与计算机应用,1999,20(3):184-191
    [64].莫则尧,傅连祥,阳述林.非结构网格上求解中子输运方程的并行流水线S_n扫描算法.计算机学报.2004,27(5):587-595
    [65].李晓梅,蒋增荣等著.并行算法.湖南科学技术出版社,1992年8月
    [66]. K. Ajmani, W. F. Ng, M. S. Liou. Preconditioned Conjugate-Gradient methods for the Navier-Stokes equations. Journal of Computational Physics., 1994,110,1:68-81
    [67]. Jocelyne Erhel. A parallel GMRES version for general sparse matrices. Electronic Transactions on Numerical Analysis. 1995,3:160-176
    [68]. M.J. Djomehri, R. Biswas, R.F. Van derWijngaart, and M. Yarrow. Parallel and distributed computational fluid dynamics: Experimental results and challenges, in: Proceedings 7th International Conference on High Performance Computing(Bangalore, India, 2000) 183-193.
    [69]. A.M. Wissink and R. Meakin. Computational fluid dynamics with adaptive overset grids on parallel and distributed computer platforms, in: Proceedings International Conference on Parallel and Distributed Processing Techniques andApplications(Las Vegas, NV, 1998) 1628-1634.
    [70]. Norman E.Suhs, Stuart E.Rogers. PEGASUS 5: An Automated Pre-Processor For Overset-Grid CFD. AIAA paper No. 2002-3186,June,2002
    [71]. Robert L. Meakin. Object X-Rays for Cutting Holes in Composite Overset Structured Grids. AIAA paper No. 2001-2537, June 2001
    [72].庞宇飞,洪俊武.交点判别法在重叠网格中的应用.CARDC计算空气动力学研究所2004青年科技报告会,中国绵阳,2004.06
    [73].李亭鹤,阎超,李跃军.重叠网格技术中割补法的研究与改进.北京航空航天大学学报,vol.3,2005
    [74].李亭鹤.重叠网格自动生成方法研究[博士学位论文].北京航空航天大学,2004年
    [75]. CFD Research Corporation. CFD-FASTRAN Theory Manual Version 2002
    [76]. C.Y. Lee. An Algorithm For Path Connections And Its Applications. IRE Trans on Electronic Computers, EC_10(3),1961,346-365
    [77]. Jonathan B.Rosenberg. Geographical Data Structures Compared: A Study of Data Structures Supporting Region Queries. IEEE Transactions on Computer-aided Design, 1985,CAD-4(1),53-68
    [78].沈永欢,梁在中,许履珊等.实用数学手册.科学出版社,1992年8月
    [79]. M.J. Djomehri and H. Jin. Hybrid MPI+OpenMP programming of an overset CFD solver and performance investigations. Technical Report NAS 02-002,NASA Ames Research Center, Moffett Field, CA, 2002
    [80]. J. Hauser, M. Spel, J. Muylaert, and R. Williams. ParNSS: An efficient parallel Navier-Stokes solver for complex geometries, in: Proceedings 25th AIAA Fluid Dynamics Conference(Colorado Springs, CO, 1994) Paper No. 1994-2263
    [81]. R. Pankajakshan and W.R. Briley. Parallel solution of viscous incompressible flow on multi-block structured grids using MPI. in: Proceedings Parallel Computational Fluid Dynamics Conference(Pasadena, CA, 1995) 601-608
    [82]. M. Jahed Djomehri, Rupak Biswas. Load Balancing Strategies for Multi-Block Overset Grid Applications NAS Technical Report NAS-03-007, NASA Ames Research Center, Moffett Field, CA, 2003
    [83]. M. Jahed Djomehri, Rupak Biswas. Performance Enhancement Strategies for Multi-Block Overset Grid CFD Applications. NAS Technical Report NAS-03-011, NASA Ames Research Center, Moffett Field, CA,2003
    [84]. Nathan C. Prewitt. Parallel Computing of Overset Grids for Aerodynamic Problems with Moving Objects[D]. University of Florida, 1999
    [85].李庆扬,关治,白峰杉.数值计算原理.清华大学出版社.2000年
    [86].蔡大用,白峰杉.现代科学计算.科学出版社.2000年
    [87]. Richard Barrett, Michael Berry. Templates for the Solution of Linear Systems Building Blocks for Iterative Methods. Philadelphia: SIAM, 1994
    [88]. Ajmani K. and Liou M.. Implicit Conjugate Gradient Solvers On Distributed Memory Architecture. AIAA paper No. 1995-1695, 1995
    [89]. Ajmani K.Ng W and Liou M. Preconditioned Conjugate Gradient Methods for the Navier-Stokes Equations. Journal of Computational Physics,vol 110, 68-81,1994
    [90]. Saad Y and Schultz M.H.. GMRES: A Generalized Minimal Residual Algorithm For Solving Non-symmetric Linear Systems. SIAM J. Sci. Stat. Comput. Vol 7, July 1986
    [91]. P. Geuzaine I. Lepot F. Meers and J.A. Essers. Multilevel Newton-Krylov Algorithms for Computing Compressible Flows on Unstructured Meshes. AIAA paper No. 1999-3341,1999
    [92]. J. Hauser, R.D. Williams, etc. A Newton-GMRES Method for the Parallel Navier-Stokes Equations. Proceedings of CFD95, Pasadena, CA
    [93]. R.D. da Cunha and T. Hopkins. A parallel implementation of the restarted GMRES iterative algorithm for nonsymmetric systems of linear equations. Adv. Comp. Math., 2,1994, 261-277
    [94]. Lehr, H.F.. Experiments on shock-induced combustion. Aeronautica Acta, Vol.17, 589-597, 1972
    [95].赵慧勇.超燃冲压整体发动机并行数值研究[博士学位论文].中国空气动力研究与发展中心,四川绵阳,2005
    [96]. Gary S. Settles, Irwin E. Vas, and Seymour M. Bogdonoff. Details of a shock-seperated turbulent boundary layer at a compression comer. AIAA Journal vol.14, No.12 December 1976, also in AIAA paper paper No. 1976-164
    [97]. J. Delery and A. G. Panaras. Shock-wave/ Boundary layer interactions in high Mach number flows. In Hyoersonic experimental and computational capability, improvement and validation, volume 1., AGARD AR 319, 1996
    [98]. http://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing.html
    [99].都志辉.高性能计算并行编程技术—MPI并行程序设计.清华大学出版社.2001年8月
    [100].莫则尧,袁国兴.消息传递并行编程环境MPI.科学出版社.2001年11月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700