用户名: 密码: 验证码:
Stewart结构六维大力传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电、造船、化工、国防等领域的大型构件精确高效制造迫切需要巨型重载操作装备。随着对操作能力和操作性能要求的进一步提高,要求巨型重载操作装备具备顺应控制和多自由度协调控制的能力,而状态测量与反馈作为精确运动控制的前提,成为亟待解决的关键技术难题。尤其是为了避免因约束冲突造成的载荷剧增或夹持失效,要求对工件变形所造成的位移具有力顺应性,因此研究极端环境下的六维大力测量及力反馈具有重要的意义。然而,目前对于100kN至100MN量级的大力只能进行单维测量,现有的六维力传感器仅局限于小量程力值的测量。因此,解决大承载能力和多维力测量之间的矛盾,成为实现六维大力测量的关键。
     本论文结合Stewart结构力雅克比矩阵和大力并联分载原理,提出了一种用于巨型重载操作装备六维大力测量的新方法。在ANSYS环境下建立了Stewart结构六维大力传感器的模型,并对其进行了结构静力分析,得到了传感器六个测量杆的受力情况,与分载前的理论受力值进行了比较,验证了传感器的分载效果。通过对传感器模型进行模态、谐响应等结构动力学分析,得到了传感器的前六阶振型和固有频率,以及传感器在X、Y、Z方向的谐位移情况。
     论文完成了Stewart结构六维大力传感器的结构设计、制造装配等工作。采用六对预紧螺栓和滑块实现传感器的多点局部预紧,保证了六个测量杆的预紧力相同;上下测量杆均采用螺纹联接,使测量杆长度可调,满足了传感器复杂工况的安装要求;上下平台与测量杆采用球头与锥形孔联接,保证了测量杆的二力杆性质;传感器与机械手手臂之间采用胀紧联接套联接,保证了大力并联分载和力传递的效果。最后,在专用标定加载装置上对研制的Stewart结构六维大力传感器进行了静态标定实验,得到了传感器的标定曲线和实验解耦矩阵。
     通过静力分析,可知所设计的传感器具有良好的分载效果,验证了六维大力并联分载测量方法的可行性;动力学分析结果表明研制的传感器动态特性良好,满足传感器固有频率大于1000Hz的设计要求;静态标定实验表明传感器具有良好的测量精度。本论文的研究工作为巨型重载操作装备的快速高精度协调控制提供了前提条件。
The giant heavy operating equipment is urgently needed in the high-efficiency and high-precision manufacturing of huge parts, which are used as key components in the field of nuclear power, ship building, chemical industry and national defense. In order to meet the higher operating ability and performance, the giant heavy equipment operator should have the ability of conformable control and coordinate control. So as the basic of precision motion control, the measurement and its feedback are becoming the key technology to be solved. In particular, in order to avoid conflict caused by the increased loading or invalid holding, the giant heavy operating equipment should have the ability of the force conformance according to the deformation of the huge parts. Thus, the study of the six-axis heavy force measurement as well as its feedback technology is becoming more and more important. Nowadays, the heavy force between 100kN and 100MN can be measured, but can only be realized on the single axis, and the existing six-axis measurement is also limited to small force. In this paper, we focus on the problem between the six-axis force measurement and the heavy force measurement to do some research.
     This paper firstly analyses the force Jacques matrix based on the Stewart structure and the theory of heavy force division, then brings out a new method of the six-axis heavy force measurement used on the giant heavy operating equipment. We use Finite Element Method to establish the model of the Stewart structure six-axis heavy force sensor, and then do some static structure analysis, and get the divided force on the six measuring poles. Compared with the undivided situation, the results show that the Stewart structure six-axis heavy force sensor has a good effect of force division. Through the modal analysis, we get the prime six formations and natural frequencies. Through the harmonic analysis, we input harmonic signals with different frequencies, and get the X, Y, Z harmonic displacement of the Stewart structure six-axis heavy force sensor.
     We design and assemble the Stewart structure six-axis heavy force sensor. During this period, we take the following innovations: using six pairs of bolts and sliders to realize the partial pre-loading; using ball and cone-shaped hole connection to realize the single-loading character of the measuring poles; using threaded connection to meet the length of the measuring pole adjustable; using the wedge-shaped device to realize the rigid connection between the sensor and the robot arm. Finally, we use our special calibration device to finish the static calibration of the Stewart structure six-axis heavy force sensor, and get the calibration curves and decoupled matrix based on experiment.
     The result of the static analysis shows the sensor has a good ability of force dividing, and proves the feasibility of the Stewart structure six-axis heavy force measurement. The dynamic analysis shows the sensor has a good dynamic performance, and its natural frequency is beyond the required 1000Hz. The calibration experiments show the sensor has good measurement accuracy. The research will give some technical support to the high-precision coordinate control of the giant heavy operating equipment.
引文
[1]孙宝元,杨宝清.传感器及其应用手册.北京:机械工业出版社,2004.
    [2]侯国章.测试与传感技术.哈尔滨:哈尔滨工业大学出版社,1998.
    [3]杨帮文.最新传感器实用手册.北京:人民邮电出版社,2004.
    [4]黄真.空间机构学.北京:机械工业出版社,1991.
    [5]Zhang M R.Study on six-degree-of-freedom simulation for docking.Space flight Control,1999(1):70-74.
    [6]Diddens D,Reynaerts D,Van Brussel H.Design of a ring-shaped three-axis microforce/torque sensor.Sensor and Actuator A:Physical,1995,46(1):225-232.
    [7]Folchi,George Arthur,Shelton et al.Six degree of freedom force transducer for a manipulator system.US,3948093.1975-06-30.
    [8]P.C.Watson,S.H.Drake,Pedestal Wrist.Force Sensors for Industrial Assembly.Proc.of the 5th Int.Symp.on Industrial Robots,Chicago,1975:501-511.
    [9]H.V.Brussel,H.Belien,H.Thielemans.Force Sensing for Advanced Robot Control.Proc.of the 5th Int.Conf.On Robot Vision and Sensory Controls,Bedford,England,1980:279-288.
    [10]E.Kroll.Decoupling Load Components an Improving Robot Interfacing with an Easy-to-use 6-axis Wrist Force Sensor.Theory of Machines and mechanisms,Proc.of the 7th world Congress,Seville,1986:327-331.
    [11]Kegon.Robot Technology.London:page Ltd,1983.
    [12]J.Schott.Tactile Sensor with Decentralized Signal Conditioning.The 9th IMEKO World Congress,Beilin,1982:138-143.
    [13]Paolo Dario.Sensors and Sensory Systems for Advanced Robots.Germany:Springer-Geidelberg,1988.
    [14]T.Yoshikawa,T.Miyazaki.A Six-axis Force Sensor with Three-dimensional Cross-shape Structure.Proc.of IEEE Conf.on Robotics and Automation,Scottsdale,1989,(1):249-255.
    [15]M.Uchiyama,E.Bayo,E.Palma-Villalon.A Systematic Design Procedure to Minimize a Performance Index for Robot Force Sensors.Journal of Dynamic Systems Measurement and Control.1991,1(113):388-394.
    [16]E.Bayo,J.R.Stubbe.Six-axis Force Sensor Evaluation and a new Type of Optimal Frame Truss Design for Robotic Applicatons.Journal of Robotic Systems,1989,6(2):191-208.
    [17]Y.Hatamum.A Ring-Shape 6-axis Force Sensor and Its Application.Int.Conf.on Advanced Mechatronics,Tokyo,Japan,1989:647-652.
    [18]R.Little.Force/Toqrue Sensing in Robotic Manufacturing Sensors,The Journal of Machine Perception.1992,9(11):346-348.
    [19]M.Kaneko.Twin-Head Six-axis Force Sensors.IEEE Transactions on Robotics and Automation.1996,12(1):146-154.
    [20]S.Hirose,K.Yoneda.Robotic Sensors with Photo Detecting Technology.Proc.Of the 20th ISIR,Tokyo,1989:271-278.
    [21]S.Hirose,K.Yoneda.Development of Optical 6-axis Force Sensor and its Signal Calibration Considering Non-Linear Interfence.Proc.of IEEE Int.Conf.on Robotics and Automation,Scottsdale,1989,(1):45-63.
    [22]黄心汉.一种非径向三梁结构六维力传感器弹性体及其优化设计.机器人,1992,14(5):28-30.
    [23]X.B.Chen,Z.J.Yuan.A Study on Six-axis Wrist Force Sensors for Robotics.Proc.of the Seventh International Manufacturing Conf,China,1995:124-126.
    [24]熊有伦.机器人学.北京:机械工业出版社.1993.
    [25]胡建元,黄心汉.机器人力传感器研究概括.传感器技术,1993(4):36-37.
    [26]黄心汉.机器人腕力传感器白动标定方法.自动化仪表,1992,14(5):79-83.
    [27]D.R.Kerr.Analysis,Properties and Design of a Stewart-Platform Transducer.J.Mech.Transm.Autom.Design,1989,1(11):25-28.
    [28]C.C.Ngnyen,S.S.Antrazi,Z.L.Zhou et al..Analysis and Experimentation of a Stewart Platform-based Force}I'orque Sensor.International Journal of Robotics and Automation.1992,7(3):133-140.
    [29]C.Ferraresi,S.Pastorelli,M.Sorb et al.Static and Dynamic Behavior of a High Stiffness Stewart Platform-based Force/Torque Sensor.Journal of Robotic Systems.1995,12(12):883-893.
    [30]T.A.Dwarakanath,Bhaskar Dasgupta,T.S.Mruthyunjaya.Design and Development of a Stewart Platform based Force-Torque Sensor.Mechatronics,2001,(11):793-809.
    [31]陈滨.机器人手腕测力装置.机械工程学报,1988,24(2):83-87.
    [32]H.R.Wang,F.Gao,Z.Huang.Design of 6-axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy.Chinese Journal of Mechanical Engineering,1998,11(3):217-222.
    [33]金振林,张晓辉,高峰.Stewart型指尖力传感器结构尺寸对其灵敏度的影响研究.计量学报,2004(7):262-265.
    [34]M.Uchiyama,K.A.Hakomori.Few Considerations on Structure Design of Force sensors.Proceedings of the Third Annual Conf,Japan Robotics Society,1985:17-18.
    [35]E.Bayo,J.R.Stubbe.Six-axis Force Sensor Evaluation and a new Type of Optimal Frame Truss Design for Robotic Applicatons.Journal of Robotic Systems,1989,6(2):191-208.
    [36]A.Bicchi.A Criterion for Optimal Design of Multi-axis Force Sensors,Robotics and Autonomous Systems,1992,10(4):269-286.
    [37]D.Diddens,D.Reynaerts,H.Van Brussel.Design of a Ring-shaped Three-axis Micro Force/Torque Sensor.Sensors and Actuators,1995,A 46-47:225-232.
    [38]沈久珩.机械工程测试技术.北京:冶金工业出版社,1988.
    [39]沈久珩.大力测量技术的新进展—附着式超轻型大力传感器.中国工程科学,2001,3(10):22-27.
    [40]张隆安,胡先举.大吨位预应力圆筒式测力传感计的研制和应用.长江科学院院报,1991(3):43-51.
    [41]朱晔,周伯伟,顾荣等.关于轮辐式剪切力传感器的研制与设计.机械设计与制造工程,2002(4):87-89.
    [42]黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社.2005.
    [43]刘庆潭.材料力学.北京:机械工业出版社.2003.
    [44]刘相新,孟宪颐.ANSYS基础与应用教程.北京:科学出版社.2006.
    [45]徐洋,赵言正,韩俊伟等.用于航海模拟的Stewart平台的有限元分析与优化设计.机械科学与技术,2003,22(3):450-452.
    [46]李晓蕾,俞德孚,孙逢春.机械振动基础.北京:北京理工大学出版社.2002.
    [47]柴山,吕凤军,孙义冈.计算汽轮机叶片动力学的谐响应分析法.汽轮机技术,2002,44(5):267-269.
    [48]张宪,何洋,钟江.疲劳症动试验台的模态与谐响应分析.机械设计与制造,2008,4.12-14.
    [49]李红云,赵社戌,孙雁.ANSYS 10.0基础及工程应用.北京:机械工业出版社.2008
    [50]孙宝元,王吉军,钱敏.压电石英晶片灵敏度分布规律及其跟踪检测.大连理工大学学报,1990,30(1):59-64.
    [51]刘正士.机器人六分量腕力传感器加载试验台系统误差分析.计量学报,1998,19(1):44-50.
    [52]戴恒震,孙宝元,李万全等.一种多功能测力仪标定加载器.现代机械,2003,6:45-46.
    [53]孙宝元,张贻恭.压电石英力传感器及动态切削测力仪.北京:计量出版社.1985.
    [54]孙宝元,钱敏,张军.压电石英传感器与测力仪研发回顾与展望.大连理工大学学报.2001,41(2):127-134.
    [55]黄长艺,严普强.机械工程测试技术基础.北京:机械工业出版社.1984.
    [56]吴涓,曹效英,宋爱国等.Matlab在六维腕力传感器系统标定中的应用.传感器技术学报.2001,3:181-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700