用户名: 密码: 验证码:
增温对川西亚高山针叶林不同光环境下几种幼苗生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20世纪升高了0.6℃,并预测在本世纪将上升1.4-5.8℃。气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地和人工云杉林下作为目前该区人工造林和森林更新的两种重要生境,二者截然不同的光环境对亚高山针叶林不同物种更新及森林动态有非常重要的影响。
     本文以青藏高原东部亚高山针叶林几种主要森林树种为研究对象,采用开顶式增温法(OTCs)模拟气候变暖来研究增温对生长在两种不同光环境下(全光条件和林下低光环境)的几种幼苗早期生长和生理的影响,旨在从更新角度探讨亚高山针叶林生态系统不同树种对气候变暖在形态或生理上的响应差异,其研究结果可在一定程度上为预测气候变暖对亚高山针叶林物种组成和演替动态提供科学依据,同时也可为未来林业生产管理者提供科学指导。
     1、与框外对照相比,OTCs框内微环境发生了一些变化。OTCs框内与框外对照气温年平均值分别为5.72℃和5.21℃,而地表温度年平均值分别为5.34℃和5.04℃,OTCs使气温和地表年平均温度分别提高了0.51℃和0.34℃;OTCs框内空气湿度年平均值约高于框外对照,二者分别为90.4%和85.3%。
     2、增温促进了三种幼苗生长和生物量的积累,但增温效果与幼苗种类及所处的光环境有关。无论在全光或林下低光条件下,增温条件下云杉幼苗株高、地径、分支数、总生物量及组分生物量(根、茎、叶重)都显著地增加;增温仅在全光条件下使红桦幼苗株高、地径、总生物量及组分生物量(根、茎、叶重)等参数显著地增加,而在林下低光条件下增温对幼苗生长和生物量积累的影响效果不明显;冷杉幼苗生长对增温的响应则与红桦幼苗相反,增温仅在林下低光条件下对冷杉幼苗生长和形态的影响才有明显的促进作用。
     增温对三种幼苗的生物量分配模式产生了不同的影响,并且这种影响也与幼苗所处的光环境有关。无论在全光或林下低光环境下,增温都促使云杉幼苗将更多的生物量分配到植物地下部分,从而导致幼苗在增温条件下有更高的R/S比;增温仅在林下低光条件下促使冷杉幼苗将更多的生物量投入到植物叶部,从而使幼苗R/S比显著地降低:增温在全光条件下对红桦幼苗生物量分配的影响趋势与冷杉幼苗在低光条件下相似,即增温在全光条件下促使红桦幼苗分配更多的生物量到植物同化部分一叶部。
     3、增温对亚高山针叶林生态系统中三种幼苗气体交换和生理表现的影响总体表现为正效应(Positive),即增温促进了几种幼苗的生理活动及其表现:(ⅰ)无论在全光或林下低光环境下,增温使三种幼苗的光合色素含量都有所增加;(ⅱ)增温在一定程度上提高了三种使幼苗的PSII光系统效率(Fv/Fm),从而使幼苗具有更强的光合电子传递活性;增温在一定程度使三种幼苗潜在的热耗散能力(NPQ)都有所增强,从而提高幼苗防御光氧化的能力;(ⅲ)从研究结果来看,增温通过增加光合色素含量和表观量子效率等参数而促进幼苗的光合作用过程。总体来说增温对幼苗生理过程的影响效果与幼苗种类及所处的光环境有关,增温仅在全光条件下对红桦幼苗光合过程的影响才有明显的效果,而冷杉幼苗则相反,增温仅在低光条件下才对幼苗的生理过程有显著的影响。
     4、增温对三种幼苗的抗氧化酶系统产生了一定的影响。从总体来说,增温使几种幼苗活性氧含量及膜脂过氧化作用降低,从而在一定程度上减轻了该区低温对植物生长的消极影响;增温倾向表明使三种幼苗体内抗氧化酶活性和非酶促作用有所提高,从而有利于维持活性氧代谢平衡。但增温影响效果与幼苗种类所处的光环境及抗氧化酶种类有关,增温对冷杉幼苗抗氧化酶活性的影响仅在林下低光环境下效果明显,而对红桦幼苗抗氧化酶活性的影响仅在全光条件下才有明显的效果。
     总之,增温促进了亚高山针叶林生态系统中三种幼苗的生长和生理表现,但幼苗生长和生理对增温的响应随植物种类及所处的光环境不同而变化,这种响应差可能异赋予了不同植物种类在未来气候变暖背景下面对不同环境条件时具有不同的适应力和竞争优势,从而对亚高山针叶林生态系统物种组成和森林动态产生潜在的影响。
Enrichment of atmospheric greenhouse gases resulted from human activities suchas fossil fuel burning and deforestation has increased global mean temperature by 0.6℃in the 20th century and is predicted to increase it by 1.4-5.8℃. The globalwarming will have profound, long-term impacts on terrestrial plants and ecosystems.The ecoologcial consequences arising from global warming have also become thevery important issuses of global change research. The subalpine coniferous forests inthe eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying theeffects of climate warming on terrestrial ecosystems. The light environment differssignificantly between clear-outs and spruce plantations, which is particularlyimportant for plant regeneration and forest dynamics in the subalpine coniferousforests.
     In this paper, the short-term effects of two levels of air temperature (ambient andwarmed) and light (full light and ca. 10% of full light regimes) on the early growthand physiology of Picea asperata, Abies faxoniana and Betula albo-sinensis seedlingswas determined using open-top chambers (OTCs). The aim of the present study wasto understand the differences between tree species in their responses to experimentalwarming from the perspective of regeneration. Our results could provide insights intothe effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientificdirection for the production and management under future climate change.
     1. The OTCs manipulation slightly altered thermal conditions during the growingseason compared with the outside chambers. The annual mean air temperature andsoil surface temperature was 5.72 and 5.34℃(within the chambers), and 5.21 and5.04℃(outside the chambers), respectively. The OTCs manipulation increased airtemperature and soil surface temperature by 0.51 and 0.34℃on average, respectively.Air relative humidity was slightly higher inside the OTCs compared with the controlplots, with 90.4 and 85.3 %, respectively.
     2. Warming generally stimulated the growth and biomass accumulation of thethree tree species, but the effects of warming on growth and development variedbetween light conditions and species. Irrespective of light regimes, warmingsignificantly increased plant height, root collar diameter, total biomass, componentbiomass (stem, foliar and root biomass) and the number of branches in P. asperataseedlings; For A. faxoniana seedlings, significant effects of warming on all the testedparameters (plant height, root collar diameter, total biomass, and component biomass)were found only under low light conditions; In contrast, the growth responses of B.albo-sinensis seedlings to warming were found only under full light conditions.
     Warming had pronounced effects on the pattern of carbon allocation. Irrespectiveof light regimes, the P. asperata seedlings allocated relatively more biomass to rootsin responses to warming, which led to a higher R/S. Significant effects of warming onbiomass allocation were only found for the A. faxoniana seedlings grown under lowlight conditions, with significantly increased in leaf mass ratio (LMR) and decreasedin R/S in responses to warming manipulation. The carbon allocation responses of B.albo-sinensis seedling to warming under full light conditions were similar with theresponse of A. faxoniana seedlings grown under low light conditions. Warmingsignificantly decreased root mass ratio (RMR), and increased leaf mass ratio (LMR)and shoot/root biomass ratio (S/R) for the B. albo-sinensis seedlings grown under fulllight conditions.
     3. Warming generally had a beneficial effect on physiological processes of dominant tree species in subalpine coniferous forest ecosystems: (ⅰ) Warming markedincreased the concentrations of photosynthetic pigments in both tree species, but theeffects of warming on photosynthetic pigments were greater under low lightconditions than under full light conditions for the two conifers; (ⅱ) Warming tended toenhance the efficiency of PSII in terms of increase in F_v/F_m, which was related tohigher chloroplast electron transport activity; and enhance non-radiative energydissipation in terms of in increase in NPQ, which may reflect an increased capacity inpreventing photooxidation; (ⅲ) Warming may enhance photosynthesis and advancephysiological activity in plants by increasing photosynthetic pigment concentration,the efficiency of PSII and apparent quantum yield (Φ) etc. From the results, theeffects of warming on seedlings' physiological performance varied between lightenvironment and species. The effects of warming on photosynthesis performance of B.albo-sinesis seedlings were pronounced only under full light conditions, while thephysiological responses ofA. faxoniana seedlings to warming were found only underthe 60-year plantation. These results provided further support for the observationsabove on growth responses of seedlings to warming.
     4. Warming had marked effects on antioxidative systems of the three seedlings.Warming generally decreased H_2O_2 accumulation and the rate of O_2~-production, andalleviated degree of lipid peroxidation in terms of decreased MDA content, whichalleviated to some extent the negative effects of low temperature on the plant growthand development in this region; Warming tended to increase the activities ofantioxidative enzymes and stimulate the role of non-enzymatic AOS scavenging,which helped to create an balance in maintaining AOS metabolites for the threeseedlings. Nevertheless, the effects of warming on antioxidative defense systems werepronounced only under the 60-year plantation for the A. faxoniana seedlings. Incontrast, the marked effects of warming on antioxidative defense systems for the B.albo-sinesis seedlings were found only under the full light conditions.
     In sum, warming is considered to be generally positive in terms of growth andphysiological process. However, the responses of growth and physiology performanceto warming manipulation varied between species and light regimes. Competitive and adaptive relationships between tree species may be altered as a result of responsedifferences to warming manipulation, which is one mechanism by which globalwarming will alter species composition and forest dynamics of subalpine coniferousforest ecosystems under future climate change.
引文
1. Adams III W W, Demmig-Adams B. Xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Euonymus kiautschovicus in winter. Plant Cell and Environment, 1995, 18: 117-127.
    
    2. Aebi H E. Catalase. In: Bergmeyer H U (ed.). Methods of Enzymatic Analyses. Weinheim: Verlag Chemie, 1983. Pp. 273-282.
    
    3. Aerts R, Chapin III F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67.
    
    4. Aiken R M, Smucker A J M. Root system regulation of whole plant growth. Annual Review of Phytopathology, 1996, 25: 325-346.
    
    5. Alt C, Stutzel H, Kage H. Optimal nitrogen content and photosynthesis in cauliflower (Brassica oleracea L. Botrytis) scaling up from a leaf to the whole plant. Annals of Botany, 2000,85: 779-787.
    
    6. Anten N P R, Schieving F, Werger M J A. Patterns of light and nitrogen distribution in relation to whole canopy gain in C3 and C4 mono-and dicotyledonous species. Oecologia, 1995,101: 504-513.
    
    7. Apple M E, Olszyk D M, Ormrod D P. Morphology and stomatal function of Douglas fir needles exposed to climate change: Eleyated CO2 and temperature. International Journal of Plant Sciences, 2000,161: 127-132.
    
    8. Asner G P, Seastedt T R, Townsend A R. The decoupling of terrestrial carbon and nitrogen cycles. Bioscience, 1997,47: 226-234.
    
    9. Awada T, Radoglou K, Fotelli M N, Constantinidou H I A. Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiology, 2003, 23: 33-42.
    
    10. Bassirirad H, Prior S A, Norby R J, Rogers H H. A field method of determining NH4+ and NO3- uptake kinetics in intact roots: Effects of CO2 enrichment on trees and crop species. Plant and soil, 1999,212: 123-134.
    
    11. Bates L S, Waldren R P, Teare I K. Rapid determination of free proline for water stress studies. Plant and Soil, 1973, 39: 205-208.
    
    12. Beier C, Emmett B, Gundersen P. Novel approaches to study climate change effects on terrestrial ecosystems in the field: Drought and passive nighttime wanning. Ecosystems, 2004, 7: 583-597.
    
    13. Bilger W, Fisahn J, Brummet W. Violaxanthin cycle pigment contents in potato and tobacco plants with genetically reduced photosynthetic capacity. Plant Physiology, 1995, 108: 1479-1486.
    
    14. Bjokman O, Demmig-Adams B. Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In: Schuhe E D, Caldwell M M (eds.) Ecophysiology of photosynthesis. Berlin: Springer-Verlag, 1993. Pp. 17-47.
    
    15. Bjorkman O. Responses to different quantum flux densities. In: Lange O L, Nobe P S, Ziegler H (eds.) Encyclopedia of plant physiology. Berlin: Springer Verlag, Germany, 1981. Pp. 57-106.
    
    16. Bowen G D. Soil temperature, root growth, and plant function [A]. In: Waisel Y, Eshel A, Kafkafi U (eds). Plant Roots: The Hidden Half [M]. New Yok: Marcel Dekker Inc. 1991. Pp. 309-330.
    
    17. Bradford M M. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    
    18. Cai T B, Dang Q L. Effects of soil temperature on parameters for a coupled photosynthesis stomatal conductance model. Tree Physiology, 2002, 2: 819-828.
    
    19. Camm E L, Harper G J. Temporal variations in cold sensitivity of root growth in cold-stored white spruce seedlings. Tree Physiology, 1991, 9: 425-431.
    
    20. Cannell M G R, Thornley J H M. N-poor ecosystems may respond more to elevated CO2 than N-rich ones in the long term: A model analysis of grassland. Globe Change Biology, 1998,4: 431-442.
    
    21. Cao M K, Prince S D, Tao B, Small J, Li K. Regional pattern and inter-annual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2. Tellus B, 2005, 57: 210-217.
    
    22. Carey E V, Callaway, R M, DeLucia E H. Stem respiration of ponderosa pines grown in contrasting climates: implications for global climate change. Oecologia, 1997,111:19-25.
    
    23. Ceulemans R, Janssens I A, Jach M E. Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studies. Annuals of Botany, 1999, 84:577-590.
    
    24. Chapin III F S. Integrated response of plants to stress. BioScience, 1991, 41 (1): 29-36.
    
    25. Chapin F S III, Shaver G R, Giblin A E, Nadelhoffer K J, Laundre J A. Responses of arctic tundra to experimental and observed changes in climate. Ecology, 1995,76:694-711.
    
    26. Collen J, Davison I R. Seasonality and Thermal acclimation of Reactive Oxygen Metabolism in Fucus vesiculosus (Phaeophyceae). Journal of Phycology, 2001, 37:474-481.
    
    27. Cornelissen J H C, Dorrepaal E. Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology, 2006,182: 65-77.
    
    28. Cornelissen J H C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology, 1996, 84: 573-582.
    
    29. Costa H, Gallego S M, Tomaro M L. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Science, 2002,162: 939-945.
    
    30. Cox P M, Betts R A, Jones C D. Acceleration of global warming due to carbon cycle feedback in a coupled climate model. Nature, 2000,408: 184-187.
    
    31. Danby R K, Hik D S. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology, 2007, 13: 437-451.
    
    32. Dang Q L, Cheng S. Effects of soil temperature on ecophysiological traits in seedlings of four boreal tree species. Forest Ecology and Management, 2004, 194: 379-387.
    
    33. Davis M B. Lags in vegetation response to greenhouse warming. Climatic Change, 1989,15: 75-82.
    
    34. Day T A, Hckathorn S A, DeLucia E H. Limitations of photosysnthesis in Pinus tadeda L. (Loblolly pine) at low soil temperatures. Plant Physiology, 1991, 96: 1246-1254.
    
    35. Day T A, Ruhland C T, Grobe C W, Xiong F. Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia, 1999,119: 24-35.
    
    36. DeLucia E H, Hamilton J G, Naidu S L. Net primary productivity of a forest ecosystem with experimental CO2 enrichment. Science, 1999,284: 1177-1179.
    
    37. DeLucia E H. Effect of soil temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engenmannii Parry ex Engelm.) seedlings. Tree Physiology, 1986, 2: 143-154.
    
    38. Domisch T, Finer L, Lehto T. Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings. Plant and Soil, 2002,239: 173-185.
    
    39. Domisch T, Finer L, Lehto T. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiology, 2001,21: 465-472.
    
    40. Dunne J A, Saleska S R, Fischer M L, Harte J. Integrating experimental and gradient method in ecological climate change research. Ecology, 2004, 85: 904-9161.
    
    41. Ericsson T. Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant and Soil, 1995,169: 205-214.
    
    42. Foley J A, Kutzbach J E, Coe M T, Levis S. Feedbacks between climate and boreal forests during the Holocene epoch. Nature, 1994, 371: 52-54.
    
    43. French H M, Wang B. Climate controls on high altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China. Permafrost Periglacial Process, 1994, 5: 87-100.
    44. Fryer M J, Andrews J R, Oxborough K. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiology, 1998, 116: 571-580.
    
    45. Fukami T, Wardle D A. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proceedings of the Royal Society of London Series B: Biological Sciences, 2005,272: 2105-2115.
    
    46. Gavito M E, Curtis P S, Mikkelsen T N, Jakobsen I. Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth. Journal of Experimental Botany, 2001, 52: 1913-1923.
    
    47. Germino M J, Smith W K. Sky exposure, crown architecture, and low temperature photo-inhibition in conifer seedlings at alpine treeline. Plant Cell & Environment, 1999, 22: 407-415.
    
    48. Gielen B, De Boeck H J, Lemmens C M H M, Valcke R, Nijs I, Ceulemans R. Grassland species will not necessarily benefit from future elevated air temperature: a chlorophyll fluorescence approach to study autumn physiology. Physiologia Plantarum, 2005,1: 52-63.
    
    49. Giorgi F, Hewitson B, Christensen J. Climate change 2001: Regional Climate Information-Evaluation and Projections. In: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of IPCC, Houghton J T et al. (Eds.). Cambridge University Press, Cambridge, U.K, 2001. Pp. 583-638.
    
    50. Goulden M L, Wofsy S C, Harden J W. Sensitivity of boreal forest carbon balance to soil thaw. Science, 1998,279: 214-217.
    
    51. Grabherr G, Gottfried M, Pauli H. Climate effects on mountain plants. Nature, 1994,369:448-450.
    
    52. Grogan P, Chapin F S III. Arctic soil respiration: Effects of climate and vegetation depend on season. Ecosystems, 1999,2: 451-459.
    
    53. Gunderson C A, Wullschleger S D. Photosynthetic acclimation in trees to rising atmospheric CO2. Photosynthesis Research, 1994, 39: 369-388.
    
    54. Harte J, Torn M S, Chang F R, Feifarek B, Kinzig A P, Shaw R, Shen K. Global warming and soil microclimate: Results from a meadow-warming experiment. Ecological Applications, 1995, 5: 132-150.
    
    55. Hartley A E, Neill C, Melillo J M, Crabtree R, Bowles F P. Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos, 1999, 86: 331-343.
    
    56. He H S, Mladenoff D J. Spatially explicit and stochastic simulation of forest landscape fire and succession. Ecology, 1999a, 80: 80-99.
    
    57. He W M, Dong M. Plasticity in physiology and growth of Salix matsudana in response to simulated atmospheric temperature rise in the Mu Us Sandland, Photosynthetica, 2003, 41: 297-300.
    
    58. Helmisaari H S, Makkonen K, Kellomaki S, Valtonen E, Malkonen E. Below-and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. Forest Ecology and Management, 2002,165: 317-326.
    
    59. Henry H A L, Cleland E E, Field C B, Vitousek P M. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia, 2005, 142: 465-473.
    
    60. Higuchi H, Sakuratani T, Utsunomiya N. Photosynthesis, leaf morphology, and shoot growth as affected by temperatures in cherimoya (Annona cberimola Mill.) trees. Scientia Horticulturae, 1999, 80: 91-104.
    
    61. Hobbie S E, Gough L. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia, 2002, 131: 453-462.
    
    62. Hobbie S E. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 1996, 66: 503-522.
    
    63. Hollister R D, Webber P J. Biotic validation of small open-top chambers in a tundra ecosystem. Global Change Biology, 2000, 6: 835-842.
    
    64. Houghton J T, Davidson E A, Woodwell G M. Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochemical Cycles, 1998, 12: 25-34.
    65. Houghton J T, Meira Filho L G, Callander B A, Harris N, Kattenberg A, Maskell K. Climate Change 1995: The Science of Climate Change. Contribution of WG1 to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press, 1996.
    
    66. Huxman T E, Turnipseed A A, Sparks J P. Temperature as a control over ecosystem CO2 fluxes in a high elevation, subalpine forest. Oecologia, 2003, 134: 537-546.
    
    67. Hyvonen R, Agren G I, Linder S, Persson T, Cotrufo M F, Ekblad A, Freeman M, Grelle A, Janssens I A, Jarvis P G, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby R J, Oren R, Pilegaard K, Ryan M G, Sigurdsson B D, Stromgren M, Van-Oijen M, Wallin G. The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 2007,173: 463-480.
    
    68. Ineson P, Benham D G, Poskitt J, Harrison A F, Taylor K, Woods C. Effects of climate change on nitrogen dynamics in upland soils. II. A soil warming study. Global Change Biology, 1998b, 4: 153-162.
    
    69. IPCC. 2001. Third Assessment Report of Working Group I. Climate Change 2001: The scientific Basis. Cambridge University Press, Cambridge.
    
    70. Ishida A, Nakano T, Matsumoto Y, Sakoda M, Ang L H. Diurnal changes in leaf gas exchange and chlorophyll fluorescence in tropical tree species with contrasting light requirements. Ecological Research, 1999,14: 77-88.
    
    71. Jonasson S, Shaver G R. Within-stand nutrient cycling in arctic and boreal herbaceous and forested wetlands. Ecology, 1999, 80: 2139-2150.
    
    72. Karlsson P S, Nordell K O. Effects of soil temperature on nitrogen economy and growth of mountain birch near its presumed low temperature distribution limit. Ecoscience, 1996, 3: 183-189.
    
    73. Karnosky D F. Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps. Environment International, 29, 2003: 161-169.
    
    74. Ke D, Wang A, Sun G, Dong L. The effect of active oxygen on the activity of ACC synthase induced by exogenous IAA. Acta Botanica Sinica, 2002, 44: 551-556.
    
    75. Kellomaki S, Wang K Y. Effects of long-term CO2 and temperature elevation on crown nitrogen distribution and daily photosynthetic performance of Scots pine. Forest Ecology and Management, 1997, 15: 309-326.
    
    76. Kellomaki S, Wang K Y. Sap flow in Scots pine growing under the year-round carbon dioxide enrichment and temperature elevation. Plant, Cell and Environment, 1998,21: 969-981.
    
    77. Kennedy A D. Simulated climate change: are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Global Change Biology, 1995, 1: 29-42.
    
    78. Kimball B A. Theory and performance of an infrared heater for ecosystem warming. Global Change Biology, 2005,11: 2041-2056.
    
    79. King J S, Thomas R B, Strain B R. Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO2, temperature and nitrogen. Plant and Soil, 1997b, 195: 107-119.
    
    80. Kirschbaum M U E. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology & Biochemistry, 1995,27: 753-760.
    
    81. Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 2004, 7: 1170-1179.
    
    82. Kochian L V, Jones D L. Aluminum toxicity and resistance in plants. In: Yokel R. A., Golub M. S (eds.) Research issues in aluminium toxicity, Taylor & Francis Ltd, Lord, 1997. Pp. 69-89.
    
    83. Korner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 1998,115: 445-459.
    
    84. Krankina O N, Dixon R K, Kirilenko A P, Kobak K I. Global climate change adaptation: Examples from Russian boreal forests. Climatic Change, 1997, 36: 197-215.
    85. Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The Basics. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 313-349.
    
    86. Kullman L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology, 2002, 90: 68-77.
    
    87. Kurz W A, Apps M J. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications, 1999, 9: 526-547.
    
    88. Landhaausser S M, Wein R W, Lange P. Gas exchange and growth of three arctic tree-line tree species under different soil temperature and drought preconditioning regime. Canadian Journal of Botany, 1996,74: 1686-1693.
    
    89. Landhausser S M, DesRochers A, Lieffers V J. A comparison of growth and physiology in white spruce (Picea glauca) and aspen (Populus tremuloides) at different soil temperatures. Canadian Journal of Forest Research, 2001, 31: 1922-1929.
    
    90. Landhausser S M, Lieffers V J. Growth of Populus tremuloides in association with Calamagrostis canadensis. Canadial Journal of Forest Research, 1998, 28: 396-401.
    
    91. Lange O L, Green T G A. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia, 2005, 142: 11-19.
    
    92. Larigauderie A L, Korner C, Acclimation of leaf dark respiration to temperature in alpine and lowland plant species. Annals of Botany, 1995, 76: 245-252.
    
    93. Larigauderie A, Ellis B A, Mills J N, Kummerow J. The effect of root and shoot temperatures on growth of Ceanothus greggii seedlings. Annals of Botany, 1991, 67:97-101.
    
    94. Larkindale J, Knight M R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 2002, 128: 682-695.
    
    95. Lenton T M. Land and ocean carbon cycle feedback effects on global warming in a simple earth system model. Tellus, 2000, 52 (B): 1159-1188.
    
    96. Leong T Y, Anderson J M. Effect of light quality on the composition and function of thylakoid membranes in atriplex triangulris. Biochmica et Biophysica Acta, 1984,766:533-541.
    
    97. Leprince O, Hoekstra F A, Harren F J M. Unravelling the responses of metabolism to dehydration points to a role for cytoplasmic viscosity in desiccation tolerance. In: Black M, Bradford K J, Vasquez-Ramos J (eds.) Seed biology: advances and application. Oxon, New York: CABI Publishing, 2000. Pp. 57-66.
    
    98. Lewis J D, Mckane R B, Tingey D T. Vertical gradients in photosynthetic light response within an old-growth Douglas-fir and western hemlock canopy. Tree Physiology, 2000, 207: 447-456.
    
    99. Lewis J D, Olszyk D, Tingey D T. Seasonal patterns of photosynthetic light responses in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature. Tree Physiology, 1999, 19: 243-252.
    
    100.Lichtenthaler H K. Vegetation stress: An introduction to the stress concept in plants. Journal of Plant Physiology, 1996, 148: 4-14.
    101.Llorens L, Peuelas J, Beier C. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two Ericaceous shrub species along a north-south European gradient. Ecosystems, 2004, 7: 613-624.
    102.Lloret F, Penuelas J, Estiarte M. Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-Type community. Global Change Biology, 2004,10: 248-258.
    103.Long S P, Humphries S, Folkowski P G. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology, 1994, 45:633-637.
    104.Luo Y, Wan S, Hui D. Acclimatization of soil respiration to wanning in a tall grass prairie. Nature, 2001, 413: 622-625.
    105.Luomala E M, Laitinen K, Sutinen S. Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant, Cell and Environment, 2005,28: 733-749.
    106.Luomala E M, Latinen K, Kellomaki S. Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated CO2 and elevated temperature. Plant, Cell and Environment, 2003,26: 645-660.
    107.Maherali H, DeLucia E H. Influence of climate-driven shifts in biomass allocation on water transport and storage in ponderosa pine. Oecologia, 2001, 129: 481-491.
    108.Marion G M, Henry G H R, Freckman D W. Open-top designs for manipulating field temperatures in high-latitude ecosystems. Global Change Biology, 1997, 3 (Supplement 1): 20-32.
    109.Maxwell K, Johnson G N. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 2000, 51: 659-668.
    
    110.McHale P J, Mitchell M J, Bowles F P. Soil warming in northern hardwood forest: trace gas fluxes and leaf litter decomposition. Canadian Journal of Forest Research, 1998,28: 1365-1372.
    
    111.Melillo J M, Steudler P A, Aber J D. Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002,298: 2173-2175.
    112.Melillo J M, McGuire A D, Kicklighter D W. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234-340.
    113.Menzel A, Fabian P. Growing season extended in Europe. Nature, 1999, 397: 659-659.
    114.Mishra N P, Mishra R K, Singhal G S. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiology, 1993,102:903-908.
    115.Mitchell A K, Arnott J T. Effects of shade on the morphology and physiology of amabilis fir and western hemlock seedlings. New Forests, 1995,10: 79-98.
    116.Moorhead D L, Currie W S, Rastetter E B. Climate and litter quality controls on decomposition: an analysis of modeling approaches. Global Biogeochemical Cycles, 1999, 13: 575-589.
    117.Morsion J I L, Lawlor D W. Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell and Environment, 1999, 22: 659-682.
    118.Nakano Y, Asada K. Purification of ascorbate peroxidase in spinach chloroplasts, its inactivation in ascorbate depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiology, 1987,28: 131-140.
    119.Niyogi K K. Photoprotection revisited: Genetic and molecular approaches. Annual Review of Plant Physiology and Molecular Biology, 1999. 50: 333-359.
    120.Noda H, Muraoka H, Washitani I. Morphological and physiological acclimation response to contrasting light and water regimes in Primula sieboldii. Ecological Research, 2004,19: 333-340.
    121.Norby R J, Edwards N T, Riggs J S. Temperature-controlled open-top chambers for global change research. Global Change Biology, 1997, 3: 359-367.
    122.Oechel W C, Vourlitis G L, Hastings S J, Zulueta R, Hinzman L D, Kane D. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 2000,406: 978-981.
    123.Ormrod D P, Lesser V M, Olszyk D M, Tingey D T. Elevated temperature and carbon dioxide affected chlorophylls and carotenioss in Douglas-fir seedlings. International Journal of Plant Science, 1999,160: 529-534.
    124.Partenen J, Koski V, Hanninen H. Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiology, 1998, 18: 811-816.
    125.Parton W J, Scurlock J M O, Ojima D S. Impact of climate change on grassland production and soil carbon world-wide. Global Change Biology, 1995,1:13-22.
    126.Pastor J, Mladenoff D J. The southern boreal-northern hardwood forest border. In: Shugart R L and Bonan G B (eds.). A systems Analysis of the Global Boreal Forest. Cambridge: Cambridge University Press, 1992. Pp. 216-240.
    127.Patrick F S, Jeffrey M W. Wanning chambers stimulate early season growth of an arctic sedge: results of a minrhizotron field study. Oecologia, 2005,142: 616-626.
    128.Peltzer D, Polle A. Diurnal fluctuations of antioxidative systems in leaves of field-grown beech trees (Fagus sylvatica): Responses to light and temperature. Physiologia Plantarum,2001, 111: 158-164.
    129.Peng C, Apps M J. Simulating carbon dynamics along the Boreal Forest Transect Case Study (BFTCS) in Central Canada. II: Sensitivity to climate change. Global Biogeochemical Cycles, 1998,12: 393-402.
    130.Peng Y Y, Dang Q L. Effects of soil temperature on biomass production and allocation in seedling of four boreal tree species. Forest Ecology and Management, 2003, 180: 1-9.
    131.Penuelas J, Filella I, Tognetti R. Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Global Change Biology, 2001, 7: 291-301.
    132.Peterjohn W T, Melillo J M, Steudler P A. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications, 1994,4:617-625.
    133.Prochazkova D, Sairam R K, Srivastava G C, Singh D V. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science, 2001,161:765-771.
    134.Qi Y, Xu M, Wu J. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprise. Ecological Modeling, 2002,153:131-142.
    135.Raich J W, Schilesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992,44 B: 81-99.
    136.Rasmussen L, Beier C, Bergstedt A. Experimental manipulations of old pine forest ecosystem to predict the potential tree growth effects of increased CO2 and temperature in a future climate. Forest Ecology and Management, 2002, 158: 179-188.
    137.Romero J M, Maranon T. Allocation of biomass and mineral elements in Melilotus segetalis (annual sweetclover): effects of NaCl salinity and plant age. New Phytologist, 1996, 132: 565-573.
    138.Ross D J, Tate K R, Newton PCD. Elevated CO2 and temperature effects on carbon and nitrogen cycling in ryegrass/white clover turves of an Endoaquept soil. Plant and Soil, 1995, 176: 37-49.
    139.Rustad L E, Campbell J L, Marion G M. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001,126: 543-562.
    140.Rustad L E, Fernandez I J. Soil warming: consequences for litter decay in a spruce-fir forest ecosystem in Maine. Soil Science Society of America Journal, 1998b, 62: 1072-1081.
    141.Ryan M G. Effects of climate change on plant respiration. Ecological Applications, 1991, 1: 157-167.
    142.Saxe H, Cannell M G R, Ryan M G. Tree and forest functioning in response to global warming. New Phytologist, 2001, 149: 369-400.
    143.Scheller, R M, Mladenoff D J. A spatially interactive simulation of climate change, harvesting, wind, and tree species migration and projected changes to forest composition and biomass in northern Wisconsin, USA. Global Change Biology, 2005, 11:307-321.
    144.Schimel D, Alves D, Enting I, Heimann M, Joos F, Raynaud D, Wigley T. CO2 and the carbon cycle. In: Climate Change 1995: The Science of Climate Change: Contribution of WGI to the Second Assessment Report of the IPCC/Cambridge University Press, Cambridge UK, 1996.
    145.Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000,48: 7-20.
    146.Schulze E D, Mooney H A, Sala O E. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia, 1996, 108: 503-511.
    147.Shaver G R, Canadell J, Chapin F S III, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L. Global warming and terrestrial ecosystems: A conceptual framework for analysis. BioScience, 2000, 50: 871-882.
    148.Shaver G R, Johnson L C, Cades D H, Murray G, Laundre J A, Rastetter E B, Nadelhoffer K J, Giblin A E. Biomass accumulation and CO2 flux in three Alaskan wet sedge tundra: Responses to nutrients, temperature, and light. Ecological Monographs, 1998, 68: 75-99.
    149.Smirnoff N. Ascorbate biosynthesis and function in photoprotection. Philosophical Transactions: Biological Sciences, 2000, 355: 1455-1464.
    150.Smith T M, Halpin P N, Shugart H H. Global forest [A]. In: Strzepek K M, Smith J B (eds). As Climate Change: International Impacts and Implications [C]. Cambridge: Cambridge University Press, 1995. Pp. 59-78.
    151.Stenstrom M, Gugerli F, Henry G H R. Response of Saifraga oppositiflia L. to simulated climate change at three contrasting latitudes. Global Change Biology, 1997,3:44-54.
    152.Sternberg M, Brown V K., Masters G J. Plant community dynamics in a calcareous grassland under climate change manipulations. Plant Ecology, 1999, 143: 29-37.
    153.Sullivan P, Welker J M. Warming chambers stimulate early season growth of an arctic sedge: results of a minirhizotron field study. Oecologia, 2005, 142: 70-78.
    154.Sundar D, Chaitanya K V, Jutur P P, Reddy AR. Low temperature-induced changes in antioxidative metabolism in rubber-producing shrub, guayule (Parthenium argentatum Gray.). Plant Growth Regulation, 2004, 44: 175-181.
    155.Sykes M T, Prentice I C. Climate change, tree species distributions and forest dynamics: A case study in the mixed conifer/hardwoods zone of northern Europe. Climatic Change, 1996, 34: 161-177.
    156.Taiz L, Zeiger E. Plant Physiology Sinauer Associates. Sunderland Massachusetts: Inc Publishers, 1998. Pp. 518.
    157.Thompson L G, Yao T, Mosley-Thompson E. A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science, 2000, 289: 1916-1919.
    158.Tian H Q, Melillo J M, Kicklighter D W. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 1998, 396: 664-667.
    159.Tingey D T, Mckane R B, Olszyk D M. Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology, 2003, 9: 1038-1050.
    160.Tjoelher M G, Oleksyn J, Reich P B. Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO2 and temperature. Tree Physiology, 1998b, 18: 715-726.
    161.Tjoelker M G. Acclimation in plant growth and its determinants to elevated carbon dioxide and temperature: interspecific variation among five boreal tree species. Ph. D thesis. University of Minnesota, USA, 1997.
    162.Usami T, Lee J, Oikawa T. Interactive effects of increased temperature and CO2 on the growth of quercus myrsinaefolia saplings. Plant, Cell and Environment, 2001,24:1007-1019.
    163.Valpine P, Harte J. Plant response to experimental warming in a montane meadow. Ecology, 2001, 82: 637-648.
    164.van Cleve K, Oechel W C, Horn J L. Response of black spruce (Picea mariana) ecosystems to soil temperature modifications in interior Alaska. Canadian Journal Forest Research, 1990,20: 1530-1535.
    
    165.VanMinnen J G, Goldewijk K K, Leemans R. The importance of feedback processes and vegetation transition in the terrestrial carbon cycle. Journal of Biogeography, 1995,22: 805-814.
    166.Venema J H, Villerius L, van Hassetl P R. Effect of acclimation to suboptimal temperature on chilling-induced photo-damage: comparison between a domestic and a high-altitude wild Lycopersicon species. Plant Science, 2000, 152: 153-163.
    167.Vitousek P M, Turner D R, Parton W J, Sanford R L. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models. Ecology, 1994,75:418-429.
    168.Vukicevic T, Braswell B H, Scheimel D. A diagnostic study of temperature controls on global terrestrial carbon exchange. Tellus B, 2001, 53: 150-170.
    169.Wada N, Miyamoto M, Kojima S. Responses of reproductive traits to short-temperature artificial warming in a deciduous alpine shrub Geum pentapetalum (Rosaceae). Proceedings of the NIPR Symposium on Polar Biology, 1998,11:137-146.
    170.Wan S, Luo Y, Wallace L L. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology, 2002, 8: 754-768.
    171.Wan X C, Landhausser S M, Zwiazek J J, Liefffers J J. Root water flow and growth of aspen (Populus tremuloides) at low rot temperature. Tree Physiology, 1999,19:879-884.
    172. Wang K Y. Apparent quantum yield in Scots pine after four years of exposure to elevated temperature and CO2. Photosynthetica, 1996, 32: 339-353.
    173.Wang Z M., Lechowicz, M J, Potvin C. Response of black spruce seedlings to simulated present versus future seedbed environments. Canadian Journal of Forest Research, 1995, 25: 545-554.
    174.Welker J M, Fahnestock J T, Jones M H. Annual CO2 flux from dry and moist arctic tundra: field responses to increases in summer temperature and winter snow depth. Climate Change, 2000,44: 139-150.
    175.Weltzin J F, McPherson G R. Implications of precipitation redistribution for shifts in temperate savanna ecotones. Ecology, 2000, 81: 1902-1913.
    176. Wise R R. Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in light. Photosynthesis Research, 1995,45: 79-97.
    177.Xiao X, Melillo J M, Kicklighter D W, McGuire A D, Prinn R G, Wang C, Stone P H, Sokolov A. Transient climate change and net ecosystem production of the terrestrial biosphere. Global Biogeochemical Cycles, 1998,12: 345-360.
    178.Xin Z, Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell and Environment, 2000, 23: 893-902.
    179.Xu D Q, Wu S. Three phases of dark-recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field condition. Photosynthetica, 1996, 32:417-423
    180.Ye L, Gao H Y, Zou Q. Responses of the antioxidant systems and xanthophyll cycle in Phaseolus vulgaris to the combined stress of high irradiance and high temperature. Photosynthetica, 2000, 38: 205-210.
    181.Young A J, Britton G. Carotenoids in Photosynthesis [M]. London: Chapman and Hall, 1993. Pp. 127-159.
    182. Zhang S R, Dang Q L. Effects of soil temperature and elevated atmospheric CO_2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings. Tree Physiology, 2005, 25: 523-531.
    183. Zhang S R, Gao R F. Diurnal changes of gas exchange, chlorophyll fluorescence, and stomatal aperture of hybrid poplar clones subjected to midday light stress. Photosynthetica, 1999, 37: 559-571.
    184.陈华,Harmonl M E,田汉勤。全球变化对陆地生态系统枯落物分解的影响。生态学报,2001,9:1549-1563.
    185.陈全胜,李凌浩,韩兴国。土壤呼吸对温度升高的适应。生态学报,2004,24(11):2649-2655.
    186.郝占庆,代力民,贺红士。气候变暖对长白山主要树种的潜在影响。应用生态学报,2001,12(5):653-658.
    187.侯颖,王开运,牛德奎,张远彬。CO_2浓度和温度升高对木本植物养分含量、分配的影响。江西农业大学学报,2006,28(1):95-100.
    188.刘国华,傅伯杰。全球气候变化对森林生态系统的影响。自然资源学报,2001,16(1):71-78.
    189.刘鹏,杨玉爱。钼、硼对大豆叶片膜脂过氧化及体内保护系统的影响。植物学报,2000,42(5):461-466.
    190.刘庆主编。2002。亚高山针叶林生态学研究。成都:四川大学出版社.
    191.刘世荣,赵文栋,马全林。沙木蓼和沙枣对地下水位变化的生理生态响应:Ⅱ。叶片光合作用及其对温度和光的反应。植物生态学报,2003,27(2):223-227.
    192.罗青红,李志军,伍维模,韩路。胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究.西北植物学报,2006,5:983-988.
    193.彭少麟,刘强。森林凋落物动态及其对全球变暖的响应。生态学报,2002,22(9):1534-1544.
    194.王记军,裴铁瑶。气候变化对森林演替的影响。应用生态学报,2004,15(10):1722-1730.
    195.王开运,杨万勤,Seppo Kellomaki。亚高山针叶林群落系统的生态学过程和持续性机制。世界科技研究与发展,2003,25(5):17-24.
    196.吴彦,刘庆,乔永康等。川西亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响。植物生态学报,2001,25:648-655.
    197.徐小锋,田汉勤,万师强。气候变暖对陆地生态系统碳循环的影响。植物生态学报,2007,31(2):175-188.
    198.尹华军,刘庆。川西米亚罗亚高山云杉林种子雨和土壤种子库研究。植物生态学报,2005,9(1):108-115.
    199.张新时,杨奠安。中国全球变化样带的设置与研究。第四纪研究,1995,1:43-52.
    200.周广胜,张新时。全球气候变化的中国自然植被的净第一性生产力研究。植物生态学报,1995,20(1):11-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700