用户名: 密码: 验证码:
软土地层中格形地下连续墙围护结构性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格形地下连续墙是上海软土地区近年来出现的一种新型围护结构型式,既可以用作无内支撑体系基坑工程的围护结构,亦可以作为竖向承载结构。由于在变形控制、可持续发展等方面的诸多优点,格形地下连续墙目前已经在多个基坑工程中得到应用。深基坑工程中,兼作竖向承载结构的围护结构的受力变形特性是设计和施工中最为关心的问题。作为一种新型的、结构型式比较复杂的围护结构,目前已有的关于传统基坑围护结构受力、变形性状和竖向承载特性的认识无法直接应用到格形地下连续墙中,在很大程度上限制了这种新型围护结构的应用和推广。鉴于目前对格形地下连续墙的研究比较匮乏,本文结合原位试验、室内模型试验、理论研究、数值模拟和现场监测等手段,对格形地下连续墙的围护结构工作性状、竖向承载特性和关键节点的结构强度进行系统地研究,为格形地下连续墙的设计和施工提供了参考。主要内容包括如下几个方面:
     1.采用有限元方法分析格形地下连续墙典型受力、变形特征。建立以格形地下连续墙为围护结构的深基坑的切片模型和全三维模型,系统地分析了上海地区以格形地下连续墙为围护结构的深基坑开挖过程中格形地下连续墙的变形、墙后地表横向与纵向沉降、墙侧土压力分布和墙身弯矩分布的典型特征。引入平面应变比(PSR)的概念,研究了以格形地下连续墙为围护结构的基坑变形的空间效应。利用参数分析研究了格形地下连续墙几何尺寸(包括连续墙厚度、深度、隔墙长度、隔墙间距)、连续墙接头型式、坑底加固、坑内桩基以及基坑底板对基坑受力、变形的影响,并给出一些简化计算公式。探讨了在广泛的参数影响下基坑的变形特征变量(包括围护结构的最大侧移和地表最大沉降),得到其变化范围的上限,并将分析结果与采用传统围护结构的基坑工程的统计结果进行对比,从而为设计施工提供了理论参考。
     2.利用原位试验和荷载传递法分析单幅地下连续墙槽段的竖向承载机理。对格形地下连续墙的单幅连续墙槽段进行原位静载试验,系统地研究了竖向加载作用下单幅地下连续墙墙身沉降、墙身轴力分布、墙侧摩阻力分布和发展、墙端阻力发展等竖向承载特性,并探讨了墙端注浆对单幅地下连续墙竖向承载特性的影响。基于荷载传递法,采用双曲线理想弹塑性荷载传递函数反映墙侧摩阻力的发挥情况,三折线荷载传递模型反映墙端阻力的发展,得到了单幅地下连续墙荷载传递法的半解析解。通过对比计算结果和原位试验数据,验证了荷载传递法在单幅地下连续墙竖向承载特性分析中的适用性。
     3.结合原位试验数据,采用有限元方法对格形地下连续墙竖向承载机理进行分析。首先对单幅地下连续墙原位静载试验进行模拟,通过将计算结果与原位试验结果进行对比,确定所采用数值方法的正确性。在此基础上,建立格形地下连续墙的竖向承载模型,研究了格形地下连续墙侧摩阻力、端阻力的分布和发展情况,并系统分析了墙侧和墙端土体的力学性质、墙土接触面的力学特性和格形地下连续墙的尺寸等因素对其竖向承载特性的影响,揭示了格形地下连续墙的竖向承载机理。通过引入墙芯土体端应力系数η和隔墙端应力系数δ的概念,给出格形地下连续墙竖向承载力的建议计算公式。
     4.结合室内模型试验和数值模型试验,研究格形地下连续墙横隔墙槽段间的十字钢板接头的抗剪强度和剪切破坏机理。对以十字钢板接头连接的地下连续墙试件进行室内剪切破坏试验,对比分析不同试件的实验数据,研究了十字钢板接头的剪切破坏模式和各设计参数对其抗剪强度的影响。结合室内模型试验和数值试验手段,揭示了十字钢板接头的剪切破坏机理,在此基础上,引入抗剪强度发挥程度的概念,分析了纵向钢板刚度对十字钢板接头抗剪强度的影响,进一步参考Oguejiofor和Hosain提出的穿孔钢板接头的抗剪强度公式,提出了能够反映十字钢板接头剪切破坏机理的抗剪强度计算方法。
     5.对上海长兴岛造船基地某采用格形地下连续墙作为围护结构和竖向承载结构的船坞基坑工程进行了实测研究,验证前述理论研究成果。对实测结果的分析表明,格形地下连续墙在各个工况下的最大侧移全部位于理论研究给出的范围之内,当开挖深度为5m和10m时,实测的格形地下连续墙各测点最大侧移平均值与根据第二章理论公式计算得到的最大侧移接近,当开挖深度为14.7m时,实测最大侧移平均值要小于计算得到的最大侧移。表明根据理论研究成果制定的施工方法可以有效利用基坑底板支撑作用,限制格形地下连续墙的变形。格形地下连续墙墙顶位移、墙侧土压力和墙身弯矩的监测结果亦与理论研究结果吻合,表明理论研究成果对于从总体上理解格形地下连续墙围护结构的工作性状有积极的意义,可以用于指导今后类似工程的设计和施工。
Cellular diaphragm wall is a novel structure, which could be used as the horizontal retaining structure and the vertical bearing structure for deep excavation, simultaneously. Due to its advantages such as the capability of deformation control and the benefit of sustainable development, cellular diaphragm wall has been recently applied in several excavation cases. For this type of structure used as both the horizontal retaining and vertical bearing structure, a major concern is to predict the force, deformation and bearing behavior in the design and construction stages. However, a fundamental study of this type of structure is relatively limited and infrequently reported in the literature. The analysis method of the traditional retaining structure is insufficient for this type of structure. In order to extend and develope this type of novel structure in deep excavation, this thesis evaluates the force, deformation, and bearing behavior of cellular diaphragm wall in Shanghai soft deposit, based on a series of in-situ tests, indoor model tests, three dimensional (3D) finite element analysis, and field monitoring. The main contributions of this thesis are described in the following:
     1. Finite element method is used to analyze the typical retaining behavior of the cellular diaphragm wall. Both a slicing finite element model and a 3D finite element model are proposed to simulate the construction procedures of a deep unbraced excavation supported by the cellular diaphragm wall in typical Shanghai stratum. Force and deformation behaviors including the wall deflection, ground settlement, earth pressure, and bending moment of the wall due to deep excavation are investigated in details. 3D effects of the force and deformation behaviors are studied by comparing the results computed by the slicing model and 3D model. The plane strain ratio (PSR) is used to reflect the relationship of the maximum wall deflcetion between the plane strain and 3D finite element results. By performing a series of parametric studies, the influence of the geometry size of the cellular diaphragm wall, wall construction joint, soil reinforcement, pile spacing, and the bottom plate on the behavior of the cellular diaphragm wall are investigated. General trends of the maximum lateral displacement of wall and maximum ground settlement are obtained by analyze the computed results from the numerical experiments. The general trends provide a reference for the design and construction of the celluar diaphragm wall.
     2. The in-situ static load tests of two cellular diaphragm wall panels are performed. Vertical bearing behavior of the single diaphragm wall panel including the ultimate bearing capacity, the evolution of the skin friction and toe resistance, and the effect of the toe-grouting are studied according to the tested data. The load transfer behavior of single diaphragm wall panel in soft soil is analyzed by the load transfer method. A hyperbolic ideal elastic-plastic model is presented as the load transfer function of the wall-side, while a tri-linear model is introduced to simulate the load transfer behavior of wall end. The load transfer method is validated to be suitable for the bearing behavior analysis of the single diaphragm wall panel by comparing the calculated results with the tested data.
     3. Finite element method is used to analyze the bearing mechanism of the cellular diaphragm wall. Firstly, a 3D finite element model is used to simulate the in-situ static load test of single diaphragm wall panel. The parameters of this model is ajusted by comparing the computed results and tested data. Based on these parameters, a 3D finite element analysis of the static load test of the cellular diaphragm wall is carried out. By performing a series of parametric studies, the influence of the soil properties, the interface properties between the wall and soil, and the geometry size of the cellular diaphragm wall on the vertical bearing behavior of the cellular diaphragm wall are investigated. By introducing the concepts of the tip stress coefficient of the soil core and the tip stress coefficient of the partition wall, a general formula for the calculation of the vertical bearing capacity of the cellular diaphragm wall is proposed.
     4. Indoor model tests are conducted to test four 1/2-scale diaphragm wall specimens which panels are connected by the cross-plate joints. Three significant design parameters of the cross-plate joint are considered: the thickness, the length, and the number of the holes of the longitudinal plate of the joint. Effect of these design parameters on the vertical shear strength of the cross-plate joint are presented and discussed in detail. A numerical model is carried out to study the crack propagation and failure mechanism of the cross-plate joint. Through the results from experimental study and explicit finite-element modeling, the concept of the exerting ratio of the shear strength is introduced. Based on this concept, the shear resistance of Perfobond connectors derived by Oguejiofor and Hosain is modified to be suitable for the calculation of the shear strength of the cross-plate joint by considering the influence of the opening ratio of the longitudinal plate of the joint.
     5. Comprehensive monitoring systems are installed on an unbraced excavation which is retained by cellular diaphragm wall. Field monitoring results show that maximum lateral displacements of all the inclinometers in walls at different stages fall in the range proposed by theoretical analysis. Furthermore, monitored displacement evolution of the wall top and distribution of earth pressure and bending moment are similar to the theoretical analyzing results. This confirms the validity of the theoretical analyzing results to predict force and deformation behavior of the cellular diaphragm wall.
引文
[1]丁勇春,王建华,徐中华,陈锦剑.上海软土地区地铁车站深基坑的变形特性.上海交通大学学报, 2008, 42(11): 1871-1875.
    [2]李耀良,王理想,余振栋,袁芬.超大面积港池基坑的陆上和水下开挖施工技术.建筑施工, 2008, 30(10): 848-850.
    [3]唐军.闹市中心紧临地铁的超深基坑逆作法施工技术.建筑施工, 2008, 30(6): 434-436.
    [4]袁俊相,刘加峰,韩泽亮.基于“时空效应”的超大型地铁深基坑施工技术.建筑施工, 2009, 31(1): 18-20.
    [5]郑永来,王金龙.轨道交通上方大面积基坑开挖三维问题分析.地下空间与工程学报, 2009, 5(2): 277-282.
    [6]唐业清,李启民,崔江余.基坑工程事故分析与处理.北京:中国建筑工业出版社, 1999.
    [7]徐中华.上海地区支护结构与主体地下结构相结合的深基坑变形性状研究.博士学位论文,上海交通大学,上海, 2007.
    [8]刘加峰.重力式格形地下连续墙的槽壁稳定方法.建筑施工, 2002, 24(4): 260-262.
    [9]夏建国.格形地连墙结构的设计与施工方案探讨.水运工程, 2004, 30(11): 88-91.
    [10]汪贵平,李华梅,费永成,赵洪琼.格形地下墙结构在基坑工程中的应用.地下空间与工程学报, 2005, 1(4): 584-586.
    [11]朱建明,肖鹏,李耀良,袁芬.我国最大的船坞工程,中船长兴造船基地施工报告—不良地质条件下的格形地下连续墙施工技术.建筑施工, 2008, 30(10): 845-847.
    [12]黄炳福.地下连续墙在高层建筑中的应用.地基基础工程, 1996, 6(11): 9-14.
    [13] Peck, R.B.. Deep excavation and tunneling in soft ground. Proceedings, the 7th International Conference on Soil Mechanics and Foundation Engineering, State-of-the-Art-Volume. Mexico City, 1969, 149-218.
    [14] Ou, C.Y., Liao, J.T., and Lin, H.D.. Performance of diaphragm wall constructed using top-down method. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 798-808.
    [15] Ng, C.W.W., Rigby, D.B., Lei, G.H., and Ng, S.W.L.. Observed performance of a short diaphragm wall panel. Geotechnique, 1999, 49(5): 681-694.
    [16] Liu, G.B., Ng, C.W.W., and Wang, Z.W.. Observed performance of a deep multistrutted excavation in Shanghai soft clays. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(8): 1004-1013.
    [17]陈生东,简文彬.复杂环境下基坑开挖监测与分析.岩土力学, 2006, 27(S2): 1188-1191.
    [18]汪中卫,刘国彬,王旭东,宰金珉.复杂环境下地铁深基坑变形行为的实测研究.岩土工程台北, 1997, 601-608.
    [52] Mana, A.I., and Clough, G.W.. Prediction of movements for braced cuts in clay. Journal of the Geotechnical Engineering Division, ASCE, 1981, 107(6): 759-777.
    [53] Terzaghi, K.. Theoretical Soil Mechanics. John Wiley & Sons, Inc. New York, 1943.
    [54] Wong, K.S., and Broms, B.B.. Lateral wall deflection of braced excavation in clay. Journal of Geotechnical Engineering Division, ASCE, 1989, 115(6): 853-870.
    [55] Ou, C.Y., Hsieh, P.G., and Chiou, D.C.. Characteristics of ground surface settlement during excavation. Canadian geotechnical journal, 1993, 30(5): 758-767.
    [56] Masuda, T.. Behavior of deep excavation with diaphragm wall. M.S. thesis, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, 1993.
    [57] Carder, D.R.. Ground movements caused by different embedded retaining wall construction techniques. Transport Research Laboratory Report 172. Berkshire, U.K., 1995.
    [58] Fernie, R., and Suckling, T.. Simplified approach for estimating lateral movement of embedded walls in U.K. ground. Proceedings, International Symposium on Geo Aspects of Underground Construction in Soft Ground. City University, London, 1996, 131-136.
    [59] Wong, I.H., Poh, T.Y., and Chuah, H.L.. Performance of excavations for depressed expressway in Singapore. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(7): 617-625.
    [60]刘兴旺,施祖元,益德清,吴世明.软土地区基坑开挖变形性状研究.岩土工程学报, 1999, 21(4): 456-460.
    [61] Yoo, C.. Behavior of braced and anchored walls in soils overlying rock. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(3): 225-233.
    [62] Moormann, C.. Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database. Soils and Foundations, 2004, 44(1): 87-98.
    [63] Lee, F.H., Yong, K.Y., Quan, K.C.N., and Chee, K.T.. Effect of corners in strutted excavations: field monitoring and case histories. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4): 339-349.
    [64] Blackburn, J.T., and Finno, R.J.. Three-dimensional responses observed in an internally braced excavation in soft clay. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(11): 1364-1373.
    [65] Hsieh, P.G., and Ou, C.Y.. Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
    [66] Kung, G.C., Juang, C.H., Hsiao, E.L., and Hashash, Y.A.. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 731-747.
    [67]刘建航.地下墙深基坑周围地层移动的预测和治理之二-基坑周围地层移动的预测.地下工程与隧道, 1993, (2): 2-15.
    [68]徐方京,谭敬慧.地下连续墙深基坑开挖综合特性研究.岩土工程学报, 1993, 15(6): 28-33.
    [69]刘兴旺,益德清,施祖元,吴世明.基坑开挖地表沉陷理论分析.土木工程学报, 2000, 33(4): 51-55.
    [70]唐孟雄,赵锡宏.深基坑周围地表沉降及变形分析.建筑科学, 1996, (4): 31-35.
    [71]李小青,王朋团,张剑.软土基坑周围地表沉陷变形计算分析.岩土力学, 2007, 28(9): 1879-1882.
    [72]聂宗泉,张尚根,孟少平.软土深基坑开挖地表沉降评估方法研究.岩土工程学报, 2008, 30(8): 1218-1223.
    [73] Motta, E.. Generalized Coulomb active-earth pressure for distanced surcharge. Journal of Geotechnical Engineering, 1994, 120(6): 1072-1079.
    [74]卢廷浩.考虑粘聚力及墙背粘着力的主动土压力公式.岩土力学, 2003, 23(4): 470-473.
    [75]顾长存,陆海源,刘汉龙,高玉峰,周云东.不同变位模式下挡土墙被动土压力的计算与分析.河海大学学报(自然科学版), 2005, 33(4): 430-433.
    [76] Vananzio, R.G.. Active earth thrust by backfills subject to a line surcharge. Canadian Geotechnical Journal, 2005, 42(5): 1255-1263.
    [77]廖济川,陆毓松.应用Rankine理论的主动土压力计算.岩土力学, 2000, 25(6): 958-993.
    [78] Gnanapragasam, N.. Active earth pressure in cohesive soils with an inclined ground surface. Canadian Geotechnical Journal, 2000, 37(1): 171-177.
    [79] Silvestri, V.. Limitations of the theorem of corresponding states in active earth pressure problems. Canadian Geotechnical Journal, 2006, 43(7): 704-713.
    [80] Bishop, J.F.W.. On the complete solution to problems of deformation of a plastic-rigid material. Journal of the Mechanics and Physics of Solids, 1958, (2): 43-53.
    [81] Finn, W.D.. Applications of limit plasticity in mechanics. Journal of Soils and Foundations Division, ASCE, 1967, 93(SM5): 101-102.
    [82] Soubra, A.H.. Static and seismic passive earth pressure coefficients on rigid retaining structures. Canadian Geotechnical Journal, 2000, 37(3): 463-478.
    [83]高和斌,朱本珍,朱大勇.被动土压力系数的上限解.路基工程, 2003, (3): 14-17.
    [84] Sokolovskii, V.V.. Statistics of Soil Media. Pergamon, London, 1960.
    [85] Cheng, Y.M.. Seismic lateral earth pressure coefficients for c-фsoils by slip line method. Computers and Geotechnics, 2003, (30): 661-670.
    [86]朱大勇,周早生,钱七虎.土体主动滑动场及主动土压力计算.计算力学学报, 2005, 17(1): 98-104.
    [87] Terzaghi, K., and Peck, R.B.. Soil Mechanics in Engineering Practice. 2.ed.. Wiley, New York,1967.
    [88] Bang, S.. Active earth pressure behind retaining walls. Journal of Geotechnical Engineering, ASCE, 1985, 111(3): 407-412.
    [89]陈书申.经典土压力理论的局限与小变位土压力计算的建议.土工基础, 1997, 11(2): 15-21.
    [90]张吾渝,李宁波.非极限状态下的土压力计算方法研究.青海大学学报(自然科学版), 1999, 17(4): 8-12.
    [91]徐日庆.考虑位移和时间的土压力计算方法.浙江大学学报(工学版), 2000, 34(4): 370-375.
    [92]陈页开,徐日庆,杨晓军,龚晓南.基坑工程柔性挡墙土压力计算方法.工业建筑, 2001, 31(3): 1-4.
    [93]梅国雄,宰金珉.考虑变形的朗肯土压力模型.岩石力学与工程, 2001, 20(6): 851-853.
    [94]梅国雄,宰金珉.考虑位移影响的土压力近似计算方法.岩土力学, 2001, 22(1): 83-86.
    [95]张文慧,田军,王保田,张福海,李守德.基坑围护结构上的土压力与土体位移关系分析.河海大学学报(自然科学版), 2005, 33(5): 575-579.
    [96]朱剑锋,徐日庆.考虑时效和土拱效应桩-锚基坑土压力计算方法.浙江大学学报(工学版), 2009, 43(4): 766-770.
    [97] Sherif, M.A., Fang, Y.S., and Sherif, R.I.. KA and K0 behind rotating and non-yielding walls. Journal of Geotechnical Engineering, 1984, 110(1): 14-56.
    [98]周应英,任美龙.刚性挡土墙主动土压力的试验研究.岩土工程学报, 1990, 12(2): 19-26.
    [99] Fang, Y.S., and Ishibashi, L.. Static earth pressure with various wall movements. Journal of Geotechnical Engineering, 1986, 112(3): 317-333.
    [100] Sovinc, I.. Relaxation and creep effects in flexible retaining structure. Proceedings, Fifth European Conference on Soil Mechanics and Foundation Engineering, 1972, 1: 208-213.
    [101] James, R.G., and Bransby, P.L.. Experimental and theoretical investigations of a passive earth pressure problem. Geotechnique, 1970, 20(1): 17-37.
    [102]岳祖润,彭胤宗,张师德.压实粘性填土挡土墙土压力离心模型试验.岩土工程学报, 1992, 14(6): 90-95.
    [103]陆培毅,严驰,刘润.粘性土基于室内模型试验土压力分布形式的研究.建筑结构学报, 2002, 36(10): 84-88.
    [104]陆培毅,严驰,顾晓鲁.砂土基于室内模型试验土压力分布形式的研究.土木工程学报, 2003, 36(10): 83-86.
    [105]李兴高,刘维宁.挡墙上作用土压力和水土压力的测试研究.岩石力学与工程学报, 2005, 24(12): 2149-2154.
    [106] Ng, C.W.W., Lings, M.L., and Nash, D.F.T.. Back-analysing the bending moment in a concrete diaphragm wall. The Structural Engineer, 1992, 70(23-24): 421-426.
    [107] Poh, T.Y., Wong, I.H., and Chandrasekaran, B.. Performance of two propped diaphragm walls instiff residual soils. Journal of Performance of Constructed Facilities, 1997, 11(4): 190-199.
    [108]刘国彬,王印昌.实测钢筋计应力推算地下连续墙弯矩方法探讨.地下工程与隧道, 2003, (1): 6-12.
    [109]吴小将,刘国彬,卢礼顺,李志高.地铁车站地下连续墙裂缝控制标准的优化探讨.岩石力学与工程学报, 2005, 24(S2): 5395-5399.
    [110]史世雍,刘涛.基于裂缝控制原理的地下连续墙弯矩分析.岩土工程技术, 2006, 20(2): 80-83.
    [111]焦志斌,刘永绣.地下连续墙测试中弯矩的计算方法探讨.岩土工程学报, 2006, 28(S1): 1485-1488.
    [112]徐朔明.上海银行大厦SRC框架-核心筒结构设计.建筑结构, 2007, (5): 47-49.
    [113]吕嵩山,吕敬之.地下连续墙作为桥梁基础在软土地区的应用.公路交通科技, 2005, 22(9): 106-110.
    [114]王卫东,王建华.深基坑支护结构与主体结构相结合的设计、分析与实例.北京:中国建筑工业出版社, 2007.
    [115]藤井清光,植田进武编,祝国荣等译.地下连续墙工法的理论与实际.北京:中国铁道出版社, 1986.
    [116]李桂花,周生华,周纪煜.地下连续墙垂直承载力试验研究.同济大学学报, 1993, 21(4): 575-580.
    [117]焦莹.软弱土中大深度后压浆地下连续墙竖向承载力试验研究.土木工程学报, 2008, 41(3): 84-90.
    [118]文华,程谦恭,陈晓东,孟凡超.竖向荷载作用下矩形闭合地下连续墙桥梁基础群墙效应研究.岩土力学, 2009, 30(1): 152-156.
    [119]刘兴旺.地下连续墙围护结构和承重结构内力变形及承载机理分析.博士学位论文,浙江大学,杭州, 1998.
    [120]王卫东.承重地下连续墙与高层建筑桩箱基础及地基共同作用的理论和实测研究.博士学位论文,同济大学,上海, 1996.
    [121]王卫东.地下连续墙的沉降计算.岩土工程学报, 1999, 21(1): 122-125.
    [122]常红,郑越.竖向承载地下连续墙的沉降计算.中国公路学报, 2003, 16(3): 73-76.
    [123]孟凡超,陈晓东,舒中潘.地下连续墙基础沉降数值分析.公路, 2007, (3): 55-58.
    [124] Hibbitt, Karlsson and Sorensen (HKS). ABAQUS/Standard User’s Manual-Version 6.4. Pawtucket, R.I, 2003.
    [125] Roscoe, K.H., and Burland, J.B.. On the generalized stress-strain behaviour of wet clay. Proceedings, Engineering Plasticity, J. Heyman and F. A. Leckie., eds., Cambridge University Press, New York, 1968, 535-609.
    [126] Roscoe, K.H., Schofield, A.N., and Thurairajah, A.. Yielding of clays in the state wetter thancritical. Geotechnique, 1963, 13(3): 211-240.
    [127] Roboski, J.F.. Three-dimensional performance and analyses of deep excavations. PhD thesis, Northwestern University, Evanston, Illinois, 2004.
    [128]上海市建设和管理委员会.上海市地基基础设计规范(DGJ08-11-1999).上海, 1999.
    [129]上海市建设和管理委员会.岩土工程勘察规范(DGJ08-37-2002).上海, 2002.
    [130]魏道垛,胡中雄.上海浅层地基土的前期固结压力及有关压缩性参数的试验研究.岩土工程学报, 1980, 2(4): 13-22.
    [131] Brinkgreve, R.B.J.. Selection of soil models and parameters for geotechnical engineering application. In: Soil Constitutive Models, Proceedings of the Sessions of the Geo-Frontiers 2005 Congress, ASCE. Austin, Texas, 2005, 69-98.
    [132]赵锡宏,姜洪伟,袁聚云.上海软土各向异性弹塑性模型.岩土力学, 2003, 24(3): 322-330.
    [133]中华人民共和国行业标准.建筑桩基技术规范(JGJ94-94).北京:中国建筑工业出版社, 1995.
    [134] Son, M., and Cording, E.J.. The response of buildings to excavation-induced ground movements. PhD thesis, University of Illinois, Urbana-Champaign, Illinois, 2003.
    [135] Jardine, R.J., Potts, D.M., Fourie, A. B., and Burland, J. B.. Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction. Geotechnique, 1986, 36(3): 377-396.
    [136] Lee, I.K., White, W., and Ingles, O.G.. Geotechnical Engineering. Pitman Publishing Incorporated, Massachusetts, 1983.
    [137] Roboski, J., and Finno, R.J.. Distributions of ground movements parallel to deep excavations in clay. Canadian Geotechnical Journal, 2006, 43(1): 43-58.
    [138] Ou, C.Y., Wu, T.S., and Hsieh, H.S.. Analysis of deep excavation with column type of ground improvement in soft clay. Journal of Geotechnical Engineering, ASCE, 1996, 122(9): 709-716.
    [139] Kezdi, A.. Bearing capacity of piles and pile groups. Proceedings, the 4th International Conference of ICSMFE. London, 1957.
    [140]佐藤悟.基础桩承载机理.土木技术, 1965, 20(1-8): 10-80.
    [141] Vijayvergiya, V.N., and Focht, J.A.. A new way to predict the capacity of piles in clay. Proceedings, the 4th Annual Offshore Technology Conference, Houston, Tex., 1972, 2: 865-887.
    [142]陈龙珠,梁国钱,朱金颖.桩轴向荷载-沉降曲线的一种解析算法.岩土工程学报, 1994, 16(6): 30-38.
    [143] Potts, D.M., and Zdravkovic, L.. Finite Element Analysis in Geotechnical Engineering: Theory. Thomas Telford, London, 1999.
    [144] Potts, D.M.. Numerical analysis: A virtual dream of reality?. Geotechnique, 2003, 53(6): 634-573.
    [145] Potyondy, J.G.. Skin friction between various soils and construction materials. Geotechnique,1961, 11(4): 339-353.
    [146] Randolph, M.F.. Science and empricism in pile foundation design. Geotechnique, 2003, 53(10): 847-875.
    [147] Lubliner, J., Oliver, J., Oller, S., and O?ate, E.. A plastic-damage model for concrete. International Journal of Solids and Structures, 1989, 25(3): 229-326.
    [148] Lee, J., and Fenves, G. L.. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
    [149] Oguejiofor, E.C., and Hosain, M.U.. A parametric study of perfobond rib shear connectors. Canadian Journal of Civil Engineering, 1994, (21): 614-625.
    [150] Machacek, J., and Studnicka, J.. Perforated shear connector. Steel and Composite Structures, 2002, 2(1): 51-66.
    [151] Valente, M.I.B., and Cruz, P.J.S.. Experimental analysis of Perfobond shear connection between steel and lightweight concrete. Journal of Constructional Steel Research, 2004, (60): 465-479.
    [152]深圳市勘察测绘院主编.深圳地区建筑深基坑支护技术规范(SJG 05-96).深圳, 1996.
    [153]夏才初,潘国荣.土木工程监测技术.北京:中国建筑工业出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700