用户名: 密码: 验证码:
SnO_2和ZnO类透明导电氧化物薄膜的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明导电氧化物薄膜材料(TCO)具有优越的光电性质,是当前科学研究和工业发展的热点之一。本论文以第一性原理计算为工具,系统研究了掺杂元素的种类、含量、分布等对于二氧化锡类TCO材料的影响,重点关注其导电性和透光性的变化规律及其机制。另外,鉴于薄膜中应变存在的普遍性及其对性能的巨大影响,本文以氧化锌薄膜为例,研究了平面应变对氧化锌薄膜结构、电子以及相关性质的作用规律,并通过与经典的弹性二轴应变模型对比,指出了晶格和原子弛豫对薄膜性能的影响。
     传统观点认为SnO2中Sb元素的含量极限为20 at.%,而最近实验中该含量已高达85 at.%。这种现象用传统观点无法解释,而且预示着可在更宽的Sb含量范围内制成性能良好的TCO材料。本文利用基于密度泛函理论的CASTEP模块,详细计算了Sb元素含量对于SnO2:Sb体系结构、电子和光学性质的影响。结果表明,随着Sb元素含量的升高该体系发生晶格扩张。对其热稳定性的计算表明该体系可在0~100 at.%的整个Sb含量范围形成连续型置换固溶体。随着Sb元素含量的升高,SnO2:Sb体系发生半导体-金属-半金属转变,相应的电子和光学性质也发生转变。多体效应和原子对称性对这种转变的发生起到关键作用。
     对SnO2:In的计算表明,铟原子和锡原子具有不同的电子结构和原子半径,导致SnO2:In体系随着铟元素含量的升高发生晶格扩张和结构畸变。热稳定性的差异决定了In3+的最稳定分布是占据处于不同(110)片层的Sn格点位置。铟元素的引入使得SnO2:In体系在费米能级以上出现了一个受主能级,且价带顶处空穴有效质量较大,因此SnO2:In具有较小的p型电导率。SnO2:In的导带和带隙基本不随In元素含量变化,因此其在紫外-可见光范围内的光谱基本不变,而从价带到费米能级附近空能级的电子跃迁使得红外区介电常数、反射率和吸收系数增加。本文中在0~25 at.%范围内,铟元素的含量增加12.5 at.%,吸收系数和反射率提高一倍。
     对具有不同F元素含量和分布的SnO2:F的第一性计算表明,在0~12.5 at.%范围内,随着氟元素含量的提高,该体系晶胞体积增大,热稳定性缓慢降低,但F原子偏聚会使体系热稳定性增强。掺杂后SnO2:F的带隙中出现一个由F 2s电子轨道构成成的窄能级,电导率增加。F原子间距最小时,SnO2:F薄膜具有最佳的低辐射特性。由于F元素具有较大的电负性,掺杂后SnO2:F的极性键增多,体系趋于开放,SnO2:F薄膜与玻璃基体的结合力增强。
     对平面应力下纤锌矿结构氧化锌薄膜变形行为的第一性原理计算表明,自由的原子和晶格弛豫使得该体系发生塑性弛豫。与经典的线性弹性变形相比,塑性弛豫引发的体积变化和泊松比更小,其最终结构具有较高的热稳定性,且在任何方向上都没有应力,因此达到一个亚稳态。塑性弛豫减弱了压电效应。随着应变绝对值的增加,Γ点的带隙宽度减小,导电率增加。在张应变下两种Zn-O键的电荷分布不均匀性减小,而在压应变下电荷分布不均匀性增大。在相同的平面应变下,塑性弛豫引起的电荷分布不均匀性变化小于弹性变形。
Due to the superior electronic and optical performances, transparent conducting oxide (TCO) film material is one of highlights of recent scientific research and industrial development. In this thesis, we systemically studied the affects of species, content and distribution of dopants on the properties of SnO2 type TCO films using the first principles calculations. The emphases concerned were the changes and mechanisms of the electronic and optical properties of these materials. In addition, considering the universality of strain in thin film and its strong impact on the properties, ZnO film was selected as a sample to investigate the influence of in-plane strain on the electronic, optical and related properties. The effects of lattice and atomic relaxation was clarified through comparisons with the classic linear elastic biaxial strain model.
     The traditional concept claimed that the limitation of Sb concentration in SnO2 was 20 at.%. However, the value in recent experiment has reached a maximum of 85 at.%, which can’t only been reasonably explained with the traditional concept, but may also indicated the probability of obtaining TCO materials in a larger range of Sb concentration. In our calculations using the CASTEP module based on the density function theory, the influences of Sb content on the structural, electronic and optical properties of SnO2:Sb were studied in details. It’s found that with increasing Sb content, the lattice expands with different deviations in the lattice constant. The calculations on thermal stability suggest the probability of a continuous solid solution of the SnO2:Sb system in the content range of 0~100% for Sb element. With elevated Sb concentrations the semiconductor-metal- semimetal transition occurs, along with the changes in the electronic structure and optical properties. The many body effect and the atomic symmetry play the essential role in these transitions.
     Due to the different radii and electronic configurations of Sn and In atoms, the lattice of SnO2:In expands and the structure distorts with increasing In content. According to the thermal stability calculation, the preferred In3+ distribution is to occupy the Sn sites in different (110) slabs. In dopant brings about an acceptor band located slightly above the Fermi level, resulting in the small p-type conductivity taking into account of the large effective mass of electron holes in the valence band maximum. The stable conduction band and the bandgap lead to the unaltered optical spectra of SnO2:In in the ultraviolet-visible region, while the transition from the occupied levels to the empty band near Ef is considered to interpret the dramatic rise in the dielectric function, reflectivity and absorption in the infrared region. In our calculations the reflectivity and absorption will be doubled if the content of In increases 12.5 at.% in the range of 0~25 at.%.
     The calculations on SnO2:F with different F contents and distributions show that, with increasing F content in the range of 0~12.5 at.%, the lattice expands and the thermal stability decreases, but the segregation of F atom will increase the stability energetically. The F leads to the apparance of a new narrow band composed by F 2s orbitals in the original bandgap, causing the increase of electric conductivity. The SnO2:F thin film with the minimum F interspace possesses the best Low-E performance. Due to the great electronegativity of F atom, the content of polar chemical bond increases, leading to improvment of combination of thin film with the glass substrate.
     The calculations on the deformation of wurtzite ZnO under in-plane stress indicate that, free lattice and atom relaxation leads to the plastic relaxation. Comparing with the classic linear elastic deformation behavior, this peculiar plastic relaxation results in a metastable state with larger thermal stability, smaller varieties in lattice volume and Poisson ratio and no stress in any direction. The plastic relaxation reduces the piezoelectric effect and ultimately decreases the energy conversion efficiency. The Eg atΓpoint decreases with the absolute value of strains, while the inhomogeneity in charge distribution between the two kinds of Zn-O bonds is reduced under tensile strain but enlarged under compressive strain. The variation is smaller in plastic relaxation than the elastic one under the same in-plane strain.
引文
1王慧,刘静.透明导电薄膜概述,陶瓷, 2007, 12:12-17
    2蔡珣,王振国.透明导电薄膜的研发态势.功能材料信息高层论坛,2005,2(4):15-23
    3张亚萍,殷海荣,黄剑锋,李启甲.透明导电薄膜的研究进展.光机电信息研究生论坛,2006: 56-60
    4韩雪,夏慧,吴丽君.透明导电膜及靶材.电子元件与材料, 1998,17(1):30-35
    5赵玉涛,何维凤,李素敏,李长生.柔性透明导电薄膜的研究现状、应用及趋势.江苏大学学报自然科学版,2005, 26(1) :62-66
    6李世涛,乔学亮,陈建国.透明导电薄膜的研究现状及应用.激光与光电子进展,2003,40(7): 53-59
    7 J.C.C. Fan, T.B. Reed, J.B. Goodenough. Selective transparent film of dielectric/metal/ dielectric multilayer system. Proceedings of ninth Intersoc Energy Convers Engineering Conference, 1974, 26:341-343
    8 J.H. Lee, S.H. Lee, K.L. Yoo, et al. Deposition of a conductive near-infrared cutoff filter by radio-frequency magnetron sputtering.Applied Optics, 2002,41(16): 3061-3067
    9 J. L. Vossen, G. Haas,M. H. Francombe,R. H. Hoffman (Eds).Physics of Thin Films.New—York: Academic Press,l977:42-84
    10张忠模.美国透明导电薄膜材料研究获重大进展.功能材料信息科技信息. 2005,2(2):36
    11 A. Ambrosini, A. Duarte, K.R. Poeppelmeier, M. Lane, C.R.Kannewurf, T.O. Mason. Electrical, Optical, and Structural Properties of Tin-Doped In2O3–M2O3 Solid Solutions (M=Y, Sc). J. Solid State Chem, 2000,153:41-47
    12 I. Hamberg, A. Hjortsberg, C. Granqvist. High quality transparent heat reflectors of reactively evaporated indium tin oxide. Appl. Phys. Lett, 1982, 40:362-364
    13 I. Hamberg, C.G. Granqvist, K.F. Berggren, B.E. Sernelius, L.Engstrom. Band-gap widening in heavily Sn-doped In2O3. Phys. Rev. B, 1984, 30:3240-3249
    14 I. Hamberg, C.G. Granqvist. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys, 1986, 60:R123-R159
    15 S.H. Brewer, S. Franzen. Indium Tin Oxide Plasma Frequency Dependence on Sheet Resistance and Surface Adlayers Determined by Reflectance FTIR Spectroscopy. J. Phys. Chem. B, 2002, 106: 12986-12992
    16 O.N. Mryasov, A.J. Freeman. Electronic band structure of indium tin oxide and criteria for transparent conducting behavior. Phys. Rev. B, 2001, 64:233111
    17 A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang, T.J. Marks. Chemical and thin-film strategies for new transparent conducting oxides. MRS Bull, 2000, 25:41-45
    18 A. Hjortsberg, I. Hamberg, C. Granqvist. Transparent and heat-reflecting indium tin oxide films prepared by reactive electron beam evaporation. Thin Solid Films, 1982, 90:323-326
    19 J. Bregman, Y. Shapira, H. Aharoni. Effects of oxygen partial pressure during deposition on the properties of ion-beam-sputtered indium-tin oxide thin films. J. Appl. Phys, 1990, 67:3750-3753
    20 J. Fan, F. Bachner, G. Foley. Effect of O2 pressure during deposition on properties of rf-sputtered Sn-doped In2O3 films. Appl. Phys. Lett, 1977, 31:773-775
    21 J. Shin, S. Shin, J. Park, H. Kim. Properties of dc magnetron sputtered indium tin oxide films on polymeric substrates at room temperature. J. Appl. Phys, 2001, 89:5199-5203
    22 P. Armistead, H. Thorp. Modification of Indium Tin Oxide Electrodes with Nucleic Acids: Detection of Attomole Quantities of Immobilized DNA by Electrocatalysis. Anal. Chem, 2000, 72:3764-3770
    23 P. Armistead, H. Thorp. Oxidation Kinetics of Guanine in DNA Molecules Adsorbed onto Indium Tin Oxide Electrodes. Anal. Chem, 2001, 73:558-564
    24 S.R. Ramanan. Dip coated ITO thin-films through sol–gel process using metal salts. Thin Solid Films, 2001,389:207-212
    25 S.H. Brewer, S. Franzen. Calculation of the electronic and optical properties of indium tin oxide by density functional theory. Chemical Physics, 2004, 300:285-293
    26 A. Hultaker, A. Hoel, C.G. Granqvist, A.V. Doorn, M.J. Jongerius. Optical, Electrical and Microstructural Properties of Tin Doped Indium Oxide Films Made from Sintered Nanoparticles. Mat. Res. Soc. Symp. Proc, 2002,703:185-189
    27 T. Minami, T. Yamamoto, Y. Toda and T. Miyata. Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering. Thin Solid Films, 2000,373:189-194
    28 Y. Meng, X.L. Yang, H.X. Chen, J. Shen, Y.M. Jiang, Z.J. Zhang, Z.Y. Hua.A new transparent conductive thin film In2O3:Mo.Thin Solid Films, 2001,394(1-2):218-222
    29孟扬,沈杰,蒋益明,陈佾,孔令柱,沃松涛,杨锡良,陈华仙,章壮健.透明导电氧化物薄膜的新进展.光电子技术, 2002, 22:125-130
    30 H.L. Ma, D.H. Zhang, Y.P. Chen, S.Y. Li, J. Ma, F.Y. Zong. Large-scale flourine-doped textured transparent conducting SnO2 films deposited by APCVD. Proc. SPIE, 1996, 2897:104-112
    31 S. Shanthi; C. Subramanian; P. Ramasamy. Growth and characterization of antimony doped tin oxide thin films.J. Crystal Growth, 1999,197(7):858-864
    32 R.G. Gordon. Criteria for choosing transparent conductors. MRS Bulletin,2000;25(8):52-57
    33 B. Thestrup, J. Schou. Transparent conducting AZO and ITO film s produced by pulsed laser ablation at 355 nm. Appl. Phys. A, l999, 69:S807-S8l0
    34 D.G. Balk, S.M. Cho. Application of sol-gel derived films forZnO/n-Si junction solar cells. Thin Solid Films, 1999,354(1-2):227-231
    35 M.A. Martinez, J. Herrero, M.T. Gutierrez. Deposition of transparent and conductive AI- doped ZnO thin films for photovoltaic solar cells. Sol. Energy Mater. Sol. Cells, 1997, 45(1):75-86
    36 J.C. Lee, K.H. Kang, S.K. Kim, K.H. Yoon, I.J. Park, J. Song. RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu (In,Ga)Se2 based solar cell applications. Sol. Energy Mater. Sol. Cells, 2000, 64(2):l85-l95
    37 T. Minami. New n-type transparent conducting oxides. MRS Bulletin,2000,25(8):38-44
    38 F.J. Haug, Z.S.Geller, H. Zogg, A.N. Tiwari, C. Vignali. Influence of deposition conditions on the thermal stability of ZnO:Al films grown by rf magnetron sputtering. J. Vac. Sci. Technol. A, 2001, l9(1):171-l74
    39 J.H. Hu, R.G. Gordon. Deposition of boron doped zinc-oxide films and their electrical and optical-properties. J. Electrochem. Soc, l992, l39(7):2014-2022
    40 Y. Hagiwara, T. Nakada, A. Kunioka. Improved CIGS thin film solar cells using a transparent conducting ZnO:B window layer. Sol. Energy Mater. Sol. Cells, 2001, 67 (1-4):267-271
    41 P. Nunes, A. Malik, B. Fernandes, E. Fortunato, P. Vilarinho, R. Martins. Influence of the doping and annealing atmosphere on zinc oxide thin films deposited by spray pyrolysis. Vacuum, 1999, l52(1-2):45-49
    42 S. Ghosh, A. Sarkar, S. Chaudhuri, A.K. Pal, Optical properties of ZnO:A l film s prepared by reactive dc magnetron sputtering. Vacuum, l991, 42 (10-l1):645-648
    43 M.D. Olvera, A. Maldonado, R. Asomoza, R. Castanedo-Perez, G. Torres-Delgado, J. Canetas- Ortega. Conductive and transparent ZnO: Al thin films obtained by chemical spray. J. Mater. Sci. - Mater. Electron, 2000, ll(5):383-387
    44 H. Kim, A. Pique, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey. Effect of aluminum doping on zinc oxide thin films grow n by pulsed laser deposition for organic light-emitting devices. Thin Solid Films, 2000,377:798-802
    45 J.H. Hu, R.G. Gordon. Atmospheric-pressure chemical vapor deposition of gallium doped zinc -oxide thin-films from diethylzinc, water and triethyl gallium. J. Appl. Phys, l992, 72(11): 5381-5392
    46 A. Suzuki, T. Matsushita, H. Yamanishi, D. Tanaka, T. Aoki, M. Okuda. Large transmittance changes induced in Ga-doped ZnO thin films prepared by pulsed laser deposition.Jap. J. Appl. Phys. 2, l996, 35(12A):L1603-L1604
    47 H. Hirasawa, M. Yoshida, S. Nakamura, Y. Suzuki, S. Okada, K. Kondo. ZnO:Ga conducting films grown by DC arc-discharge ionplating. Solar Energy Materials & Solar Cells, 2001, 67(1-4):231-236
    48 K.J. Kim, Y.R. Park. Large and abrupt optical band gap variation in In-doped ZnO. Appl. Phys. Lett, 2001, 78(4):475-477
    49 M.M. Yoshida, F.P.D. lgado, W.E. Lopez, E. Andrade. Structure and morphology of high quality indium-doped ZnO films obtained by spray pyrolysis. Thin Solid FiIms,2000, 376 (1-2):99-109
    50 T. Minami, T. Yamamoto, T. Miyata. Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering. Thin Solid Films, 2000, 366(1-2):63-68
    51 J. Demerchant, M. Cocivera. Preparation and doping of zinc-oxide using spray-pyrolysis. Chem. Mater, 1995, 7(9):1742-1-1749
    52 H. Sato, T. Minami, S. Takata. Highly transparent and conductire group-IV impurity-doped ZnO thin films prepared by radio-frequency magnetron sputtering. J. Vac. Sci. Technol. A, 1993, 11(6):2975-2979
    53 R.G. Gordon, H. F. Liang. Surface reactions in the chem ical vapor deposition of highly transparent and conductive fluorine-doped zinc oxide. Abstr. Am. Chem. Soc, 1998, 216:201
    54 J.H. Hu, R.G. Gordon.Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous-silicon solar-cells. Solar Cells, 1991, 30(1-4):437-450
    55 J.F. Chang, M.H. Hon. The effect of deposition temperature on the properties of Al-doped zinc oxide thin films. Thin Solid FiIms,2001, 386 (1):79-86
    56 T. Minami, S. Suzuki and T. Miyata. Transparent conducting impurity-co-doped ZnO:Al thin films prepared by magnetron sputtering. Thin Solid Films, 2001,398 -399:53–58
    57余旭浒,马瑾,计峰,王玉恒,张锡健,程传福,马洪磊.薄膜厚度对ZnO:Ga透明导电膜性能的影响.功能材料, 2005, 36:25-27
    58付恩刚,方玲,庄大明,张弓.绒ZnO:Al(ZAO)透明导电薄膜的制备.太阳能学报, 2003, 24: 672-676
    59 K. Tominaga, T. Murayama, I. Mori, T. Okamoto, K. Hiruta, T. Moriga, I. Nakabayashi. Conductive transparent films deposited by sim ultaneous sputtering of zinc-oxide and indium- oxide targets. Vacuum, 2000, 59(2-3):546-552
    60 N. Naghavi, C. Marcel, L. Dupont, A. Rougier, J.B. Leriche. C. Guery. Structural and physical characterization of transparent conducting pulsed laser deposited In2O3-ZnO thin films. J. Mater. Chem, 2000, 10(10):2315-2319
    61 G.B. Palmer, K.R. Poeppelmeier, T.O. Mason. Conductivity and transparency of ZnO/SnO2- cosubstituted In2O3. Chem. Mater,l997, 9(12):3l2l-3l26
    62 A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe. Enhancement of carrier generation in Mgln2O4 thin film prepared by pulsed Laser deposition technique. Mater. Sci. Eng., B,1998, 54:5l-54
    63 T. Minami, H. Sonohara, S. Takata, H. Sato. Highly transparent and conductive zinc-stannate thin-films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys 2, l994, 33(12A):Ll693- Ll696
    64 T. Minami, H. Sonohara, T. Kakumu, S. Takata. Highly transparent and conductive Zn2ln205 thin-films prepared by RF magnetron sputtering.Jpn. J. Appl. Phys. 2, l995, 34(8A ):L97l- L974
    65 T. Minami, T. Kakumu, Y. Takeda, S. Takata. Highly transparent and conductive Zn-In2O3 thin films prepared by dc magnetron sputtering. Thin Solid Films, 1996, 291:1-5
    66 T. Minamim, Y. Takeda, S. Takata, F. Kakumu. Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering. Thin Solid Films, l997, 308:l3-l8
    67 T. Minami, T. Kakumu, K. Shimokawa, S. Takata. New transparent conducting ZnO-In203- SnO2thin films prepared by m agnetron sputtering. Thin Solid Films, l998, 317(1-2):318-321
    68 T. Minami, T. Kakumu, K. Shimokawa, S. Takata, I. Fukuda.Preparation of highly transparent and conducting Ga2O3-In2O3 films by direct current magnetron sputtering. J. Vac. Sci. Technol., A, l997, l5(3):958-962
    69 T. Moriga, D.D. Edwards, T.O. Mason. Phase relationships and physical properties of homolo- gous compounds in the zinc oxide-indium oxide system. J. Am. Cera. Soc.,1998, 81(5):1310 -1316
    70 J.W. Elam, A.B.F. Martinson, M.J. Pellin, J.T. Hupp. Synthesis of transparent conducting oxide coatings. IPC8 Class: AB05D512FI.
    71成立顺,孙本双,钟景明,何力军,王东新,陈焕铭. ITO透明导电薄膜的研究进展.稀有金属快报, 2008,27:10-16
    72 H. Kim, A. Pique, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey. Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films, 2000, 377:798-802
    73 F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, K. Yamada, H. Matsui, M. Motoyama. Highly conducting indium tin oxide (ITO) thin films deposited by pulsed laser ablation. Thin Solid Films, 1999, 350:79-84
    74 K.T.R. Reddy, H. Gopalaswamy, P.J. Reddy, R.W. Miles. Effect of gallium incorporation on the physical properties of ZnO films grown by spray pyrolysis. J. Cryst.Growth, 2000, 210: 516-520
    75 N. Al-Dahoudi, H.Bisht. Transparent conducting, anti-static and anti-static–anti-glare coatings on plastic substrates.Thin Solid Films, 2001, 392: 299-304
    76徐美君.低辐射玻璃生产应用及市场浅析.建筑玻璃与工业玻璃,1999(3),24-26
    77方玉萍.我国镀膜玻璃生产概况及市场分析.新型建筑材料,1994(3),8-11
    78 E.Kh.Shokr, M.M.Wakkad, H.A.Abd El-Ghanny, H.M.Ali. Sb-doping effects on optical and electrical parameters of SnO2 films. Journal of Physics and Chemistry of Solids,61(2000)75-85
    79 E.I. Schropp and Miro Zeman. New Developments in Amorphous Thin Film Silicon Solar Cells. IEEE Transactions on Electron Devices, 1999, 46:2086-2092
    80鲁大学.透明导电氧化物镀膜玻璃在光伏电池中的应用.玻璃深加工, 2008, 205:33-37
    81 John Robertson. Disorder, band offsets and dopability of transparent conducting oxides. Thin Solid Films, 2008, 516:1419-1425
    82 P. P. Edwards, A. Porch, M. O. Jones, D. V. Morganb and R. M. Perks. Basic materials physics of transparent conducting oxides. Dalton Trans., 2004, 2995–3002
    83 J. R. Bellingham, W. A. Phillips and C. J. Adkins. Intrinsic performance limits in transparent conducting oxides. J. Mater. Sci. Lett.,1992, 11, 263-265
    84 D. R. Kammler, T. O. Mason, D. L. Young, T. J. Coutts, D. Ko,K. R. Poeppelmeier and D. L. Williamson. Comparison of thin film and bulk forms of the transparent conducting oxide solutionCd1+xIn2-2xSnxO4. J. Appl. Phys., 2001, 90:5979-5985
    85 O.N. Mryasov and A.J. Freeman. Electronic band structure of indium tin oxide and criteria for transparent conducting behavior. Phys. Rev. B, 2001, 64:233111
    86 G.J. Exarhos, X.D. Zhou. Discovery-based design of transparent conducting oxide films. Thin Solid Films, 2007, 515:7025-7052
    87 H. Kizaki, K. Sato, A. Yanase, H. Katayama-Yoshida. Ab initio calculations of CuAlO2-based dilute magnetic semiconductor. Physica B, 2006, (376–377):812–815
    88 C.P. Park, S.B. Zhang, S.H. Wei. Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B, 2002, 66 :073202
    89 H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita. P-type electrical conduction in transparent thin films of CuAlO2. Nature, 1997,389:939-942
    90 F.ABenko, F.P. Koffyberg. Opto-electronic properties of CuAlO2. J. Phys. Chem. Solids, 1984, 45 :57-59
    91 J. Pellicer-Porres, A. Segura, E.M.A. M. Saitta, A. Polian, J. C. Chervin, B. Canny. Vibrational properties of delafossite CuGaO2 at ambient and high pressures. Phys. Rev. B, 2005, 72 (6) : 064301
    92 V. Jayalakshmi, R. Murugan, B. Palanivel. Electronic and structural properties of CuMO2 (M = Al, Ga, In). J Alloys Comp, 2005, 388(1):19-22
    93 G. Thomas. Invisible circuits. Nature, 1997, 389: 907-908
    94 D.E.Jiang, E.A. Carter,First Principles assessment of ideal fracture energies of materials with mobile impurities:implications for hydrogen embrittlementof metals.Acta Mater, 2004, 52: 4801-4807
    95 A. Pourghazi, M. Dadsetani. Eleetronic and Optical Properties of BaTe, BaSe and BaS from first prineiples.Physica B, 2005, 370:35-45
    96 M.Masahiro, M. Carlo, e tal.First Prineiples caleulation study of multi-silicon doped fullerenes. 2005, 33:237-243
    97 S.Saib, N.Bouarissa. High-pressure band parameters for GaAs: first principles calculations, Solid-State Electron., 2006, 50:763-768
    98 M.Born. J. R. Ann. Physik. 1927,84: 457
    99赵成大,固体量子化学,高等教育出版社,第一版,1997:40-80
    100徐晓白译,A.A.莱文著,固体量子化学,科学出版社,第一版,1982:38-78
    101 A.M.Mazaone. Structural and electronic properties of silicon nanograins with aluminum contacts: a density functional study, Physica E, 2005,27:204-209
    102 A.Stroppa, M.Peressi. Structural properties and stability of defected ZnSe/GaAs(001) inter- faces, Comput. Mater. Sci., 2005, 33:256-262
    103 X. Cartoixa, L.W. Wang. Microscopic Dielectric Response Functions in Semiconductor Quantum Dots. Phys.Rev.Lett, 2005, 94:236824
    104 V. Ranjan, S,B.Omran, et al. Properties of GaN/ScN and InN/ScN superlattices from first principles, Phys.Rev.B, 2005, 72:085315
    105 S.K. Estreicher, M. Sanati, et al, Thermodynamics of impurities in semiconductors.Phys. Rev. B, 2004, 70:125209
    106 Neyman, M. Konstantin, Theoretical aspects of heterogeneous catalysis: Applications of density functional methods. Catal. Today, 2005, 105:2-16
    107 J.E. Jaffe, J.A. Snyder, et al. LDA and GGA calculations for high pressure phase transitions in Zn0 and MgO, Phys. Rev. B, 2000, 62:1660-1665
    108 O. Khorgolkhuu, P. Pawel, et al. Ab initio band bending, metal-induced gap states, and Schottky barriers of a carbon and a boron nitride nanotube device, Phys. Rev. B, 2006, 73: 233402.
    109 C. Carlos, L.A. Mokhtar, et al. Nuclear reactivity idices in the context of spin polarized density functional theory. Chem. Phys, 2006, 322:303-310
    110 R.D. McRoberts, C.G. Fonstad, D. Hubert. Thermoabsorption in SnO2. Phys. Rev. B. 1974.10: 5213-5219
    111 A.E. Souza, S.H. Monteiro, C.V. Santilli, S.H. Pulcinelli. Electrical and Optical characte- ristics of SnO2 thin films prepared by dip-coating from aqueous colloidal suspensions. J. Mater. Sci: Mater Electron, 1977,8: 265-270
    112 A.M. Mazzone, V. Morandi. A Tight Binding study of defects in nanocrystalline SnO2. Comp Mater Sci. 2005,33: 346-350
    113 P. Rajaram, Y. C. Goswami, S. Rajagopalan, V. K. Gupta. Optical and structural properties of SnO2 films grown by a low-cost CVD technique. Mater. Lett. 2002,54: 158-163
    114 V. Stambouli, A. Zebda, E. Appert, C. Guiducci. Semiconductor oxide based electrodes for the label-free electrical detection of DNA hybridization: Comparison between Sb doped SnO2 and CdIn2O4. Electrochimica Acta. 2006, 51: 5206-5214
    115 T. T?tte, T. Avarmaa, R. L?hmus, U. M?eorg, M.E. Pistol, R. Raid, I. Sildos, A. L?hmus. Transparent and conductive Sb-doped tin oxide SPM tips prepared by sol–gel method. Mater. Sci . Eng C . 2002,19:101-104.
    116 V. Geraldo, V.A. Luis, P. Lisboa-Filho, C.M. Santos. Drude's model calculation rule on electrical transport in Sb-doped SnO2 thin films, deposited via sol–gel. J. Phys. Chem. Solids, 2006, 67:1410-1415
    117 S.Y.. Lee, B.O. Park. Structural, electrical and optical characteristics of SnO2:Sb thin films by ultrasonic spray pyrolysis. Thin Solid Films, 2006, 510:154-158
    118 H.L. Ma, X.T. Hao, J. Ma. Thickness dependence of properties of SnO2:Sb films deposited on flexible substrates. Appl. Surf. Sci, 2002, 19:313-318
    119 J. Huang, A. X. Lu, B. Zhao, Q. Wan. Branched growth of degenerately Sb-doped SnO2 nanowires. Appl.Phys.Lett, 2007,91:073102
    120 J.B. Han, H.J. Zhou, Q.Q. Wang. Conductivity and optical nonlinearity of Sb doped SnO2films.Mater Lett, 2006,60:252-254
    121 H. J. Jeon, M. K. Jeon, M. Kang, Y. L. Lee, S. G. Lee, Y. K. Hong, B. H. Choi. Synthesis and characterization of antimony-doped tin oxide (ATO) with nano meter-sized particles and their conductivities. Mater Lett, 2005, 59:1801-1810
    122 V. Geraldo, V. Briois, L.V.A. Scalvi, C.V. Santilli. EXAFS investigation on Sb incorporation effects to electrical transport in SnO2 thin films deposited by sol–gel. J. Eur. Ceram. Soc, 2007, 27:4265-4268
    123 X.J. Feng, J. Ma, F. Yang, F. Ji, F.J. Zong, C.N. Luan, H.L. Ma. Structural and UV photolum- inescence properties of single crystalline SnO2 films grown onα- Al2O3 (0001) by MOCVD. Solid State. Commun, 2007,144:269-272
    124 T. Kololuoma, A. H. O. Karkkainen, A. Tolonen, J. T. Rantala. Lithographic patterning of benzoylacetone modified SnO2 and SnO2:Sb thin films. Thin Solid Films, 2003, 440: 184-189
    125 K. C. Mishra, K. H. Johnson, P. C. Schmidt. Electronic structure of antimony-doped tin oxide. Phys. Rev. B, 1995, 51:13972-13976
    126 S. V. Eremeev, O. I. Velikokhatnyi, P. N. Kumta, A. I. Potekev. Effects of Antimony Doping on Electronic Structure of SnO2. Russ. Phys. J, 2004, 47:701-704
    127 L. K. Dua, A. De, S. Chakraborty, P. K. Biswas. Study of spin coated high antimony content Sn-Sb oxide films on silica glass. Mater. Charact, 2007, 59:578-586
    128 M. Segall, P. Linda, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys: Condens. Matter, 2002,14:2717-2744
    129 J. P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45:13244-13249.
    130 D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev. B, 1990, 41:7892-7895
    131 G. P. Francis, M. C. Payne. Finite basis set corrections to total energy pseudopotential calculations. J. Phys: Condens. Matter, 1990, 2:4395-4404
    132 N. Troullier, J. L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 1991, 43:1993-2006
    133 D. L. Zhang, L. Tao, Z. B. Deng, J. B. Zhang, L. Y. Chen. Surface morphologies and properties of pure and antimony-doped tin oxide films derived by sol–gel dip-coating processing. Mater. Chem. Phys, 2006, 100:275-280
    134 G. K. H. Kim, S. W. Lee, D. W. Shin, C. G.Park. Effect of Addition on Electrical and Optical Properties of Tin Oxide Film. J. Am. Ceram. Soc, 1994, 77 (4): 915-521
    135 B. Grzeta, E. Tkalcec, C. Goebbert. Structural studies of nanocrystalline SnO2 doped with antimony: XRD and M?ssbauer spectroscopy. J. Phys. Chem. Solids, 2002, 63:765-772
    136 R.D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances inhalides and chalcogenides. Acta Crystallogr. A, 1976, 32:751-767
    137 D. Dobler, S. Oswald, J. Werner, W. Arabczyk, G. Behr, K. Wetzig. X-ray photoe- lectron spectroscopy investigation of segregation processes at Sb and In doped SnO2. Chem. Phys, 2003, 286: 375-383
    138 V.I. Zubov, N.P. Tretiakov, J.N.T Rabelo, J..FS. Ortiz. Calculations of the thermal expansion, cohesive energy and thermodynamic stability of a Van der Waals crystal - fullerene C60. Phys. Lett. A, 1994, 194:223-227
    139 E.K. Shokr, M.M. Wakkad, H.A.A. El-Ghanny, H.M. Ali. Sb-doping effects on optical and electrical parameters of SnO2 films. J. Phys. Chem. Solids, 2000, 61: 75-85
    140 P.A. Cox, R.G. Egdell, C. Harding, W.R. Patterson, P. Tavener. Surface properties of antimony doped tin(IV) oxide: A study by electron spectroscopy. Surf. Sci, 1982, 123:179203
    141 R.G. Egdell, W.R. Flavell, P. Tavener. Antimony-doped tin (IV) oxide: Surface composition and electronic structure. J. Solid State Chem, 1984, 51:345-354
    142 H. kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono. P-type electrical conduction in transparent thin films of CuAlO2. Nature. 1997, 389:939-942
    143 J.A. Majewski, S. Birner, A. Trellakis, M. Sabathil, P. Vogl. Advances in the theory of electronic structures of semiconductors. Phys. Status Solidi C, 2004, 1: 2003-2027
    144 F. Yakuphanoglu. Electrical conductivity, Seebeck coefficient and optical properties of SnO2 film deposited on ITO by dip coating. J. Alloys Compd, 2009, 470:55-59
    145 R.D. Sole, R. Girlanda. First-principles investigations of the electronic, optical and chemical bonding properties of SnO2. Comp Mater Sci, 1998, 10: 368-372
    146 K.F. Berggren, B.E. Sernelius. Band-gap narrowing in heavily doped many-valley semiconductors. Phys. Rev. B, 1981, 24 :1971-1986
    147 W. Liu, X.P. Cao, Y.F. Zhu and L.L. Cao. The effect of dopants on the electronic structure of SnO2 thin film. Sensor. Actuat. B, 2000, 66:219-221
    148 M. Fox, Optical Properties of Solids. New York: Oxford University Press,2001:143
    149 Y. Hu and S. H. Hou. Preparation and characterization of Sb-doped SnO2 thin films from colloidal precursors. Mater. Chem. Phys, 2004, 86:21-25
    150 Z. Nabi, A. Kellou, S.M. Cabih, A. Khalfi, N. Benosman. Opto-electronic properties of rutile SnO2 and orthorhombic SnS and SnSe compounds. Mater. Sci. Eng. B, 2003, 98:104-115
    151 T. Nutz, M. Haase. Wet-Chemical Synthesis of Doped Nanoparticles: Optical Properties of Oxygen-Deficient and Antimony-Doped Colloidal SnO2. J. Phys. Chem. B, 2000, 104:8430 -8437
    152 J.L. Jacquemin, C. Raisin, S. Robin-Kandare. Reflection spectrum of Sn4+O22- and comparison with its band structure. J. Phys. C: Solid State Phys, 1976,9:593-598
    153 P.D. Paulson, S.S. Hegedus. Accurate determination of optical constants of textured SnO2 using low incidence angle spectroscopic ellipsometry. J. Appl. Phys, 2004, 96 (10):5469-5477
    154 P.I. Rovira, R.W. Collins. Analysis of specular and textured SnO2:F films by high speedfour-parameter Stokes vector spectroscopy. J. Appl. Phys, 1999, 85:2015-2025
    155E. Elangovan, K. Ramamurthi. A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Appl. Surf .Sci, 2005, 249:183-196
    156 Y.F. Yan, J. Zhou, X.Z. Wu, H.R. Moutinho, M.M. Al-Jassim. Structural instability of Sn-doped In2O3 thin films during thermal annealing at low temperature. Thin Solid Films, 2007, 515:6686-6690
    157 F.C. Lai, L.M. Lin, R.Q. Gai, Y.Z. Lin, Z.G. Huang. Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data. Thin Solid Films, 2007, 515: 7387-7392
    158 H. Hong, S. Kim, D. Kim, T. Lee, J. Song, J.H. Cho, C. Sone, Y. Park, T. Seong. Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatter- ning process. Appl. Phys. Lett, 2006, 88:103505
    159 S.H. Brewer, S. Franzen. Calculation of the electronic and optical properties of indium tin oxide by density functional theory. Chem. Phys, 2004, 300:285-293
    160 Z. Qiao, R. Latz, D. Mergel. Thickness dependence of In2O3:Sn film growth. Thin Solid Films, 2004, 466:250-258
    161 R. Outemzabet, N. Bouras, N. Kesri. Microstructure and physical properties of nanofaceted antimony doped tin oxide thin films deposited by chemical vapor deposition on different substrates. Thin Solid Films. 2007, 515:6518-6520
    162 Z.G. Ji, Z.J. He, Y.L. Song, K. Liu, Z.Z. Ye. Fabrication and characterization of indium-doped p-type SnO2 thin films. J. Cryst. Growth, 2003, 259: 282-285
    163 Z.G. Ji, L.N. Zhao, Z.P. He, Q. Zhou, C. Chen. Transparent p-type conducting indium-doped SnO2 thin films deposited by spray pyrolysis. Mater. Lett, 2006, 60:1387-1389
    164 S. Deshpande, S. Seal, P. Zhang, H.J. Cho and N. Posey. Electrode architecture in tuning room temperature sensing kinetics of nanomicrointegrated hydrogen sensor. Appl. Phys. Lett, 2007, 90:073118
    165 A.Salehi, M. Gholizade. Gas-sensing properties of indium-doped SnO2 thin films with variations in indium concentration. Sensor Actuat. B, 2003, 89:173-179
    166 S. Shukla, P. Zhang, H. J. Cho, Z. Rahman, C. Drake, S. Seal. Hydrogen- discriminating nanocrystalline doped-tin-oxide room-temperature microsensor. J. Appl. Phys, 2005, 98:104306
    167 M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter, 2002, 14:2717-2744
    168 J.S. Lin, A. Qteish, M.C. Payne, V. Heine. Optimized and transferable nonlocal separable ab initio pseudopotentials, Phys. Rev. B, 1993, 47:4174-4180
    169 P.K. Manoj, B. Joseph, V.K. Vaidyan, D.S.D. Amma. Preparation and characterization of indium- doped tin oxide thin films. Ceram. Inter, 2007, 33:273-278
    170 A.K. Singh, A. Janotti, M. Scheffler, C.G. Van de Walle. Sources of Electrical Conductivity inSnO2. Phys. Rev. Lett, 2008, 101:055502
    171 D.R. Lide, CRC Handbook of Chemistry and Physics., Boca Raton:CRC Press, 2005:109
    172 T.Y. Rantala, T.S. Rantala, V. Lantto. Surface relaxation of the (110) face of rutile SnO2. Surf. Sci, 1999, 420:103-109
    173 S.V. Eremeev, O.I. Velikokhatnyi, P.N. Kumta, A.I. Potekaev. Effects of Antimony Doping on Electronic Structure of SnO2. Russ. Phys. J, 2004, 47: 701-704
    174 K. Xiong, J. Robertson, S. J. Clark. Band gaps and defect levels in functional oxides. Thin Solid Films, 2006, 496:1-7
    175 A.D. Becke. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys, 1993, 98:1372-1377
    176 F. Aryasetiawan, O. Gunnarsson. The GW method. Rep. Prog. Phys, 1998, 61:237-312
    177 K.C. Mishra, K.H. Johnson. Electronic structure of antimony-doped tin oxide, Schmidt. Phys. Rev. B, 1995, 51:13972-13976
    178 R.D. Sole, R. Girlanda. Optical properties of semiconductors within the independent-quasipart- icle approximation. Phys. Rev. B, 1993, 48:11789-11795
    179周家斌,任毅,付志强,王成彪.低辐射镀膜玻璃的研究开发进展.建筑结构学报,2007, 28: 104-
    108
    180刘起英,汪建勋,陈华等.低辐射镀膜玻璃的现状及展望.玻璃, 2002 ,29(6) : 92131
    181李克艳,薛冬峰.电负性概念的新拓展.科学通报, 2008, 53:2442-2448
    182杨鸾芳.从电负性概念看化学键.保山师专学报,2000,19:18-20
    183刘翊纶,董耐芳,刘达元.基础元素化学.北京:高等教育出版社, 1992:79
    184 E.K. Shokr, M.M. Wakkad, H.A.A. El-Ghanny, H.M. Ali. Sb-doping effects on optical and electrical parameters of SnO2 films. Journal of Physics and Chemistry of Solids, 2000, 61: 75-85
    185 M. Arbab, L.J. Shelestak, C.S. Harris. Value-Added Flat-Glass Products for the Building, Trans- portation Markets, Part 1. Glass Technology center, PPG Industries Inc., Pittsburgh, Pa. January 2005:30-35
    186黄钧.浮法玻璃的原理和生产.秦皇岛:《玻璃》编辑部,1987:1-12
    187王崇光.玻璃行业前景分析及对策.中国建材,2001,6:45-48
    188陈正树等.浮法玻璃.武汉:武汉工业大学出版社,1997:12-56
    189闵参厚.中国浮法玻璃的发展.中国建材,2002,4:56-58
    190 H.R. Swift. How surface chemistry affeets float glass properties. Glass industry, 1984:27-30
    191刘世民.浮法玻璃表面渗锡研究及电气石纳米薄膜制备与性能表征.燕山大学工学博士论文2007:28
    192刘世民,秦国强,于栋利,李东春.紫外荧光检测浮法玻璃下表面渗锡含量的装置. ZL 2006 10012605.8
    193 S. Barraud, L. Clavelier, T. Ernst. Electron transport in thin SOI, strained-SOI and GeOI MOSFET by Monte-Carlo simulation. Solid-State Electronics, 2005, 49:1090-1097
    194 Z.L. Wang. Nanostructures of zinc oxide. Mater.Today, 2004, 7:26-33
    195 Y.F. Li, B. Yao, Y.M. Lu, C.X. Cong, Z.Z. Zhang, Y. Q. Gai, C. J. Zheng, B. H. Li, Z. P. Wei, D. Z. Shen, X. W. Fan, L. Xiao, S. C. Xu, Y. Liu. Characterization of biaxial stress and its effect on optical properties of ZnO thin films. Appl. Phys.Lett, 2007, 91: (021915)1-3
    196 Y.Q. Gai, B. Yao ,Y.M. Lu, D.Z. Shen, J.Y. Zhang, D.X.Zhao, X.W. Fan. Electronic and optical properties of ZnO thin film under in-plane biaxial strains: Ab initio calculation. Phys. Lett. A, 2007, 372:72-76
    197 Z.C.Tu, X.Hu. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys. Rev. B. 2006, 74 (035434) :1-6.
    198 X. Wu, D. Vanderbilt, D.R. Hamann. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev.B, 2005, 72 (035105): 1-13
    199 I.B. Kobiakov. Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures. Solid State Commun, 1980,35:305-310
    200 T. Azuhata, M. Takesada, T. Yagi, A. Shikanai, S.F. Chichibu, K. Torii, A. Nakanura, T. Sota, G. Cantwell, D.B. Eason, C.W. Litton. Brillouin scattering study of ZnO. J. Appl. Phys, 2003, 94: 968-972
    201 A. Waag, T. Gruber, K. Thonke, R. Sauer, R. Kling, C. Kirchner, H. Ress. ZnO metal–organic vapor phase epitaxy: present state and prospective applications. J. Alloy. Comp, 2004, 371:77-81
    202 C. Solbrig. Piezoelektrische Messungen an Zinkoxydkristallen. Z. Phys, 1965, 184: 293-298
    203 B. Kobiakov. Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures. Solid State Commun, 1980, 35:305-310
    204 B. M. A. Ashrafi, Y. Segawa, K. Shin, T. Yao. Nucleation and interface chemistry of ZnO deposited on 6H-SiC. Phys. Rev. B, 2005, 72:155302
    205 B.M.A. Ashrafi, N.T. Binh, B.P. Zhang, Y. Segawa. Strain relaxation and its effect in exciton resonance energies of epitaxial ZnO layers grown on 6H-SiC substrates. Appl. Phys. Lett, 2004, 84:2814-2816
    206 C.Y. Zhao, R.P. Li, B.Sun, P.S. Xu, G.B. Zhang, G.Q. Pan. A Study of ZnO/Si(111) InterfaceStructure by Synchrotron Radiation X-Ray Grazing Incident Diffraction. Chin. J. Semicond, 2007, 28: 1756
    207 Z.L. Wang. The new field of nanopiezotronics. Mater.Today, 2007,10:20-27
    208 V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V.Akhmatskaya, R.H.Nobes. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave Study. Int. J.Quantum Chem, 2000, 77:895-910
    209 J.P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett, 1996,77: 3865-3868
    210 J.P. Perdew, Y.Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45:13244-13249
    211 S. Baroni, S. Gironcoli, A. D. Corso, P. Giannozzi. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys, 2001, 73: 515-562
    212 R.M. Martin, Electronic Structure, Part 2. Cambridge:Cambridge University Press, 2004:165
    213 P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. B, 1964, 136: 864-871
    214 J. Sun, H.T. Wang, J.L. He, Y.J. Tian. Ab initio investigations of optical properties of the high- pressure phases of ZnO. Phys. Rev. B, 2005, 71:125132
    215 J.Wróbel, J.Piechota. On the structural stability of ZnO phases. Solid State Commun. 2008, 146:324-329
    216 H. Karzel, W. Potzel, M. Kofferlein, W. Schiessl, M. Steiner, U. Hiller, G.M. Kalvius, D.W. Mitchell, T.P. Das, P. Blaha, K. Schwarz, M.P. Pasternak. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys. Rev. B, 1996, 53:11425-11438
    217 D.W. Zhou, P. Peng, J.S. Liu. Electronic structure and stability of Mg-Ce intermetallic compounds from first-principles calculations. J. Alloy. Comp, 2007, 428: 316-321
    218 J. Uddin, G.E. Scuseria. Theoretical study of ZnO phases using a screened hybrid density functional. Phys. Rev. B, 2006, 74: 245115
    219 J.M. Wagner, F. Bechstedt. Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B, 2002, 66: 115202
    220 X.D. Wang, J.H. Song, J. Liu, Z. L. Wang. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science, 2007, 316:102-105
    221 Y. Qin, X.D. Wang, Z.L. Wang. Microfibre–nanowire hybrid structure for energy scavenging.Nature, 2008, 451:809-81314
    222 R.S. Yang, Y. Qin, L.M. Dai, Z.L. Wang. Power generation with laterally-packaged piezoelectric fine wires. Nature Nanotechnol, 2008, 314:34-39
    223 M. Usuda, N. Hamada, T. Kotani, M.V. Schilfgaarde. All-electron GW calculation based on the LAPW method: Application to wurtzite ZnO. Phys. Rev. B, 2002, 66:125101
    224 M. Goano, F. Bertazzi, M. Penna and E. Bellotti. Electronic structure of wurtzite ZnO: Nonlocal pseudopotential and ab initio calculations. J. Appl. Phys, 2007, 102:083709
    225 A.D. Becke. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys, 1993, 98:1372-1377
    226 F. Aryasetiawan, O. Gunnarsson. The GW Method. Rep. Prog. Phy, 1998, 61: 237-312
    227 C. Li, W.L. Guo, Y. Kong, H.J. Gao. First-principles study of the dependence of ground-state structural properties on the dimensionality and size of ZnO nanostructures. Phys. Rev. B, 2007, 76:035322
    228 W.J. Fan, J.B. Xia, P.A. Agus, S.T. Tan, S.F. Yu, X.W. Sun. Band parameters and electronic structures of wurtzite ZnO and ZnO/MgZnO quantum wells. J. Appl. Phys, 2006, 99:013702
    229 Schleife, C. Rodl, F. Fuchs, J. Furthmüller, F. Bechstedt. Strain influence on valence-band ordering and excitons in ZnO: An ab initio study. Appl. Phys. Lett, 2007, 91:241915
    230 T. Gruber, G. M. Prinz, C. Kirchner, R. Kling, F. Reuss, W. Limmer, A. Waag. Influences of biaxial strains on the vibrational and exciton energies in ZnO. J. Appl. Phys, 2004, 96:289-293
    231 R. Ghosh, D. Basak and S. Fujihara. Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J .Appl. Phys. 2004, 96:2689-2692
    232 W. Shan, R.J. Hauenstein, A.J. Fischer, J.J. Song, W.G. Perry, M.D. Bremser, R.F. Davis, B. Goldenberg. Strain effects on excitonic transitions in GaN: Deformation potentials. Phys. Rev. B, 1996, 54:13460-13463
    233 Z.Q. Yang, Z.Z. Xu. Electronic and optical properties of unstrained and strained wurtzite GaN. Phys. Rev. B, 1996, 54:17577-17584
    234 S. anchez-Porta, E. Artacho, J. M. Soler. Analysis of atomic orbital basis sets from the projection of plane-wave results. J.Phys:Condens. Matter, 1996, 8:3859 -3880
    235 M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne. Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B, 1996,54: 16317-16320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700