用户名: 密码: 验证码:
共振瑞利散射和共振非线性散射光谱在环境分析中的新应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共振瑞利散射(RRS)和共振非线性散射(RNLS)是20世纪90年代以后发展起来的新分析技术。由于它们的高灵敏度和简易性引起了人们的关注,研究和应用日益增多。其研究和应用已涉及蛋白质、核酸、多糖类等生物大分子、药物、有机物的分析和纳米微粒的研究。近年来此项技术在环境分析中的应用也受到重视,分析应用研究逐渐增多,表明RRS和RNLS法在环境分析中有广泛的应用潜力,成为扩展这一技术分析应用的新领域和发展环境分析的新途径。为此我们选择阴离子表面活性剂、氯化氢和氯化物及铝和汞等金属离子作为研究对象,研究和发展用RRS和RNLS法测定环境中上述物质的新体系和新方法。
     1、共振瑞利散射和共振非线性散射法测定阴离子表面活性剂的研究
     (1)盐酸氯丙嗪与阴离子表面活性剂的相互作用的RRS和RNLS光谱及其分析应用
     在pH 3.0~5.0的HAc-NaAc缓冲溶液中,盐酸氯丙嗪与十二烷基苯磺酸钠、十二烷基磺酸钠和十二烷基硫酸钠等阴离子表面活性剂反应形成离子缔合物时,仅能引起吸收光谱和荧光光谱的微小变化,但却能导致共振瑞利散射(RRS)的显著增强并产生新的RRS光谱,与此同时也观察到二级散射(SOS)和倍频散射(FDS)等共振非线性散射(RNLS)的增强。最大RRS峰分别位于277、369和278 nm处,而它们的SOS峰均在548 nm附近,最大FDS峰均在393 nm附近。其中RRS法灵敏度最高,它对十二烷基苯磺酸钠、十二烷基硫酸钠和十二烷基磺酸钠的检出限分别为0.018、0.046和0.200μg·mL~(-1),而其线性范围分别为0.06~10.0、0.15~15.0和0.67~12.5μg·mL~(-1)。文中研究了反应产物的吸收、荧光、RRS、SOS和FDS光谱特征,适宜的反应条件及分析化学性质,据此发展了一种用RRS技术灵敏、简便、快速测定阴离子表面活性剂的新方法。
     (2)Co(Ⅱ)-5-Br-PADAP螯合物与十二烷基苯磺酸钠的相互作用的RRS光谱及其分析应用
     在pH 1.8~3.0的BR缓冲溶液中,钴(Ⅱ)与2-(5-溴-2-吡啶偶氮)-5-二乙氨基酚(5-Br-PADAP,HL)反应形成紫红色螯合阳离子,此时仅能引起吸收光谱的变化,不能导致共振瑞利散射(RRS)的增强。当钴(Ⅱ)-5-Br-PADAP螯合阳离子与阴离子表面活性剂十二烷基苯磺酸钠(SDBS)、十二烷基磺酸钠(SLS)和十二烷基硫酸钠(SDS)作用时,仅能与SDBS进一步反应形成三元离子缔合物并引起RRS的显著增强,而不与SDS和SLS产生类似反应。离子缔合物的RRS峰分别位于306nm、370nm和650nm处,在一定范围内RRS增强(ΔI)与SDBS浓度成正比,当用650nm处测量时,其检出限为0.043μg·mL~(-1),线性范围为0.14~7.00μg·mL~(-1)。文中研究了反应产物的RRS光谱特征,适宜的反应条件及分析化学性质,据此发展了一种在一定量SDS和SLS等阴离子表面活性剂存在下选择性测定SDBS的新方法,方法灵敏、简便、快速,用于天然水和污水中SDBS的测定,能获得满意结果。文中还对反应机理进行了讨论。
     (3)Co(Ⅱ)-钴试剂螯合物与十二烷基苯磺酸钠的相互作用的RRS光谱及其分析应用
     在pH 1.8~3.0的BR缓冲溶液中,钴(Ⅱ)与钴试剂(5-Cl-PADAB,L)反应形成螯合物阳离子[CoL_2]~(2+),当它与十二烷基苯磺酸钠(SDBS)、十二烷基硫酸钠(SDS)及十二烷基磺酸钠(SLS)等阴离子表面活性剂作用时,仅能与SDBS反应形成三元离子缔合物{[CoL_2][SDBS]_2},疏水性的离子缔合物在水的挤压作用下和范德华力的作用下彼此靠近,进一步聚集形成纳米微粒{[CoL_2][SDBS]_2}_n(平均粒径为30nm)。此时将引起共振瑞利散射(RRS)的显著增强并产生新的RRS光谱,而SDS和SLS则不产生类似反应,也不导致RRS的明显变化,因此可用于在SDS和SLS等存在下选择性测定SDBS,当用516 nm作为检测波长测定SDBS时,其线性范围为0.05~6.00μg·mL~(-1),检出限为0.015μg·mL~(-1)。文中研究了反应体系的RRS光谱特征,适宜的反应条件和影响因素,考察了共存物质的影响,表明方法有良好的选择性。因此,基于离子缔合物纳米微粒{[CoL_2][SDBS]_2}_n的形成发展了一种用RRS技术,灵敏、简便、快速测定环境水样中SDBS的新方法,文中还对反应机理进行了讨论。
     2、共振瑞利散射和共振非线性散射法测定氯化氢和氯化物的研究
     (1)Ag~+-Cl~--荧光素体系的RRS和RNLS光谱及其分析应用
     在pH 3.5~4.4的醋酸盐缓冲溶液中,Ag~+与Cl~-反应形成AgCl。当Ag~+适当过量时,AgCl能与Ag~+结合形成[AgCl·Ag]~+阳离子,它能进一步借静电引力和疏水作用力与荧光素一价阴离子(HL~-)反应形成离子缔合物[(AgCl·Ag)HL],该疏水性的离子缔合物能在水相挤压作用和范德华力的作用下彼此靠近而进一步聚集,形成平均粒径约为20 nm的纳米微粒[(AgCl·Ag)HL]_n。此时仅能引起吸收光谱和荧光光谱的微小变化,但能导致共振瑞利散射(RRS)以及倍频散射(FDS)和二级散射(SOS)等共振非线性散射(RNLS)的显著增强,其最大RRS、FDS和SOS波长分别位于313nm、349nm和564nm处。三种散射增强(ΔI~(RRS)、ΔI~(FDS)和ΔI~(SOS))在一定范围内均与氯离子浓度成正比,均可用于氯离子的测定。其中以RRS最灵敏,对于氯离子的检测,其线性范围是0.006~1.90μg·mL~(-1),检出限为1.9 ng·mL~(-1);在环境空气或无组织排放废气氯化氢(HCl)的检测中,当采气体积为60 L时,其线性范围是0.001~0.33 mg·m~(-3),检出限为3.30×10~(-4)mg·m~(-3);在有组织排放废气HCl的检测中,当采气体积为10 L时,其线性范围是0.008~2.00 mg·m~(-3),检出限为2.00×10~(-3)mg·m~(-3)。本文研究了[AgCl.Ag.HL]_n纳米微粒对吸收、荧光、RRS和RLNS光谱的影响、反应的适宜条件及影响因素,考察了共存物质的影响,表明方法有良好的选择性,据此利用上述反应发展了一种用RRS、SOS和FDS技术高灵敏度、高选择性和简便、快速测定环境空气和废气中HCl及环境水样中氯化物的新方法。文中还对反应机理进行了讨论。
     (2)Ag~+-Cl~--二卤代荧光素体系的RRS和RNLS光谱及其分析应用
     在pH 3.2~6.2的醋酸盐缓冲溶液中,Ag~+与Cl~-离子反应形成AgCl。当Ag~+适当过量时,AgCl能与Ag~+形成[AgCl·Ag]~+阳离子,它能进一步借静电引力和疏水作用力与二卤代荧光素(二氯荧光素、二溴荧光素和二碘荧光素)一价阴离子(HL~-)反应形成离子缔合物[(AgCl·Ag)HL],该疏水性的离子缔合物能在水相挤压作用和范德华力的作用下彼此靠近而进一步聚集,形成平均粒径约为20 nm的纳米微粒[(AgCl·Ag)HL]_n。此时仅能引起吸收光谱和荧光光谱的微小变化,但能导致共振瑞利散射(RRS)以及倍频散射(FDS)和二级散射(SOS)等共振非线性散射(RNLS)的显著增强,其中以二氯荧光素体系最灵敏。二氯荧光素体系的最大RRS、FDS和SOS波长分别位于314 nm、349 nm和564 nm处,三种散射增强(ΔI~(RRS)、ΔI~(FDS)和ΔI~(SOS))在一定范围内均与氯离子浓度成正比,均可用于氯离子的测定。其中以RRS法最灵敏,FDS法次之。三种方法(RRS、FDS和SOS法)对于氯离子的检测,其线性范围分别是0.006~1.94μg·mL~(-1)、0.030~2.20μg·mL~(-1)和0.074~1.94μg·mL~(-1);检出限分别为1.7 ng·mL~(-1)、8.9 ng·mL~(-1)和22.1 ng·mL~(-1)。在环境空气或无组织排放废气氯化氢(HCl)的检测中,当采气体积为60 L时,其线性范围分别是0.001~0.333mg·m~(-3)、0.005~0.375 mg·m~(-3)和0.012~0.333 mg·m~(-3);检出限分别为3.0×10~(-4)mg·m~(-3)、1.5×10~(-3)mg·m~(-3)和3.8×10~(-3) mg·m~(-3)。在有组织排放废气HCl的检测中,当采气体积为10 L时,其线性范围分别是0.006~2.00 mg·m~(-3)、0.031~2.25 mg·m~(-3)和0.074~2.00 mg·m~(-3);检出限分别为1.8×10~(-3)mg·m~(-3)、9.2×10~(-3)mg·m~(-3)和2.2×10~(-2)mg·m~(-3)。本文研究了[AgCl.Ag.HL]_n纳米微粒对吸收、荧光、RRS和RLNS光谱的影响、反应的适宜条件及影响因素,考察了共存物质的影响,表明方法有良好的选择性,据此利用上述反应发展了一种用RRS、SOS和FDS技术高灵敏度、高选择性和简便、快速测定环境空气和废气中HCl及环境水样中氯化物的新方法。文中还对反应机理进行了讨论。
     (3)Ag~+-Cl~-多取代荧光素体系的RRS和RNLS光谱及其分析应用
     在pH 3.2~5.7的醋酸盐缓冲溶液中,Ag~+与Cl~-离子反应形成AgCl。当Ag~+离子适当过量时,AgCl能与Ag~+结合形成[AgCl·Ag]~+阳离子,它能借静电引力和疏水作用力与多取代荧光素(曙红B、曙红Y、虎红、荧光桃红、乙基曙红)一价阴离子(HL~-)反应形成离子缔合物[(AgCl·Ag)HL],该疏水性的离子缔合物能在水相挤压作用和范德华力的作用下彼此靠近而进一步聚集,形成平均粒径约为20 nm的纳米微粒[(AgCl·Ag)HL]_n。此时虽仅引起吸收光谱和荧光光谱的微小变化,但能导致共振瑞利散射(RRS)以及倍频散射(FDS)和二级散射(SOS)等共振非线性散射(RNLS)的显著增强,其中以曙红B体系最灵敏。曙红B体系的最大RRS、FDS和SOS波长分别位于315 nm、349nm和564 nm处,三种散射增强(ΔI~(RRS)、ΔI~(FDD)和ΔI~(SOS))在一定范围内均与氯离子浓度成正比,均可用于氯离子的测定。其中以FDS法最灵敏、RRS法次之。三种方法(RRS、FDS和SOS法)对于氯离子的检测,其线性范围分别是0.005~1.22μg·mL~(-1)、0.004~2.92μg·mL~(-1)和0.01~1.94μg·mL~(-1);检出限分别为1.5 ng·mL~(-1)、1.2ng·mL~(-1)和3.9 ng·mL~(-1)。在环境空气或无组织排放废气氯化氢(HCl)的检测中,当采气体积为60 L时,其线性范围分别是0.0008~0.21mg·m~(-3)、0.0007~0.50 mg·m~(-3)和0.002~0.33 mg·m~(-3);检出限分别为2.50×10~(-4)mg·m~(-3)、2.00×10~(-4)mg·m~(-3)和6.70×10~(-4) mg·m~(-3)。在有组织排放废气HCl的检测中,当采气体积为10L时,其线性范围分别是0.005~1.25 mg·m~(-3)、0.004~3.00 mg·m~(-3)和0.01~2.00 mg·m~(-3);检出限分别为1.50×10~(-3)mg·m~(-3)、1.20×10~(-3)mg·m~(-3)和4.00×10~(-3)mg·m~(-3)。本文研究了[AgCl.Ag.HL]_n纳米微粒对吸收、荧光、RRS和RLNS光谱的影响、反应的适宜条件及影响因素,考察了共存物质的影响,表明方法有良好的选择性,据此利用上述反应发展了一种用RRS、SOS和FDS技术高灵敏度、高选择性和简便、快速测定环境空气和废气中HCl及环境水样中氯化物的新方法。文中还对反应机理进行了讨论。
     3、铝(Ⅲ)-铬偶氮酚KS-溴化十六烷基吡啶体系的RRS和RNLS光谱及其分析应用
     在pH 5.8~6.5的HAc-NaAc缓冲介质中,铝(Ⅲ)离子与铬偶氮酚KS(CALKS,H_2L)形成螯合阴离子,能进一步与溴化十六烷基吡啶(CPB)反应形成疏水性的三元离子缔合物Al(OH)[H_2L(CP)_4]_2,此离子缔合物在水相的“挤压”作用和范德华力的作用下能进一步聚集形成平均粒径约50 nm的纳米微粒{Al(OH)[H_2L(CP)_4]}_n,此时将引起共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)等共振非线性散射(RNLS)的显著增强,并出现新的散射光谱,其最大RRS、SOS和FDS光谱分别位于277 nm、550 nm和350 nm处。在一定范围内散射强度与铝(Ⅲ)的浓度均呈良好的线性关系。三种方法测定Al(Ⅲ)的线性范围和检出限分别为0.76~30.0 ng·mL~(-1)和0.23 ng·mL~(-1)(RRS)、0.73~35.0 ng·mL~(-1)和0.22 ng·mL~(-1)(SOS)以及1.03~35.0ng·mL~(-1)和0.31 ng·mL~(-1)(FDS)。本文研究了反应产物的RRS、SOS和FDS光谱特征、适当的反应条件和影响因素,试验了共存离子的影响,表明方法有较好的选择性。据此发展了用铬偶氮酚KS和溴代十六烷基吡啶的灵敏、简便、快速测定Al(Ⅲ)的新方法,应用于实际水样中Al(Ⅲ)的测定,取得了令人满意的结果。文中还对反应机理进行了讨论。
     4、汞(Ⅱ)-碘化物-溴化十四烷基吡啶体系的RRS和RNLS光谱及其分析应用
     在pH 1.8~6.0的Britton-Robinson(BR)的缓冲溶液中,Hg(Ⅱ)与适当过量的I~-生成[HgI_4]~(2-)配阴离子,此时仅能引起RRS光谱和RNLS光谱的微小变化;当加入溴化十四烷基吡啶(TPB)之后,[HgL_4]~(2-)配阴离子能与TPB反应形成离子缔合物,该疏水性的离子缔合物能在水相挤压作用和范德华力的作用下彼此靠近而进一步聚集,形成平均粒径约为10 nm的纳米微粒。此时仅能引起吸收光谱的微小变化,但能导致共振瑞利散射(RRS)以及倍频散射(FDS)和二级散射(SOS)等共振非线性散射(RNLS)的显著增强,其最大RRS、FDS和SOS波长分别位于366 nm、390 nm和570 nm处。三种散射增强(ΔI~(RRS)、ΔI~(FDS)和ΔI~(SOS))在一定范围内均与Hg(Ⅱ)浓度成正比,均可用于Hg(Ⅱ)的测定。其中以RRS最灵敏,其线性范围分别是0.003~0.125μg·mL~(-1)(RRS)、0.003~0.100μg·mL~(-1)(FDS)和0.004~0.100μg·mL~(-1)(SOS);检出限分别为0.8 ng·mL~(-1)(RRS)、0.9 ng·mL~(-1)(FDS)和1.2 ng·mL~(-1)(SOS)。本文还研究了反应产物的RRS、SOS和FDS光谱特征,适宜的反应条件及分析化学性质,还研究了共存物质的影响,讨论了反应机理。该方法用于地表水和污水及大气降水中汞的测定,结果满意。
Resonance Rayleigh scattering(RRS) and resonance non-linear scattering(RNLS) are new technologies developed in 1990s.Due to their remarkable characteristics of high sensitivity and simple operation,RRS and RNLS have received much attention. They have been extensively and successfully unitized to study and determination of such biological macromolecules as proteins,nucleic acids and polysaccharides,as well as pharmaceuticals,organic compounds and nanoparticles.In recent years,they have been more and more applied in environmental analysis,which show that RRS and RNLS have broad application potential in field of environmental analysis.This would become a new field for extending the application of these two techniques and a new way for developing environmental analysis.Therefore,taking anion surfactants, hydrogen chloride,chloride,metal ions such as aluminum(Ⅲ) and mercury(Ⅱ) as examples,we have studied and developed new systems and methods for the determination of the above analytes in environment using RRS and RNLS techniques.
     1 The Study on the Determination of Some Anionic Surfactants by Resonance Rayleigh Scattering and Resonance Non-Linear Scattering Spectra
     (1) Resonance Rayleigh Scattering and Resonance Nonlinear Scattering of the Interaction of Chlorpromazine Hydrochloride with Anionic Surfactants and Its Analytical Application
     In pH 3.0-5.0 acetate(HAc-NaAc) buffer media,chlorpromazine hydrochloride can react with some anionic surfactants such as sodium dodecylbenzene sulfonate, sodium dodecyl sulfate or sodium lauryl sulfonate.As a result,the spectra of absorption and fluorescence changed a little,but the resonance Rayleigh scattering(RRS) was enhanced greatly,and a new RRS spectrum appeared.At the same time,their resonance non-linear scattering(RNLS) such as second-order scattering(SOS) and frequency doubling scattering(FDS) were also increased.The maximum RRS wavelengths of three anionic surfactants were located at 277,369 and 278 nm.Their maximum scattering peaks were at 548 nm for SOS and 393 nm for FDS,respectively.The sensitivity of RRS method was much higher than those of SOS and FDS.The detection limits for three anionic surfactants were 0.018μg·mL~(-1) for sodium dodecylbenzene sulfonate,0.046μg·mL~(-1) for sodium dodecyl sulfate and 0.200μg·mL~(-1) for sodium lauryl sulfonate.There was a linear relationship between the RRS intensity and the drug concentration in the range of 0.06-10.0μg·mL~(-1) for sodium dodecylbenzene sulfonate, 0.15-15.0μg·mL~(-1) for sodium dodecyl sulfate and 0.67-12.5μg·mL~(-1) for sodium lauryl sulfonate,respectively.In this work,the spectral characteristics of the absorption, fluorescence,RRS,SOS and FDS,the optimum conditions of the reaction and the properties of analytical chemistry were investigated.A sensitive,simple and new method for the determination of anionic surfactants based on RRS has been developed.
     (2) Resonance Rayleigh Scattering Spectra of the Interaction of Co(Ⅱ)-2-(5-Bromo-2-Pyridylaro)-5-Diethylaminophenol with Sodium Dodecylbenzene Sulfonate and Its Analytical Application
     In pH 1.8-3.0 Britton-Robinson(BR) buffer medium,Co(Ⅱ) reacts with 5-Br-PADAP(2-(5-bromo-2-pyridylaro)-5-diethylaminophenol,HL) to form a cationic chelate Co[(HL)_2]~(2+).In this case,only the characteristics of the absorption spectra changed,but the intensity of the resonance Rayleigh scattering(RRS) didn't increase. When the cationic chelate reacts further with some anionic surfactants such as sodium dodecylbenzene sulfonate(SDBS),sodium dodecyl sulfate(SDS) and sodium lauryl sulfonate(SLS),only SDBS can form a ternary ion-association complex and result in the enhancement of the resonance Rayleigh scattering(RRS) enhanced greatly.But, both of SDS and SLS do not have the similar reaction.The RRS peaks for the ion-association complex are located at 306,370 and 650 nm,respectively.There was a linear relationship between the RRS intensity(A/RRs) and the SDBS concentration in a certain range,the detection limits was 0.043μg·mL~(-1) and the linear range was 0.14-7.00μg·mL~(-1) at 650 nm.In this work,the characteristics of the RRS spectrum,the optimum conditions of the reaction and the properties of analytical chemistry were investigated.A new method for selective determination of SDBS in the presence of some other anionic surfactants such as SDS and SLS has been developed.The method is sensitive,simple and fast,which can be applied to the determination of SDBS in natural water and waste water samples with satisfactory results.In this work,the reaction mechanism was also discussed.
     (3) Resonance Rayleigh Scattering Spectra of the Interaction of Co(Ⅱ)-4-[(5-Chloro-2-pyridyl) azo]-1,3-diaminobenzene with Sodium Dodecylbenzene Sulfonate and Its Analytical Application
     In pH 1.8-3.0 Britton-Robinson(BR) buffer solution,cobalt(Ⅱ) reacts with 4-[(5-Chloro-2-pyridyl) azo]-1,3-diaminobenzene(5-Cl-PADAB,L) to form a cationic chelate[COL_2]~(2+).When interacting with anionic surfactants such as sodium dodecyl benzene sulfonate(SDBS),sodium dodecyl sulfate(SDS) or sodium dodecyl sulfonate (SLS),the chelate can only react with SDBS to form ternary ion-association complexes ([CoL_2][SDBS]_2).By virtue of the extrusion action of water and Van der Waals force, the hydrophobic ion-association complexes draw close to each other and further aggregate to form {[CoL_2][SDBS]_2}_n nanoparticles with an average diameter of 30 nm. As a result,resonance Rayleigh scattering(RRS) is enhanced greatly and new RRS spectra appear.Under the same conditions,both SDS and SLS exhibit no similar reactions and do not result in obvious change of RRS.Therefore,SDBS can be determined selectively by RRS method in the presence of SDS or SLS.When 516 nm was chosen as a detection wavelength,the linear range and the detection limit(3σ) are 0.05-6.00μg mL~(-1) and 0.015μg mL~(-1) for the determination of SDBS,respectively.The characteristics of RRS spectra of the[CoL_2]~(2+)-SDBS system,the optimum conditions of the reaction and the influencing factors have been investigated.The effects of coexisting substances were examined too,which indicated a good selectivity of the method for the determination of SDBS.The method can be used for the determination of SDBS in waste water and fiver water samples,and the results are satisfactory compared with those of standard samples of SDBS.Based on the formation of {[CoL_2][SDBS]_2}_n nanoparticles,a sensitive,simple and rapid method has been developed for the determination of SDBS in environmental water samples using a RRS technique. Moreover,the reaction mechanism was discussed.
     2 The Study on the Determination of Hydrochloride and Chloride by Resonance Rayleigh Scattering and Resonance Non-Linear Scattering Spectra
     (1) Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Ag~+-Cl~--Fluorescein Dye System and Their Analytical Application
     In pH 3.5-4.4 acetate(HAc-NaAc) buffer solution,AgCl formed by the reaction of Ag~+ with Cl~- can bind with excessive Ag~+ to form a[AgCl·Ag]~+ cation.The cation further reacts with fluorescein anion(HL) to form ion-association complexes [(AgCl·Ag)HL]by virtue of electrostatic attraction and hydrophobic force.Then the complexes draw close to each other and further aggregate to produce[(AgCl·Ag)HL]_n nanoparticles with an average diameter of 20 nm due to the extrusion action of water and Van der Waals force.As a result,the spectra of absorption and fluorescence were changed a little,but resonance Rayleigh scattering(RRS) and resonance non-linear scattering(RNLS) such as frequency doubling scattering(FDS) and second-order scattering(SOS) were enhanced greatly.The maximum wavelengths of RRS,FDS and SOS were located at 313,349 and 564 nm,respectively.The increments of three scattering intensity(△I~(RRS),△I~(FDS) and△I~(SOS)) were directly proportional to the concentration of Cl~- in certain ranges,and three scattering methods could be applied to the determination of Cl~-.The sensitivity of RRS method was the highest among the three scattering methods.The linear range and the detection limit for Cl~- using RRS method were 0.006-1.90μg·mL~(-1) and 1.9 ng·mL~(-1).In analysis of hydrochloride(HC1) in environmental air or inorganization discharge of waste gas samples,the linear range and the detection limit were 0.001-0.33 mg·m~(-3) and 3.30×10~(-4) mg·m~(-3) when the sampling volume of air was 60 L;In organization discharge of waste gas samples,the linear range and the detection limit were 0.008-2.00 mg·m~(-3) and 2.00×10~(-3) mg·m~(-3) for HCl when the sampling volume of air was 10 L.In this work,the influences of[(AgCl·Ag)HL]_n nanoparticles on the spectra of absorption,fluorescence,RRS and RNLS,the optimum conditions and the influencing factors have been investigated.Meanwhile,the effects of coexisting substances have been discussed and the results show that the method has good selectivity.Based on the above researches,a highly sensitive,selective,simple and fast method for the determination of HC1 in environmental air and waste gas samples and chloride in environmental water samples by RRS,SOS and FDS techniques has been developed.In addition,the reaction mechanism was discussed.
     (2) Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Ag~+-Cl~--Dihalogenated Fluorescein Dyes Systems and Their Analytical Application
     In pH 3.2-6.2 acetate(HAc-NaAc) buffer solution,AgCl formed by the reaction of Ag~+ with Cl~- can bind with excessive Ag~+ to form a[AgCl·Ag]~+ cation.The cation further reacts with dihalogenated fluorescein dyes(dichlorofluorescein, dibromofluorescein,diiodofluorescein) anion(HL-) to form ion-association complexes [(AgCl·Ag)HL]by virtue of electrostatic attraction and hydrophobic force.Then the hydrophobic complexes draw close to each other and further aggregate to form [(AgCl·Ag)HL]_n nanoparticles with an average diameter of 20 nm due to the extrusion action of water and Van der Waals force.As a result,the spectra of absorption and fluorescence were changed a little,but resonance Rayleigh scattering(RRS) and resonance non-linear scattering(RNLS) such as frequency doubling scattering(FDS) and second-order scattering(SOS) were enhanced greatly.The sensitivity of Ag~+ -Cl~--dichlorofluorescein system was the highest among three systems.Its maximum wavelengths of RRS,FDS and SOS were located at 314,349 and 564nm,respectively. The increments of three scattering intensity(△I~(RRS),△I~(FDS) and△I~(SOS)) were directly proportional to the concentration of Cl~- in certain ranges,and three scattering methods could be applied to the determination of Cl~-.Among them,the RRS method has the highest sensitivity,and followed by the FDS method.The linear ranges and the detection limits for Cl~- of the three methods(RRS,FDS and SOS) were 0.006-1.94μg·mL~(-1),0.030-2.20μg·mL~(-1),0.074-1.94μg·mL~(-1) and 1.7 ng·mL~(-1),8.9 ng·mL~(-1),22.1 ng·mL~(-1),respectively.In analysis of hydrogen chloride(HC1) in environmental air or inorganization discharge of waste gas samples,the linear ranges and the detection limits were 0.001-0.333 mg·m~(-3),0.005-0.375 mg·m~(-3),0.012-0.333 mg·m~(-3) and 3.0×10~(-4) mg·m~(-3), 1.5×10~(-3) mg·m~(-3),3.8×10~(-3) mg·m~(-3) when the sampling volume of air was 60 L;In organization discharge of waste gas samples,the linear ranges and the detection limits were 0.006-2.00 mg·m~(-3),0.031-2.25 mg·m~(-3),0.074-2.00 mg·m~(-3) and 1.8×10~(-3) mg·m~(-3), 9.2×10~(-3) mg·m~(-3),2.2×10~(-2) mg·m~(-3) for HCl when the sampling volume of air was 10 L.In this paper,the influences of[(AgCl·Ag)HL]_n nanoparticles on the spectra of absorption, fluorescence,RRS and RNLS,the optimum conditions and the influencing factors have been investigated.Meanwhile,the effects of coexisting substances have been discussed and the results show that the method has good selectivity.Based on the above researches,a highly sensitive,selective,simple and fast method for the determination of HCl in environmental air and waste gas samples and chloride in environmental water samples by RRS,SOS and FDS techniques has been developed.In addition,the reaction mechanism was discussed.
     (3) Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Ag~+-Cl~--Polysubstituted Fluorescein Dyes Systems and Their Analytical Application
     In pH 3.2-5.7 acetate(HAc-NaAc) buffer solution,AgCl formed by the reaction of Ag~+ with Cl~- can bind with excessive Ag~+ to form a[AgCl·Ag]~+ cation.The cation further reacts with Polysubstituted fluorescein dyes(eosin B,eosin Y,tiger red,phloxine and ethyl eosin) anion(HL~-) to form ion-association complexes[(AgCl·Ag)HL]by virtue of electrostatic attraction and hydrophobic force.Then the complexes draw close to each other and further aggregate to produce[(AgCl·Ag)HL]_n nanoparticles with an average diameter of 20 nm due to the extrusion action of water and Van der Waals force. As a result,the spectra of absorption and fluorescence were changed a little,but resonance Rayleigh scattering(RRS) and resonance non-linear scattering(RNLS) such as frequency doubling scattering(FDS) and second-order scattering(SOS) were enhanced greatly.The sensitivity of Ag~+-Cl~--eosin B system was the highest among six systems.Its maximum wavelengths ofRRS,FDS and SOS were located at 315,349 and 564 nm,respectively.The increments of three scattering intensity(△I~(RRS),△I~(FDS) and△I~(SOS)) were directly proportional to the concentration of Cl~- in certain ranges,and three scattering methods could be applied to the determination of Cl~-.Among them,the FDS method has the highest sensitivity,and followed by the RRS method.The linear ranges and the detection limits for Cl~- of the three methods(RRS,FDS and SOS) were 0.005-1.22μg·mL~(-1),0.004-2.92μg·mL~(-1),0.01-1.94μg·mL~(-1) and 1.5 ng·mL~(-1),1.2ng·mL~(-1), 3.9 ng·mL~(-1),respectively.In analysis of hydrochloride(HCl) in environmental air or inorganization discharge of waste gas samples,the linear ranges and the detection limits were 0.0008-0.21mg·m~(-3),0.0007-0.50 mg·m~(-3),0.002-0.33 mg·m~(-3) and 2.50×10~(-4) mg·m~(-3), 2.00×10~(-4) mg·m~(-3),6.70×10~(-4) mg·m~(-3) when the sampling volume of air was 60 L;In organization discharge of waste gas samples,the linear ranges and the detection limits were 0.005-1.25 mg·m~(-3),0.004-3.00 mg·m~(-3),0.01-2.00 mg·m~(-3) and 1.50×10~(-3) mg·m~(-3), 1.20×10~(-3) mg·m~(-3),4.00×10~(-3) mg·m~(-3) for HCl when the sampling volume of air was 10 L. In this paper,the influences of[(AgCl·Ag)HL]_n nanoparticles on the spectra of absorption,fluorescence,RRS and RNLS,the optimum conditions and the influencing factors have been investigated.Meanwhile,the effects of coexisting substances have been discussed and the results show that the method has good selectivity.Based on the above researches,a highly sensitive,selective,simple and fast method for the determination of HC1 in environmental air and waste gas samples and chloride in environmental water samples by RRS,SOS and FDS techniques has been developed.In addition,the reaction mechanism was discussed.
     3 Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Aluminum(Ⅲ)-Chromazol KS-Cetyipyridinium Bromide System and Their Analytical Application
     In the pH 5.8-6.5 acetate(HAc-NaAc) buffer medium,Al(Ⅲ) can react with chromazol KS to form an chelated anion which can further react with cetylpyridinium bromide(CPB) to form hydrophobic ion-association complexes Al(OH)[H_2L(CP)_4]_2. Then the complexes can draw close to each other and further aggregate to form {Al(OH)[H_2L(CP)_4]}_n nanoparticles with an average diameter of 50 nm due to the extrusion action of water and Van der Waals force.As a result,resonance Rayleigh scattering(RRS) and resonance non-linear scattering(RNLS) such as second-order scattering(SOS) and frequency doubling scattering(FDS) were enhanced greatly.Its maximum wavelengths of RRS,SOS and FDS were located at 277,550 and 350 nm, respectively.The increments of three scattering intensity(△I~(RRS),△I~(SOS) and△I~(FDS)) were directly proportional to the concentration of Al(Ⅲ) in certain ranges,and three scattering methods could be applied to the determination of Al(Ⅲ).The linear ranges and the detection limits for Al(Ⅲ)by the three methods(RRS,SOS and FDS) were 0.76-30.0 ng·mL~(-1),0.73-35.0 ng·mL~(-1),1.03-35.0 ng·mL~(-1) and 0.23 ng·mL~(-1),0.22 ng·mL~(-1),0.31 ng·mL~(-1),respectively.In the paper,the spectral characteristics of the RRS, SOS and FDS,the optimum conditions and the influencing factors have been investigated.These shows the method have a good selectivity.Based on the reaction,we develop a new method which is sensitive,simple and rapid to determinate Al(Ⅲ).The method can be applied to the determination of Al(Ⅲ) in the real water samples,and the result is satisfactory.In addition,the reaction mechanism was discussed.
     4 Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Mercury(Ⅱ)-Iodide-Tetradecyl Pyridinium Bromide System and Their Analytical Application
     In pH 1.8-6.0 Britton-Robinson(BR) buffer medium,Hg(Ⅱ) can react with I~- to form a complex anion([HgI_4]~(2-)),which can only lead to the small changes of resonance Rayleigh scattering(RRS) and resonance non-linear scattering(RNLS).The complex anion can further react with tetradecyl pyridinium bromide(TPB) to form hydrophobic ion-association complex.Then the complexes can draw close to each other and further aggregate to form nanoparticles with an average diameter of 10 nm due to the extrusion action of water and Van der Waals force.As a result,resonance Rayleigh scattering (RRS) and resonance non-linear scattering(RNLS) such as frequency doubling scattering(FDS) and second-order scattering(SOS) were enhanced greatly.The maximum RRS,FDS and SOS wavelengths of the ion-association complex were located at 366,390 and 570 nm,respectively.The increments of three scattering intensity(△I~(RRS),△I~(FDS) and△I~(SOS)) were directly proportional to the concentration of Hg(Ⅱ) in certain ranges,and three scattering methods could be applied to the determination of Hg(Ⅱ).The linear ranges and the detection limits for Hg(Ⅱ) were 0.003-0.125μg·mL~(-1) and 0.8 ng·mL~(-1)(RRS),0.003-0.100μg·mL~(-1) and 0.9 ng·mL~(-1) (FDS),and 0.004-0.100μg.mL~(-1) and 1.2 ng·mL~(-1)(SOS),separately.The sensitivity of RRS method was higher than those of SOS and FDS methods.In the paper,the RRS and RNLS spectral characteristics of ion-association complexes,the optimum conditions and the quality of analytical chemistry,the influencing factors have been investigated.In addition,the reaction mechanism and the size of ion-association complexes were discussed.Based on the ion-association reaction,we developed new methods which are sensitive,simple and rapid to determinate Hg(Ⅱ).The methods can be applied to the determination of Hg(Ⅱ) in the surface water,sewage and wet precipitation samples with satisfactory results.
引文
[1]倪哲明,洪水皆,金祖亮.环境分析化学发展战略研究,环境化学,1992,11(5):2-20.
    [2]黄志桂,解怀宁.环境化学原理(第一版),重庆:西南师范大学出版社,1988:6-7.
    [3]吴鹏鸣,姚荣奎,鲍子平.环境监测原理与应用(第一版),北京:化学工业出版社,2000:14-17.
    [4]国家环境保护总局编.环境监测(第一版),北京:中国环境科学出版社,1997:1-12.
    [5]中国大百科全书编辑委员会.中国大百科全书环境科学,北京:中国大百科全书出版社,1983:173-184.
    [6]宇振东,曾北危.我国环境分析研究概况与展望,环境科学丛刊,1984,6(3):8-12.
    [7]王志刚.环境分析化学研究领域的新动态,山西煤炭管理干部学院学报,2004,3:126-127.
    [8]吴邦灿,费龙.现代环境监测技术(第二版),北京:中国环境科学出版社,2005:17-24.
    [9]李英.发展中的环境分析化学研究,科技情报开发与经济,2004,14(10):184.
    [10]庞叔薇,徐晓白.环境分析化学发展趋向,大学化学,2002,17(2):1-11.
    [11]环境化学学科新动向调研小组.环境化学学科新动向,环境化学,1998,17(1):7.
    [12]汪尔康.分析化学的成就与挑战,重庆:西南师范大学出版社,2000:1-2.
    [13]王睿.现代科技革命与分析化学,安徽化工,2004,130(4):54-56.
    [14]汪尔康.21世纪的分析化学,北京:科学出版社,1999:308-322.
    [15]R.布里斯罗.化学的今天和明天,北京:科学出版社,1998:34-35.
    [16]刘天齐.环境保护,北京:化学工业出版社,2000:7-11.
    [17]赖维平.环境分析化学,重庆:西南师范大学出版社,1988:10.
    [18]国家环境保护总局编.空气和废气监测分析方法(第四版),北京:中国环境科学出版社,2003:650-700.
    [19]国家环境保护总局编,水和废水监测分析方法(第四版),北京:中国环境科学出版社,2002:424-541.
    [20]刘文启,孙宗光.痕量有机污染物的监测(第一版),北京:化学工业出版社,2001:105.
    [21]环境污染统一分析方法编写组.环境污染分析方法,北京:科学出版社,1978:24-27.
    [22]Dabek-zlotorzynska C.E.,Electrophoresis in the determination of pollutants,Electrophoresis,1997,18:2453-2464.
    [23]Takasi K.,Hisayashi I.,The determination of chemical oxygen demand in waste-waters with dichromate by flow injection analysis,Anal.Chim.Acta,1982,141:301.
    [24]Lempert W.,Wang C.H.,Studies of shear waves and translation-rotation coupling of liquid nitrobenzene in neat liquid and in carbon tetrachloride solution by depolarized Rayleigh scattering,J.Chem.Phys.,1980,72(6):3490.
    [25]中国大百科全书编辑委员会编.中国大百科全书,生物学Ⅱ,北京:中国大百科仝书出版社,1991:141374-141375.
    [26]Tanford C.,Physical Chemistry of Macromolecules,New York and London:John Wiley and Sons,Inc.,1961:275.
    [27]Kuiper G.P,The atmospheres of the Earth and Planets,2nd ed.,Chicago:Univ.of Chicago press,1952:Chap.12.
    [28]Debye P.,Light scattering in solutions,J.Appl.Phys.,1944,15:388.
    [29]ToPorowski P.M,Roovers J.,The intramolecular scattering function of model branched polymers,Macromolecules,1978,11:365.
    [30]Sun Z.G.,Tomlin C.D.,Sevick E.M.,Approach for particle sizing in dense polydisperse colloidal suspension using multiple scattered light,Langrnuir,2001,17:6142.
    [31]Huglin M.B.,Light scattering from polymer solution,Academic Press,London and New York,1972.
    [32]Miller G.A.,Fluctuation theory of the resonance enhancement of Rayleigh scattering in absorbing media,J.Phys.Chem.,1978,82(5):616.
    [33]Bauer D.R.,Hudson B.,Pecora R.,Resonance enhanced depolarized Rayleigh scattering from diphenylpolyenes,J.Chem.Phys.,1975,63(1):588.
    [34]Stanton S.G.,Resonance enhanced dynamic Rayleigh scattering,J.Chem.Phys.,1981,75(12):5615-5626.
    [35]Anglister J.,Steinberg I.Z.,Depolarized Rayleigh light scattering in absorption bands measured in lycopene solution,Chem.Phys.Lett.,1979,65(1):50.
    [36]Anglister J.,Steinberg I.Z.,Resonance Rayleigh scattering of cyanine dyes in solution,J.Chem.Phys.,1983,78(9):5358.
    [37]Anglister J.,Steinberg I.Z.,Measurement of the depolarization ratio of Rayleigh scattering at absorption bands,J.Chem.Phys.,1981,74(2):786.
    [38]Clays K,Persoons A.,Hyper-Rayleigh scattering in solution,Phys.Rev.Lett.,1991,66(23):2980-2983.
    [39]Vance F.W.,Lemom B.I.,Ekhoff J.A.,Interrogation of nanoscale silicon dioxide/water interfaces via hyper-Rayleigh scattering,J.Phys.Chem.B,1998,102(11):1845-1848.
    [40]Jacobsohn M.,Banin U.J.,Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,Phys.Chem.B,2000,104(1):1-5.
    [41]Zhang Y.,Wang X.,Ma M.,et.al.,Study progress in second order optical nonlinearities of inorganic nanoparticles,J.Chin.J.Inorg.Chem.,2002,18(12):1177-1184.
    [42]刘绍璞,刘忠芳,李明.离子缔合物二级散射光谱的分析应用Ⅰ,硒(Ⅳ)-碘化物-罗丹明B体系,化学学报,1995,53:1178.
    [43]刘绍璞,刘忠芳,李明.离子缔合物二级散射光谱的分析应用Ⅱ,汞(Ⅱ)-硫氰酸盐-碱性三芳基甲烷染料体系,化学学报,1995,53:1185.
    [44]Pastemack R.F.,Bustamante C.,Collings P.J.,et.al.,Porphyrin assemblies on DNA as studied by a resonance light-scattering technique,J.Am.Chem.Soc.,1993,115:5393-5399.
    [45]Pasternack R..F.,Collings P.J.,Resonance light-scattering-a new technique for studying chromophore aggregation,Science,1995,269(5226):935-939.
    [46]Pasternack R.E,Schaefer K.S.,Resonance light-scattering studies of porphyrin diacid aggregates,Hambright P.Inorg.Chem.,1994,33:2062-2605.
    [47]De Paula J.C.,Robblee J.H.,Pastemack R.F.,Aggregation of chlorophyll a probed by resonance light scattering spectroscopy,BioPhys.J.,1995,68(1):335-341.
    [48]Arena G.,Scolaro L.M.,Pastemack R.F.,et.al.,Synthesis,Characterization and interaction with DNA of the novel metallointercalator cationic complex (2,2':6',2"-terpyridine) methylplatinum(Ⅱ),Iorg.Chem.,1995,34(11):2994-3002.
    [49]Huang C.Z.,Li K.A.,Tong S.Y.,Determination of nucleic acids by a resonance light-scattering technique with α,β,γ,δ-tetrakis[4-(trimethylammoniumyl)phenyl]porphine,Anal.Chem.,1996,68(13):2259-2263.
    [50]Huang C.Z.,Li K.A.,Tong S.Y.,Determination of nanograms of nucleic acids by their enhancement effect on the resonance light scattering of the cobalt(Ⅱ)/4-[(5-chloro-2-pyridyl)azo]-1,3-diaminobenzene complex,Anal.Chem.,1997,69(3):514- 520.
    [51]Huang C.Z.,Zhu J.X.,Li K.A.,et.al,Determination of albumin and globulin at nanogram levels by a resonance light-scattering technique with α,β,γ,δ-tetrakis (4-sulfophenyl)porphine,Anal.Sci.,1997,13(2):263-268.
    [52]李原芳,黄承志,胡小莉.共振光散射技术的原理及其在生化研究和分析中的应用,分析化学,1998,26(12):1508-1515.
    [53]王亚婷,赵凤林,李克安,等.有机染料作为光散射探针在分析应用中的研究进展,高等学校化学学报,2000,21(10):1491-1497.
    [54]Liu S.P.,Luo H.Q.,Xu H.,et.al.,Resonance Rayleigh scattering study of interaction of heparin with some cationic surfactants and their analytical application,Spectrochim.Acta Part A,2005,61:861-867.
    [55]Guo Z.X.,Shen H.X.,Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorone,Anal.Chim.Acta,2000,408(1-2):177-182.
    [56]刘绍璞.共振瑞利散射和共振非线性散射在分析化学中的应用,汪尔康主编,分析化学新进展,北京科学出版社,2002:280-288.
    [57]Huang C.Z.,Li Y.F.,Resonance light scattering technique used for biochemical and pharmaceutical analysis,Anal.Chim.Acta,2003,500:105-107.
    [58]Lu W.,Fernandez Band Beatriz S.,Yu Y.,et.al.,Resonance light scattering and derived techniques in analytical chemistry:past,present,and future,Microchim.Acta,2007,158:29-58.
    [59]杨睿,刘绍璞.某些分子光谱测定蛋白质的进展,分析化学,2001,29(2):233-241.
    [60]刘绍璞,范莉,胡小莉,等.某些氨羧络合型染料与蛋白质的共振瑞利散射研究,化学学报,2004,62(1):1635-1646.
    [61]刘绍璞,龙秀芳.某些分子光谱分析测定核酸的进展,理化检验,2002,38(2):101-107.
    [62]刘绍璞,胡小莉,范莉,等.阳离子表面活性剂与核酸反应的共振瑞利散射光谱特性及其分析应用,中国科学(B辑),2002,32(1):18-26.
    [63]Liu S.P.,Luo H.Q.,Li N.B.,et.al.,Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes,Anal.Chem.,2001,73(16):3907-3914.
    [64]Luo H.Q.,Liu S.P.,Resonance Rayleigh scattering spectra for studying the interaction of heparin with some basic phenothiazine dyes and their analytical applications,Anal.Chim.Acta,2001,449(1-2):261-270.
    [65]Li T.S.,Liu S.P.,Kong L.,et.al.,A sensitive and simple method for the determination of chondroitin sulfate A with crystal violet by resonance Rayleigh scattering technique,Arch.Pharm.Chem.Life.Sci.,2005,338(9):427-432.
    [66]Liu S.P.,Feng P.,Resonance Rayleigh scattering for the determination of berberine with some acidic xanthene fluorescent dyes,Mikrochim.Acta.,2002,140(1):189.
    [67]Liu S.P.,Kong L.,Interaction between isopoly-tungstic acid and berberine hydrochloride by resonance Rayleigh scattering spectrum,Anal.Sci.,2003,19(7):1055.
    [68]彭敬东,刘绍璞,刘忠芳,等.氯金酸-小檗碱离子缔合物体系的共振瑞利散射光谱研究及其分析应用,化学学报,2005,63(8):745
    [69]Liu S.P.,Yang Z.,Liu Z.F.,et.al.,Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application,Anal.Chim.Acta,2006,572:283-289.
    [70]Liu S.P.,Zhang Z.Y.,Luo H.Q.,et.al.,Resonance Rayleigh scattering method for the determination of vitamin B1 with methyl orange,Anal.Sci.,2002,18(9):971-978.
    [71]Liu S.P.,Chen Y.H.,Liu Z.F.,et.al.,A Highly sensitive resonance Rayleigh scattering method for the determination of vitanim B_1 with gold nanoparticles probe,Mikrochim.Acta,2006,154(1-2):87-93.
    [72]王齐,刘忠芳,孔玲,等.铜纳米微粒与维生素B_1相互作用的吸收光谱和共振瑞利散射光谱研究,分析化学,2007,35(3):365-369.
    [73]Luo H.Q.,Li N.B.,Liu S.P.,Resonance Rayleigh scattering study of interaction of hyaluronic acid with ethyl violet dye and its analytical application,Biosens.Bioelectro.,2006,21(7):1186-1194.
    [74]胡小莉,刘绍璞,罗红群.曲利本红与氨基糖苷类抗生素相互作用的共振瑞利散射光谱及其分析应用,化学学报,2003,61:1287.
    [75]Liu S.P.,Hu X.L.,Luo H.Q.,Resonance Rayleigh scattering spectral characteristic of the interaction of aminoglycoside antibiotics with evans blue and their analytical application,Anal.Sci.,2003,19(6):927.
    [76]Hu X.L.,Liu S.P.,Li N.B.,Resonance Rayleigh scattering for studying the interaction of aminoglycoside antibiotics with pontamine sky blue and their analytical applications,Anal.Bioanal.Chem.,2003,376:42.
    [77]Liu S.P.,Hu X.L.,Li N.B.,Resonance Rayleigh scattering method for the determination of Aminoglycoside Antibiotics with trypan blue,Anal.Lett.,2003,36 (13):2805.
    [78]王芬,刘忠芳,刘绍璞.某些葸环类抗癌药物与刚果红相互作用的吸收荧光和共振瑞利散射光谱研究,化学学报,2005,63(21):1991-1998
    [79]Liu S.P.,Wang F.,Liu Z.F.,et.al.,Resonance Rayleigh scattering spectra for studying the interaction of anthracycline antibiotics with some anions surfactants and their analytical applications,Anal.Chim.Acta,2007,601:101-107.
    [80]Liu J.T.,Liu Z.F.,Hu X.L.,et.al.,A highly sensitive resonance Rayleigh scattering method for the determination of bleomycin A_5 and bleomycin A_2with some halofluorecein dyes,J.Pharm.Biomed.Anal.,2007,42:1452-1459.
    [81]王剑,刘忠芳,刘绍璞,等.铜(Ⅱ)-氟喹诺酮类抗生素螯合物与赤鲜红体系的吸收、荧光和共振Rayleigh散射光谱及其分析应用研究,中国科学,2007,37(5):453-462.
    [82]Wang J.,Liu Z.F.,Liu J.T.,et.al.,Study on the interaction between fluoroquinolones and erythrosine by absorption,fluorescence and resonance Rayleigh scattering spectra and their application,Spectrochim.Acta Part A,2008,69:1386-1425.
    [83]Fu S.H.,Liu Z.F.,Liu S.P.,et.al.,Study on the resonance Rayleigh scattering spectra of the interactions of palladium(Ⅱ)-cephalosporins chelates with 4,5-dibromofluorescein and their analytical applications,Anal.Chim.Acta,2007,599:271-278.
    [84]Duan H.,Liu S.P.,Liu Z.F.,et.al.,A highly sensitive resonance Rayleigh scattering method for the determination of penicillin antibiotics with potassium ferricyanide,Chin.J.Chem.,2008,26:295-301.
    [85]段慧,刘绍璞,刘忠芳.钯(Ⅱ)与阿莫西林和氨苄西林相互作用的共振瑞利散射光谱及其分析应用,化学学报,2008,66(8):969-974.
    [86]Fu S.H.,Liu Z.F.,Liu S.P.,et.al.,Study on the resonance Rayleigh scattering,second-order scattering and frequency doubling scattering spectra of the interactions of palladium(Ⅱ)-ceftriaxone chelate with anionic surfactants and their analytical applications,Talanta,2008,75(2):528-535.
    [87]Duan H.,Liu S.P.,Liu Z.F.,et.al.,Resonance Rayleigh scattering,second-order scattering and frequency doubling scattering methods for the indirect determination of penicillin antibiotics based on the formation of Fe_3[Fe(CN)_6]_2 nanoparticles,Talanta,2008,75:1253-1259.
    [88]刘绍璞,蒋治良,孔玲,等.[HgX_2]_n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh散射光谱,中国科学(B辑),2002,32(1):18-26.
    [89]Jiang Z.L.,Liu S.P.,Chen S.,A study of the resonance nonlinear scattering of silver atomic cluster,Spectrochim.Acta.Part A.,2002,58(14):3121.
    [90]梁宏,沈醒灿,蒋治良,等.共振Rayleigh散射研究I~-与血清白蛋白的结合平衡,中国科学(B辑),2000,30(5):560.
    [91]何佑秋,刘绍璞,刘忠芳,等.金纳米与藏红T相互作用的吸收,荧光和共振Rayleigh散射光谱特征,中国科学(B辑),2005,35(2):159-168.
    [92]He Y.Q.,Liu S.P.,Kong L.,et.al.,A study on the size and concentration of gold nanoparticles by spectra of absorption,resonance Rayleigh scattering and resonance non-linear scattering,Spectrochim.Acta,Part A,2005,61:2861-2866.
    [93]Liu S.P.,Yang Z.,Liu J.T.,et.al.,Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application,Anal.Chim.Acta,2006,572:283-289.
    [94]李太山,刘绍璞,刘忠芳,等.碲化镉纳米晶溶液的荧光和共振瑞利散射特性及其与氨基糖苷类抗生素相互作用,中国科学(B辑),2008,38(9):798-807.
    [95]Li N.B.,Liu S.P.,Luo H.Q.,Frequence doubling scattering and second-ordering technology anovel methods for the determination of the inclusion constant of β-cyclodextrin,Anal.Chim.Acta,2002,472:89-98.
    [96]Li N.B.,Luo H.Q.,Liu S.P.,A new method for the determination of the critical micelle concentration of triton-x-100 in the absence and presence of β-cyclodextrin by resonance Rayleigh scattering technology,Spectrochim.Acta,Part A,2004,60:1811-1815.
    [97]Li N.B.,Luo H.Q.,Liu S.P.,Resonance Rayleigh scattering technology as a new method for the determination of the inclusion constant of β-cyclodextrin,Spectrochim.Acta,Part A,2002,58:501-507.
    [98]Li N.B.,Liu S.P.,Luo H.Q.,A new method for the determination of fist and second CMC in CTAB solution by resonance Rayleigh scattering technology,Anal.Lett.,2002,35(7):1229-1238.
    [99]韩志辉,吕昌银,杨胜圆,等.银-邻菲罗啉酸性三苯甲烷染料体系共振瑞利散射法测定痕量银,分析测试学报,2006,25(1):69-72.
    [100]陈友为,黄泽亮.银-邻菲罗啉-曙红体系共振瑞利散射法测定痕量银,微量元素与健康研究,2006,23(3):36-37.
    [101]衷明华.银(Ⅰ)-碘化物-十六烷基三甲基溴化铵体系共振光散射光谱法测定废水中微量银,冶金分析,2006,26(3):50-52.
    [102]曾晓燕,黄婉莹,吴雪群,等.散射光谱法测定微量银的研究,仪器仪表与分 析监测,2006,(1):35-36,38.
    [103]衷明华,黄俊盛.痕量银的共振散射光谱法测定,仪器仪表与分析监测,2005,(3):36-37.
    [104]衷明华.氯化银纳米粒子散射光谱的应用研究,广州化工,2005,33(3):52-53.
    [105]衷明华.银的流动注射共振光散射法测定,分析试验室,2007,26(10):49-51.
    [106]吕昌银,韩志辉,李庆,等.流式细胞术散射光谱法测定痕量银的研究,分析测试学报,2005,24(6):70-73,77.
    [107]韩志辉,吕昌银,杨胜圆,等.硫化银体系共振散射光谱研究及分析应用,光谱实验室,2005,22(2):242-246.
    [108]韩志辉,余克平,肖锡林.硫氰酸银体系共振散射光谱研究及分析应用,分析试验室,2006,25(增刊):50-54.
    [109]蒋治良,杨明媚,莫琪.微量银的光化学共振散射光谱分析,贵金属,2000,2l(3):34-37.
    [110]王柳萍,蒋治良.银(Ⅰ)-苯羟乙酸光反应的共振散射光谱研究,分析测试技术与仪器,2000,6(1):1-24.
    [111]杨睿.共振瑞利散射法测定蛋白质和痕量金属的新方法研究,西南师范大学,1999.
    [112]蒋治良,潘宏程,袁伟恩.铬天青S-铝(Ⅲ)-聚乙二醇4000体系的共振散射光谱及其应用,环境化学,2004,23(5):573-575.
    [113]李少旦,蒙进怀,黎明强.共振光散射法测定环境水样中痕量锡,光谱实验室,2006,23(5):981-983.
    [114]翟好英,蒋治良.金(Ⅲ)-卤化物-吖啶红的光谱特性及应用,广西师范大学学报:自然科学版,2005,23(3):61-65.
    [115]Cui F.L.,Wang L.,Cui Y.R.,Determination of bismuth in pharmaceutical products using methyltriphenyl phosphonium bromide as a molecular probe by resonance light scattering technique,J.Pharm.Biomed.Anal.,2007,43:1033-1038.
    [116]Liu S.P.,Liu Z.F.,Luo H.Q.,Resonance Rayleigh scattering met hod for the determination of trace amounts of cadmium with iodide-rhodamine dye systems,Anal.Chim.Acta,2000,407:255-260.
    [117]Liu S.P.,Liu Z.F.,Li M.,et al.,Resonance Rayleigh scattering method for the determination of trace amounts of cadmium with iodide basic triphenylmet hane dye systems,Fresenius J.Anal.Chem.,2000,407:255-260.
    [118]曾文,李松青.镉(Ⅱ)-邻啡罗啉-溴酚蓝体系的共振光散射光谱研究及分析应用,分析科学学报,2007,23(2):205-208.
    [119]韩志辉,吕昌银,杨胜圆.Cd~(2+)-PAN-聚乙烯醇共振瑞利散射法测定水中痕量镉,分析科学学报,2006,22(1):77-79.
    [120]曾铭,李树伟,王小红,等.共振光散射法测定环境水中镉的研究及应用,四川师范大学学报:自然科学版,2005,28(2):218-221.
    [121]Liu S.P.,Liu Q.,Liu Z.F.,et al.,Resonance Rayleigh scattering of chromium(Ⅵ)-iodide-basic triphenylmethane dye systems and their analytical application,Anal.Chim.Acta,1999,379:53-61.
    [122]申金山,李献锐.罗丹明B-I_3~-离子缔合物共振散射测定环境水样中的铬(Ⅵ)和铬(Ⅲ),分析化学,2001,29(8):944-946.
    [123]衷明华.共振光散射法测定电镀废水中铬(Ⅵ),电镀与环保,2006,26(1):36-37.
    [124]王照丽,张新申,罗娅君,等.铬(Ⅵ)-碘化物-罗丹明6G体系共振光散射光谱法测定铬(Ⅵ),冶金分析,2003,23(4):4-5,3.
    [125]刘绍璞,杨睿,刘忠芳.铬(Ⅱ)-碘化物-维多利亚蓝4R体系共振瑞利散射和二级散射及其分析应用,分析化学,1998,26(12):1432-1436.
    [126]刘芹,刘绍璞.铬(Ⅵ)-碘化钾-结晶紫体系的共振瑞利散射及其应用,西南师范大学学报:自然科学版,1998,23(3):303-307.
    [127]贺冬秀,李贵荣,陈运生,等.健那绿共振光散射法测定水样中痕量铬(Ⅵ),分析科学学报,2006,22(3):336-338.
    [128]贺冬秀,李贵荣.共振光散射法测定环境水样中痕量铬(Ⅵ),分析测试学报,2004,23(2):89-91。
    [129]李娜,钱保华,陈敏华.共振光散射法测定环境水样中微量铬(Ⅵ),冶金分析,2007,27(3):45-47.
    [130]Qi L.,Hart Z.Q.,Chen Y.,Incorporation of flow injection analysis or capillary elect rophoresis with resonance Rayleigh scattering detection for inorganic ion analysis,J.Chromatogr.A,2006,1110:235-239.
    [131]衷明华.碘化物-十六烷基三甲基溴化铵体系共振光散射法测定铜,分析仪器,2006,(1):24-27.
    [132]曾晓燕,黄婉莹,吴雪群,等.散射光谱法测定微量铜的研究,江西化工,2005,(4):117-119,126.
    [133]刘芹.离子缔合物与生物大分子的共振瑞利散射及其分析应用研究,西南师范大学,1998.
    [134]杨静,廖力夫,杨江柳,等.光化学催化动力学共振光散射法测定痕量铜,分析试验室,2007,26(3):110-113.
    [135]刘绍璞,刘忠芳.汞(Ⅱ)-硫氰酸盐-维多利亚蓝4R体系的共振发光和二级散射光谱及其分析应用,高等学校化学学报,1996,17(6):887-892.
    [136]王照丽,李树伟,张万诚,等.共振光散射法测定汞-硫氰酸盐-罗丹明B体系中的汞,四川师范大学学报:自然科学版,2002,25(3):295-297.
    [137]Liu S.P.,Liu Z.F.,Zhou G.M.,Resonance Rayleigh scattering for the determination of trace amounts of mercury(Ⅱ) with thiocyanate and basic triphenylmethane dyes,Anal.Lett.,1998,37(7):1247-1259.
    [138]南海军,刘忠芳,刘绍璞.汞(Ⅱ)-碘化物-结晶紫体系共振瑞利散射光谱及其分析应用研究,西南师范大学学报:自然科学版,2005,30(6):1074-1077.
    [139]黄德发.四溴汞(Ⅱ)酸钾-异辛基苯二聚乙二醇醚二甲基苄基氯化铵的共振散射光谱及其分析应用,分析试验室,2005,24(10):48-51.
    [140]刘芹,刘绍璞.共振瑞利散射测定汞(Ⅱ)-邻菲罗啉-卤代荧光素体系,云南大学学报:自然科学版,1998,21(S):58-63.
    [141]刘绍璞,周光明,刘忠芳,等.共振瑞利散射法测定硫氰酸盐-碱性三苯甲烷染料体系中的痕量钼,高等学校化学学报,1998,19(7):1040-1044.
    [142]衷明华,温红丽,吕虎,等.微晶蜡相反射散射光度测定镍的研究,冶金分析,2003,23(1):17-19.
    [143]王丹,罗红群,李念兵.碘化物-罗丹明6G体系共振瑞利散射法测定痕量铅,环境化学,2005,24(1):97-100.
    [144]王丹,罗红群,李念兵,等.碘化物-甲基紫体系共振瑞利散射法测定痕量铅,西南师范大学学报:自然科学版,2004,29(6):1005-1008.
    [145]衷明华.共振光散射法测定环境水样中痕量铅,广东微量元素科学,2005,12(8):65-67.
    [146]王小红,李树伟,张万诚,等.铅-BSA-刚果红体系共振光散射光谱法测定铅的研究,四川师范大学学报:自然科学版,2004,27(2):198-201.
    [147]李小燕,李树伟,王小红,等.共振光散射比浊法测定环境水样中Pb(Ⅱ),西南民族大学学报:自然科学版,2005,31(2):192-194.
    [148]衷明华.碘化物-CTMAB体系共振散射法测定电镀废水中的钯,化学分析计量,2006,15(1):18-20.
    [149]李怡,曹秋娥,丁中涛.铑-钨酸盐-罗丹明B缔合体系的共振光散射现象及其应用,分析试验室,2004,23(11):49-51.
    [150]王小红,李树伟,苏小东,等.共振光散射比浊法测定钾,化学研究与应用,2004,16(6):837-838.
    [151]Xiao J.B.,Chen J.W.,Ren F.L.,et.al.,Highly sensitive determination of trace potassium ion in serum using the resonance light scattering technique with sodiumtet raphenylboron,Microchim.Acta,2007,159:287-292.
    [152]Liu S.P.,Lu M.Y.,Luo H.Q.,et al.,A study on resonance Rayleigh scattering spectroscopy of[I_2Br]~--ethyl violet system,J.Southwest China Norm.Univ.2001,26(5):547-550.
    [153]蒋治良,梁爱惠,邹明静,等.IO_3~--I_3~--吖啶红体系共振散射光谱研究及应用,广西师范大学学报:自然科学版,2006,24(1):68-71.
    [154]蒋治良,李芳,梁宏.磷钼杂多酸-罗丹明S体系的共振散射光谱研究,化学学报,2000,58(8):1059-1062.
    [155]刘绍璞,刘忠芳.硒(Ⅳ)-碘化物-结晶紫体系的共振发光和二级散射光谱,高等学校化学学报,1996,17(8):1213-1215.
    [156]刘绍璞,刘忠芳,罗红群.硒(Ⅳ)-碘化物-维多利亚蓝4R体系共振瑞利散射、二级散射和倍频散射法测定痕量硒(Ⅳ),西南师范大学学报:自然科学版,2000,25(4):408-412.
    [157]Liu S.P.,Liu Z.F.,Huang C.Z.,Resonance Reyleigh scattering for an indirect determination of trace amounts of selenium(Ⅳ) with iodide basie triphenylmethane dye systems,Anal.Sci.,1998,14(4):799-806.
    [158]刘绍璞,刘忠芳,李明.硒(Ⅳ)-碘化物-罗丹明B体系的共振发光光谱及其应用,西南师范大学学报:自然科学版,1996,21(5):469-473.
    [159]白燕,李维嘉,吴雅琴,等.共振瑞利散射法测定微量硒,分析试验室,2005,24(8):8211.
    [160]邓晔,曾建强,李芳,等.硅锑钼杂多酸2罗丹明B缔合物的共振散射光谱研究及其应用,分析测试技术与仪器,2000,6(2):86-89.
    [161]梁爱惠,蒋治良.丙三醇存在下硫酸钡微粒体系的光谱特性研究及其分析应用,分析科学学报,2005,21(5):542-544.
    [162]李树伟,苏小东,王小红,等.共振光散射光谱法测定痕量氯离子,化学研究与应用,2004,16(4):535-536.
    [163]苏小东,李树伟,王小红,等.共振散射光谱法测定酸性镀铜液中的氯离子,电镀与涂饰,2003,22(6):45-47.
    [164]赵长凤,周丽琴,黄春玉,等.某些金属-APDC螯合物微粒的共振光散射及其痕量二氧化氯分析中的应用,应用化学,2007,24(5):551-555.
    [165]吕昌银,黄明元,李延志,等.人血清白蛋白共振Rayleigh光散射检测氟离子,分析测试学报,2004,23(5):56-59.
    [166]梁爱惠.蒋治良,陶慧林.一个灵敏测定过氧化氢的吖啶红共振散射光谱新 方法,光谱学与光谱分析,2007,27(1):120-122.
    [167]李振中,蒋治良,刘绍璞,等.罗丹明6G缔合微粒共振散射光谱法测定过氧化氢,光谱学与光谱分析,2005,25(8):1286-1288.
    [168]杨清玲,刘忠芳,鲁群岷,等.盐酸氯丙嗪作探针共振瑞利散射法测定环境水样中某些阴离子表面活性剂,高等学校化学学报,2006,27(1):2281-2284.
    [169]Liu S.P.,.Zhou G.M.,Liu Z.F.,Resonance Rayleigh scattering for the determination of cationic surfactants,Fresenius J.Anal.Chem.,1999,363:651-654.
    [170]Liu S.P.,Shi Y.,Liu Z.F.,et.al.,Resonance Rayleigh scattering method for the determination of cationic surfactants with chronium(Ⅵ)-iodide system,Anal.Sci.,2006,22(5):769-773.
    [171]王明霞,刘忠芳,胡小莉,等.阳离子表面活性剂与四苯硼钠反应的共振瑞利散射光谱及其分析应用,分析化学,2005,33(10):1427-1430.
    [172]李贵荣,王永生,贺冬秀.催化共振光散射法测定痕量亚硝酸根,分析化学,2005,33(9):1304-1306.
    [173]贺冬秀,李贵荣,吕昌银.共振光散射法测定环境水样中痕量亚硝酸根,南华大学学报:理工版,2003,17(4):42-44.
    [174]龙云飞,陈小明,杨伟军,等.吖啶黄共振光散射法测定亚硝酸根,分析化学,2004,32(1):127
    [175]蒋治良,刘庆业,梁爱惠.吖啶橙缔合微粒共振散射光谱法测定痕量NO_2~-,广西师范大学学报:自然科学版,2004,22(4):57-60.
    [176]冯玉怀,杨丙雨,乔广军,等.共振光散射技术在无机分析中的应用,冶金分析,2008,28(3):20-29.
    [1]化工百科全书编辑委员会.化工百科全书,第一卷,北京:化学工业出版社,1990:688.
    [2]赵国玺.表面活性剂物理化学,北京:北京大学出版社,1984:35
    [3]曹同玉.聚合物乳液合成原理、性能及应用,北京:化学工业出版社,1997.
    [4]任天斌,张洪涛.反应型表面活性剂的类型及应用,日用化学工业,2000,3(6):25-28.
    [5]王永生,李贵荣.苋菜红两相滴定法测定水中阴离子表面活性剂,中国卫生检验杂志,1994,4(2):67-69.
    [6]Epton S.R.,A Rapid Method of Analysis for Certain Surface-Active Agents,Nature,1947,160:795ff.
    [7]何亚明,江天.水质阴离子洗涤剂的测定,电位滴定,GB13199-91.
    [8]王菊生.阴离子表面活性剂的测定,亚甲蓝分光光度法,GB7494-87.
    [9]魏复盛,寇洪茹,洪水皆,等.水和废水监测分析方法(第三版),北京:中国环境科学出版社,1989:432-439.
    [10]吴国强,王沭沂.四阶导数紫外分光光度法测定水和污水中烷基苯磺酸钠,环境与健康杂志,1985,2(5):29-30.
    [11]Adachi A.,Kobayashi T.,Determination of anionic surfactants in water by atomic absorption spectrophotometry(regular presentations)(proceedings of the 8th symposium on environmental pollutants and toxicology),Eisei Kagaku,1982,1:43-43.
    [12]Adachi A.,Atomic absorption spectrophotometric determination of anionic surfactants in water,Eisei Kagaku,1982,2:99-105.
    [13]Sallee E.M.,Fairing J.D.,Hess R.W.,et.al.,Determination of trace amounts of alkyl benzenesulfonates in water,Anal.Chem,1956,28:1822-1826.
    [14]Vchiyama M.,Determination of alkyl benzenesulfonate in water by u.v.method,Water Res.,1977,11:205-207.
    [15]杨承志,黄琰华,贾文荦.紫外光谱法快速分析烷基苯磺酸盐,化学世界,1984(6):216-219.
    [16]Dathling P.,Frensenius Z.,Negative ion field desorption mass spectrometry of anionic surfactants,Anal.Chem.,1982,312(4):335-337.
    [17]Daishima S.,Iida Y.,Selective detection and identification of alkylbenzenes by chemical ionization mass spectrometry,Mass Spectro.Soc.Japan,1983,31(1): 73-80.
    [18]Lyou P.A.,Stebbings W.L.,Analysis of anionic surfactants by mass spectrometry/mass spectrometry with fast atom bombardment,Anal.Chem.,1984,56(1):8-13.
    [19]Taylor C.G,Waters J.,Radiometric determination of trace amounts of anionic surfactants in ground water and potable water,Analyst,1972,97:533.
    [20]Iovdanova I.,Lalova D.,Khim.Znd,(Sofia)Jun 1984,56(6):254-256(Bulg)(摘自A.A.,1985,4C59).
    [21]姚守仁,於淑坤,房雪琦.用高效液相色谱法测定水中十二烷基苯磺酸盐,分析化学,1983,11(11):830-832.
    [22]Di Corcia A.,Marchetti M.,Multiresidue method for pesticides in drinking water using a graphitized carbon black cartridge extraction and liquid chromatographic analysis,Anal.Chem.,1991,63:580-585.
    [23]Yokoyama Y.,Kondo M.,Sato H.,Determination of alkylbenzenesulphonates in environmental water by anion-exchange chromatography,J.Chromatogr.,1993,643:169.
    [24]Vogt C.,Heinig K.,Langer B.,et.al.,Determination of linear alkylbenzene sulf onates by high-performance liquid chromatography and capillary zone electrophoresis,Fresenius J.Anal.Chem.,1995,352:508.
    [25]Kikuchi M.,Tokay A.,Yoshida T.,Determination of trace levels of linear alkvlbenzene sulphonate in the marine environment by high performance liquid chromatography,Water Res.,1986,20:643-650.
    [26]Kreisselmeire A.,Durbeck H.W.,Determination of alkylphenols and linear alkylbenzene sulfonates in sediments applying accelerated solvent extraction(ASE),Fresenius J.Anal.Chem.,1996,354:921.
    [27]Weiss J.,Retention of aliphatic anionic surfactants in ion chromatography,J.Chromatogr.,1986,353:303-307.
    [28]Hon-Nami H.,Hanya T.,Gas-liquid chromatographic-mass spectrometric determination of alkylbenzenesulphonates in river water,J.Chromatogr.,1978,161:205-212.
    [29]Krueger C.J.,Field J.A.,In-vial C18 empore disk elution coupled with injection port derivatization for the quantitative determination of linear alkylbenzenesul-fonates by GC-FID,Anal.Chem.,1995,67:3363.
    [30]Aboul-Kassim T.A.,Simoneit B.R.T.,Detergents:A review of the nature,chemistry and behavior in the aquatic environment.Part Ⅰ.Chemical composition and ananlytieal tecniques,Crit.Rev.Environ.Sci.Technol.,1993,23,325-376.
    [31]Sánchez J.,Beltran A.,Alonso J.,et.al.,Development of a new ion-selective field-effect transistor sensor for anionic surfactants:Application to potentiometric titrations,Anal.Chim.Acta,1999,382:157-164.
    [32]Ruzica M.P.,Milan S.B.,Mate B.,et.al.,Potentiometric determination of anionic surfactants using a new ion-pair-based all-solid-state surfactant sensitive electrode,Sens.Actuat.B,2005,106:221-228.
    [33]金爱琴.AD电极用于阴离子表面活性剂的测定,日用化学工业,1989,6:42-44.
    [34]Lundgren J.S.,Bright F.V.,Biosensor for the nonspecific determination of ionic surfactants,Anal.chem.,1996,68:3377.
    [35]Nomura Y.,Ikebukuro K.,Yokoyama K.,et al.,A novel microbiosensor for anionic aurfacrant determination,Anal.Lett.,1994,27:3095.
    [36]Schramm L.L.,Smith R.G.,Stone J.A.,A surface-tension method for the determination of anionic surfactants in hot water processing of athabasca oil sands,Coll.Sur.,1984,11:247-263.
    [37]Waldhoff H.,Scherler J.,Jacobi M.,et.al.,Potentiometric two-phase titration-a new method for automated determination of ionic surfactants,World Surfactants Congress,2000:256-265.
    [38]Charles A.L.,Josephine S.W.T.,Determination of surfactant concentration using micellar enhanced fluorescence and flow injection titration,Talanta,2000,50:1283-1289.
    [39]Ródenas-Torralba E.,Reis B.F.,Morales-Rubio A.,et.al.,An environmentally friendly multicommutated alternative to the reference method for anionic surfactant determination in water,Talanta,2005,66:591-599.
    [40]Moskvin L.N.,Simon J.,L(o|¨)ffler P.,et.al.,Photometric determination of anionic surfactants with a flow-injection analyzer that includes a chromatomembrane cell for sample preconcentration by liquid-liquid solvent extraction,Talanta,1996,43:819-824.
    [41]Fujita K.,Ito T.,Quantitative determination of sulfonic anionic surfactant in copper electrolyte solution,CODEN:JKXXAF.CLASS:ICM:G01N031-00.ICS:C25C001-12;C25C007-06;G01N021-77;G01N031-22.APPLICATION:JP 2000-242145 10 Aug 2000.
    [42]崔丽英,马海丽,孙军.亚甲蓝分光光度法测定水体中的阴离子表面活性剂, 化学分析计量,2003,12(3):31-32.
    [43]Le T.H.,Preconcentration and spectrophotometric determination of anionic surfactants in water by flow injection analysis and solid phase ion-pair extraction,Tap Chi Hoa Hoc,2005,43(2):253-257.
    [44]覃建民,王小杰,杨雪峰,杨增.亚甲蓝分光光度法测定生活饮用水中阴离子表面活性剂探究,中国卫生检验杂志,2006,10:1185-1186.
    [45]刘绍璞,吉方英,黄志桂.夜蓝与阴离子表面活性剂在水溶液中显色反应-吸光光度法测定环境水样中的阴离子表面活性剂,分析化学,1989,17(11):1018-1021.
    [46]刘绍璞,吉方英,黄志桂.水中阴离子表面活性剂的吸光光度法测定,环境化学,1988,5(7):75-81.
    [47]Keio H.,Yasuaki S.,Haruo M.,et.al.,Spectrophotometric dentermination of anionic surfactant in river waters using 1-(4-nitrobenyl)-4-(4-dimethylaminophenylazo)-pyridinium bromide,Analyst,1980,25:768-773.
    [48]Janeva S.T.,Pangarova R.B.,Extractional spectrophotometric determination of anionic surfactants in waters with Remacrylblau B and Remacrylrot 2BL,Talanta,1978,25(5):279-282.
    [49]Oprea G.,Mihali C.,Solvent extraction-spectrophotometric determination of anionic surfactants in waste water with cationic dyes,Studia Universitatis Babes-Bolyai,Chemia.,1998,43(1-2):231-237.
    [50]Adak A.,Pal A.,Bandyopadhyay M.,Spectrophotometric determination of anionic surfactants in wastewater using acridine orange,Indian J.Chem.Tech.,2005,12(2):145-148.
    [51]王峰,王新,崔正刚.分光光度法测定微量阴离子表面活性剂,日用化学工业,2002,32(1):65-67.
    [52]Motomizu S.,Fujiwara S.,Fujiwara A.,et.al.,Solvent extractionspectrophtometric determination of anionic surfactants with ethyl violet,Anal.Chem.,1982,54:392-397.
    [53]Bhat S.R.,Crisp P.T.,Eckert J.M.,et.al.,A spectrophotometric method for the determination of anionic surfactants at μg/L levels,Anal.Chim.Acta,1980,116(1):191-193.
    [54]Tsukamoto M.,Murata Y.,Tada M.,et.al.,Simple determination of trace amounts of anionic surfactants in river water by spectrophotometry combined with solid-phase extraction,Biosci.,Biotech.Biochem.,2004,68(4):920-923.
    [55]Boyd-Boland A.A.,Eckert J.M.,Determination of nonionic surfaetants by spectrophotometry after extraction with potassium triiodide,Anal.Chim.Acta,1993,271(2):311-314.
    [56]Liu J.F.,Flow injection determination of anionic surfactants based on the solvatochromism of p-diphenylaminoazobenzene sulfonate,Anal.Chim.Acta,1997,343:33-37.
    [57]Chan W.H.,Lee A.W.M.,Lu J.Z.,Optode for the specirc determination of anionic surfactants,Anal.Chim.Acta,1998,361:55-61.
    [58]Koichi Y.,Masato O.,Haruo M.,Spectrophotometric determination of trace ionic and non-ionic surfactants based on a collection on a membrane filter as the ion associate of the surfactant with Erythrosine B,Anal.Chim.Acta,2002,455:83-92.
    [59]Minori K.,Yoko T.,Kunio N.,Spectrophotometric method for the determination of an anionic surfactant without liquid-liquid extraction,Anal.Chim.Acta,1998,362:157-161.
    [60]Harvey P.,Hoffman J.H.T.,Spectrophotometric determination of anionic surfactants by conversion of the leuco-bases of triphenylmethane dyes,Anal.Chim.Acta,1982,141:419-425.
    [61]Merino F.,Rubio S.,Perez-Bendito D.,Determination of dialkyldimethylammonium surfactants in sewage based on the formation of premicellar aggregates,Analyst,2001,126(12):2230-2234.
    [62]施文健.水中阴离子表面活性剂的吸附分光光度法测定,分析测试学报,2002,21(6):42-45.
    [63]施文健,彭孟成,闻海峰.用碱性艳蓝BO分光光度法测定水中十二烷基苯磺酸钠和十二烷基硫酸钠,分析化学,2002,30(11):1408.
    [64]Sabate R.,Estelrich J.,Determination of micellar microenviroument of pinacyanol by visible spectroscopy,J.Phy.Chem.B,2003,107(17):4137-4142.
    [65]张威,杨胜科.废水中阴离子表面活性剂十二烷基磺酸钠的测定,地球科学与环境学报,2004,26(2):92-94.
    [66]Wu Y.Q.,Zheng H.,Chen J.L.,et.al.,Speetrophotometric method for the direct determination of anionic surfactant sodium dodecyl benzenesulfonate(SDBS) using a hydrophobic near-infrared(NIR) cationic cyanine dye without solvent extraction,Anal.Lett.,2004,37(4):711-723.
    [67]Goto A.,Oshima M.,Takayanagi T.,et.al.,Determination of anionic surfactants using newly synthesized n-dialkyl-2,2'-thiacyanine dyes,Bunseki Kagaku,2004, 53(9):919-924.
    [68]杨胜科,费晓华.水体中阴离子表面活性剂的光度法测定,分析科学学报,2004,4:444-445.
    [69]罗宗铭,杨树南,徐玉平.孔雀绿分光光度法测定水中微量阴离子表面活性剂,环境与健康杂志,1997,14(3):125-126.
    [70]秦宗会,谭蓉,刘艳.阴离子表面活性剂的龙胆紫褪色光度测定法,工业卫生与职业病,2007,1:53-55.
    [71]刘绍璞,吉方英,黄志桂.乙基紫吸光光度法测定水样中阴离子表面活性剂,西南师范大学学报,1989,1:54-57.
    [72]Koichi Y.,Kana A.,Interaction between sulfophthalein dyes and chitosan in aqueous solution and its application to the determination of surfactants,Anal.Sci.,2003,19(8):1133-1138.
    [73]Koichi Y.,Kazunari N.,Tadashi K.,Spectrophotometric determination of trace amounts of surfactants with bromochlorophenol blue after preconcentration on a cellulose powder,Bunseki Kagaku,2002,51(3):175-180(Japanese).
    [74]章汝平,何立芳.1-(2-萘酚-4-磺酸)-3-[4-(苯基偶氮)苯基]-三氮烯合成及与阴离子表面活性剂的显色反应,温州大学学报:自然科学版,2007:27-31.
    [75]冯泳兰.1-(2-羟基-3,5-二硝基苯基)-3-[4-(苯基偶氮)苯基]-三氮烯(HDNPAPT)-阴离子表面活性剂.季铵盐型阳离子显色反应及其分析应用,分析化学,1999,8:961-964.
    [76]冯泳兰,陈志敏,邝代治,许金生.1-(5-萘酚-7-磺酸)-3-[4-(苯基偶氮)苯基]-三氮烯-溴化十六烷基三甲胺-阴离子表面活性剂的显色反应,理化检验,2007,1:63-65.
    [77]冯泳兰.用Cadion-CPB光度法测定水中痕量阴离子表面活性剂,分析测试学报,1999,2:39-41.
    [78]冯泳兰.1-(4-硝基苯基)-3-[4-(苯基偶氮)苯基]-三氮烯-溴化十六烷基三甲铵-阴离子表面活性剂显色反应的研究及应用,分析科学学报,1999,2:150-153.
    [79]李来丙,彭代信.溴甲酚紫-十六烷基二甲基苄基溴化铵法测定废水中阴离子表面活性剂含量,化工环保,2005,25(1):68-71.
    [80]金晓英,余立斌,陆李春.阻抑褪色光度法测定水中阴离子表面活性剂,光谱实验室,2006,6:1125-1129.
    [81]秦宗会,谭蓉,杨超.阻抑褪色光度法测定水样中阴离子表面活性剂,分析试验室,2006,8:91-95
    [82]Lavorante A.F.,Morales-Rubio A..,Boaventura F.R.,et.al.,A multicommuted stop-flow system employing LEDs-based photometer for the sequential determination of anionic and cationic surfactants in water,Anal.Chim.Acta,2007,600:58-65.
    [83]秦宗会,胡武洪.氨基黑10B-十六烷基溴化吡啶光度法测定水中阴离子表面活性剂,日用化学工业,2007,4:264-267.
    [84]易忠胜,杨华文.废水中的阴离子表面活性剂的测定,分析科学学报:2001,3:228-230.
    [85]吕艳阳,赵正森,张小亚.催化动力学光度法测定阴离子表面活性剂,分析试验室,2007,10:69-71.
    [86]王永生,李贵荣,刘传湘,吕昌银.阴离子表面活性剂-溴化十二烷基二甲基苄基铵-溴百里酚蓝显色反应的分光光度法研究,分析实验室,1996,2:53-55.
    [87]Lavorante A.F.,Morales-Rubio A.,De la Guardia M.,et.al.,Micro-pumping flow system for spectrophotometric determination of anionic surfactants in water,Anal.Bio.Chem.,2005,381(6):1305-1309.
    [88]Kamaya M.,Ohte T.,Nagashima K.,A simple method for determination of anionic surfactants using β-cyclodextrin and phenolphthalein,Kogyo Yosui,2003,541:2-6.
    [89]Sicilia D.,Rubio S.,Pérez-Bendito D.,Kinetic determination of the surfactant sodium dodecyl sulphate by use of mixed micelles,Anal.Chim.Acta,1994,298(3):405-413.
    [90]Zhu C.Q.,Zheng H.,Li D.H,et.al.,Fluorescence quenching method for the determination of sodium dodecyl sulphate with near-infrared hydrophobic dye in the presence of Triton X-100,Spectrochim.Acta Part A,2004,60:3173-3179.
    [91]Sánchez-Martinez M.L.,Aguilar-Caballos M.P.,Eremin S.A.,et.al.,Long-wavelength fluorescence polarization immunoassay for surfactant determination,Talanta,2007,72:243-248.
    [92]Rubio-Barroso S.,Gomez-Rodriguez M.,Polo-Diez L.M.,Fluorometric determination of anionic surfactants by extraction as the rhodamine-B ion pair,Microchem.J.,1988,37(1):93-98.
    [93]Rubio-Barroso S.,Rodriguez-Gamonal V.,Polo-Diez L.M.,Fluorimetric determination of anionic surfactants by extraction as safranine-T ion-pairs,Anal.Chim.Acta,1988,206:357-361.
    [94]Ufimkin D.P.,Kovalenko D.N.,Fluorometric determination of anionic surfactants in aqueous media,CODEN:RUXXE7.CLASS:ICM:G01N021-78.ICS:G01N031-22.APPLICATION:RU 2001-101552 17 Jan 2001.DOCUMENT TYPE:Patent CA Section:80(Organic Analytical Chemistry) Section cross-reference(s):17,46,61,73.
    [95]谢志海,郎惠云,王昕,齐雁.离子缔合物-萃取荧光光度法测定水中阴离子表面活性剂,分析试验室,2001,5:47-48.
    [96]高甲友,张智敏,朱志红.流动注射在线萃取荧光法测定痕量阴离子表面活性剂,分析化学,1998,5:568-570.
    [97]李志良,林辉概,李梦龙,俞汝勤.阴离子表面活性剂的罗丹明B-荧光测定,中国环境监测,1990,2:54-56.
    [98]曹红,张武阳,杨胥微,邹明珠.荧光分光光度法测定原油中阴离子表面活性剂,吉林大学自然科学学报,1999,4:101-102.
    [99]Sunanta W.,Phimpha S.,Mongkon R.,et.al,Determination of linear alkylbenzene sulfonates in water samples by liquid chromatography-UV detection and confirmation by liquid chromatography-mass spectrometry,Talanta,2005,67:686-695.
    [100]Fornara D.,Lago S.,Porta V.,Characterization and determination of anionic and non-ionic surfactants by liquid chromatography-mass spectrometry,World Surfactants Congress,5th,Firenze,Italy,May 29-June 2,2000,472-481.
    [101]韩晓嫣,邵旭刚.高效液相色谱法测定废水中阴离子表面活性剂,净水技术,2006,3:71-73.
    [102]Manuel C.,Soledad R.,Dolores P.B.,Determination of non-ionic polyethoxylated surfactants in wastewater and river water by mixed hemimicelle extraction and liquid chromatography-ion trap mass spectrometry,J.Chromatog.A,2005,1067:161-170.
    [103]袁慧娟,宋国新,胡耀铭.气相色谱-质谱方法检测磺酸类阴离子表面活性剂,分析化学,2006,11:1629-1632.
    [104]Barna K.,Balázs C.,Géza N.,et.al.,All-solid-state surfactant sensing electrode using conductive polymer as internal electric contact,Anal.Chim.Acta,2001,437:67-76.
    [105]Cortina M.,Ecker C.,Calvo D.,et.al.,Automated electronic tongue based on potentiometric sensors for the determination of a trinary anionic surfaetant mixture,J.Pharm.Biomed.Anal.,2008,46:213-218.
    [106]Sánchez J.,Beltran A.,Alonso J.,et.al.,Development of a new ion-selective field-effect transistor sensor for anionic surfactants:Application to potentiometric titrations,Anal.Chim.Acta,1999,382:157-164.
    [107]Alonso J.,Baró J.,Bartroli J.,et.al.,Flow-through tubular ion-selective electrodes responsive to anionic surfactants for flow-injection analysis,Anal.Chim.Acta,1995,308:115-121.
    [108]Lizondo-Sabater J.,Martinez-Mánez R.,Sancenón F.,et.al.,Ion-selective electrodes for anionic surfactants using a cyclam derivative as ionophore,Talanta,2008,75:317-325.
    [109]Melinda J.S.,Gordon G.W.,Phillip T.C.,et.al.,Determination of anionic surfactants by bis(ethylenediamine)copper(Ⅱ) extraction and anodic stripping voltammetry,Anal.Chim.Acta,1991,244:197-200.
    [110]韦寿莲,妍鹏,天尧.高效毛细管电泳电导检测对阴离子表面活性剂分离测定的研究,析测试学报,2004,2:31-34.
    [111]Badia R.,Diaz Garcia M.E.,Room temperature phosphorescence fow-through biosensing of anionic surfactants,Anal.Chim.Acta,1998,371:73-80.
    [112]Taguchi S.,Takahashi K.,Hata N.,et.al,X-ray fluorescence spectrometric determination of sulfur-containing anionic surfactants in water after their enrichment on a membrane filter as an ion-pair complex with a cationic surfactant,Analyst,2001,126(11):2078-2081.
    [113]March J.G.,Gual M.,Frontera A.D.,o-Tolidine:A new reagent for a simple nephelometric determination of anionic surfactants,Anal.Chim.Acta,2005,539:305-310.
    [114]肖锡林,王永生,刘传湘,杨慧仙,李贵荣,吕昌银.十二烷基苯磺酸钠-吖啶橙体系的共振光散射和二级散射光谱及其分析应用,分析测试学报,2005,24(2):28-31.
    [115]陈飒,刘绍璞,罗红群.乙基紫-阴离子表面活性剂体系的共振瑞利散射光谱及其分析应用,分析化学,2004,1:19-24.
    [116]袁晶,王小红,谢家理.罗丹明B共振光散射法测定阴离子表面活性剂,理化检验-化学分册,2004,1:24-28.
    [117]肖锡林,王永生,李木兰,米贤文.健那绿共振光散射法测定水中阴离子表面活性剂,中国卫生检验杂志,2004,3:290-291.
    [118]方芳,郑洪,李玲,刁雪莲,夏云生,朱昌青.近红外花菁共振光散射法测定阴离子表面活性剂,安徽师范大学学报:自然科学版,2006,2:154-158.
    [119]胡小莉,刘绍璞,罗红群.曲利本红与氨基糖苷类抗生素相互作用的共振瑞利散射光谱及其分析应用,化学学报,2003,28(4):585-595.
    [120]陈飒,刘绍璞,罗红群.乙基紫—阳离子表面活性剂体系的共振瑞利散射光 谱及其分析应用,分析化学,2004,32(1):19.
    [121]Zhiral J.,Sommer L.,Spektralphotometrische bestimmung von kobalt mit 2-(5-Brom-2-pyridylazo)-5-Diethylaminophenol,Fresenius,Z.Anal.Chem.,1981,306:129.
    [122]Epton S.R.,A rapid method of analysis for certain surface-active agents,Nature,1947,160:795.
    [123]Kumar C.V.,Asuncion E.H.,DNA binding studies and site selective fluorescence sensitization of an anthryl probe,J.Am.Chem.Soc.,1993,115(19):8547.
    [124]刘江涛,刘忠芳,刘绍璞.盐酸平阳霉素与核酸相互作用的共振瑞利Rayleigh散射光谱及其分析应用,中国科学(B辑),2007,37(2):178.
    [125]Anglister J.,Steinberg I.Z.,Resonance Rayleigh scattering of cyanine dyes in solution,J.Chem.Phys.,1983,78:5358.
    [126]Stanton S.G.,Pecora R.,Hudson B.S.,Resonance enhanced dynamic Rayleigh scattering,J.Chem.Phys.,1981,75:5615.
    [127]中国百科全书编辑部编,中国生物百科全书(Ⅱ),北京:中国百科全书出版社,1991:1374.
    [128]Liu S.P.,Kong L.,Interaction between isopoly-tungstic acid and berberine hydrochloride by resonance Rayleigh scattering spectrum,Anal.Sci.,2003,19:1055.
    [129]程广禄,上野景平.今村寿明著,王镇浦,王镇棣译,有机分析试剂,北京:地质出版社,1985:148-149
    [130]Zeng Y.E.,Zhang H.S.,Chen Z.H.,Handbook of Modern Chemical Reagents (4rd Branch),Chemical Industry Press,Beijing,1989:179.
    [131]Shibata S.,Furukawa M.,Development of chromogenic reagents with molar absorption coefficient of 105 order,Bunseki kagaku,1974,23:1412.
    [132]刘绍璞,蒋治良,孔玲,刘芹.[HgX_2]_n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh散射光谱,中国科学(B辑),2002,32(6):554.
    [133]Liu S.P.,Yang Z.,Liu Z.F.,et.al.,Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application,Anal.Claim.Acta.,2006,572:283.
    [134]Hoffmann M.M.,Darab J.G.,Palmer B.J.,et.al.,A transition in the Ni[superscript~(2+)]structure from six- to four-coordinate upon formation of the ion pair species in supercritical water:An XAFS,NIR,and MD Study,J.Phys.Chem.A, 1999,103: 8471-8482.
    
    [135] Mcphie P., Resonance light scattering profiles must be corrected for instrument performance, Anal. Biochem., 2006, 348: 157.
    [1]Committee on Medical and Biologic Effects of Environmental Pollutants.Chlorine and Hydrogen Chloride,Washington:National Academy of Sciences,1976.
    [2]夏元询主编.化学物质毒性全书,上海:上海科学技术文献出版社,1991:192-193.
    [3]周伟民,石珊珊,刘玉红,等.氯化氢对作业工人肺通气功能影响的调查,中国职业医学,2001,28(2):60-61.
    [4]刘琴.酸雨的形成和危害,武汉理工大学学报(交通科学与工程版),1984,2:110-117.
    [5]王兆喜,汪敬武.反相流动注射比浊法测定水中氯离子,南昌大学学报(理科版),2003,27(3):248-250.
    [6]张敏,王德淑.氯化银比浊法测定铜箔镀液中微量氯,理化检验-化学分册,2000,36(6):257-258.
    [7]Domanski W.,Simultaneous determination of sulfuric acid and hydrochloric acid in the workplace air,Med.Pr.,1993,44(1):45-50.
    [8]Peregud E.A.,Stepanenko E.S.,Boikina B.S.,[Colormetric]determination of very small amounts of acids in air.,Zh.Analit.Khim.,1962,17(6):770-771.
    [9]Tagliatesta P.,Sadaoka Y.,Sakai Y.,et.al.,Optochemical HCl and Cl_2 gas detection based on tetraphenylporphine dispersed in ethyl-cellulose,Sci.Tech.Sect.A,1996,278:173-180.
    [10]S adaoka Y.,Rodriguez N.V.,Tagliatesta P.,Optochemical HCl gas detection based on zinc tetrabromotetraphnylporphyrin dispersed in ethyl cellulose,Chem.Lett.,1995,7:509-510.
    [11]Analytical method for use in occupational hygiene.Hydrogen chloride vapor in air.IUPAC Applied Chemistry Division Toxicology and Industrial Hygiene Section./Pure Appl.Chem.1974,40(3):411-412.
    [12]Sverguzova S.V.,Garkavaya N.N.,Measurement of hydrogen chloride in the workplace air in the presence of hydrogen bromide,Gig.Sanit.,1993,11:73-74.
    [13]Silva C.R.,Vieira H.J.,Canaes L.S.,et.al.,Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)_2 immobilized in epoxy resin,Talanta,2005,65(4):965-970.
    [14]田秀君,综香芹.分光光度法测定水中微量的氯离子,仪器仪表与分析监测,2004,2:32-33.
    [15]白林山,仇进.硫氰酸汞吸光光度法同时测定水中微量氯离子及余氯,理化检验-化学分册,2001,37(6):251-252.
    [16]赵振平,程培青,邓保军,等.硫氰酸汞分光光度法测定空气颗粒物中的氯化氢,化学分析计量,2004,13(4):42-44.
    [17]樊占春,盛若虹,谢明,等.大气中氯化氢测定方法的研究,山西化工,2002,22(3):28-29.
    [18]李妍,逄振杰,于永香,等.硫氰酸汞分光光度法测定空气中氯化氢空白值偏高原因分析,中国环境监测,2006,22(6):42-44
    [19]罗莉,李玲.硫氰酸汞分光光度法测定空气中氯化氢的条件控制,四川环境,2006,25(51:50-52.
    [20]Keener W.K.,Watwood M.E.,Chloride analysis using 3,3',5,5'-tetramethylbenzidine and chloroperoxidase,Anal.Bio.,2004,334(2):406-408.
    [21]Catala I.M.,Garcia M.J.V.,Mareinez Calatayud J.,Selective chlorine determination by gas diffusion in a tandem flow assembly and spectrophotometric detection with o-dianisidine,Anal.Chim.Acta,2001,443(1):153-163.
    [22]田秀君,杨鸿,陶若虹.褪色光度分析法测定水中微量氯离子,工业水处理,2000,20(1):37-38.
    [23]Van Staden J.F.,Tlowana S.I.,Spectrophotometric determination of chloride in mineral and drinking waters using sequential injection analysis,J.Anal.Chem.,2001,371(3):396-399.
    [24]Capitan-Vallvey L.F.,Guerrero E.A.,Merelo C.B.,et.al.,A test strip for chloride analysis in environmental water,Anal.Bio.Chem.,2004,380(3):563-569.
    [25]吴如虎,吴若红.邻二氮菲活化氯离子催化溴酸钾氧化核固红褪色光度法测定痕量氯,福建教育学院学报,2003,10:100-101.
    [26]Haroutiounian E.,Bryks H.,Automat.continuous control of atmospheric impurities,Anal.Chem.,Technicon Symp.,3~(rd) 1967,2:365-370.
    [27]Chapman K.B.,Mihaylov G.M.,Kirollos K.S.,Passive,derect-read monitoring system for selective detection and quantification of hydrogen chloride,CPIA Publ.,2000,69(18):83-90.
    [28]Higashi N.,Ozaki Y.,Potential of far-ultraviolet absorption spectroscopy as a highly sensitive quantitative and qualitative analysis method for aqueous solutions.Part Ⅰ.Determination of hydrogen chloride in aquedous solutions,Appl.Spectr.,2004,58(8):910-916.
    [29]The detection of total organic chloride and/or hydrogen chlorie utilizing dry colorimetric detector.Thind,Surinder.Proceedings of the Annual ISA Analysis Division Symposium,2006,51~(st):161-174.
    [30]Staden V.,Tlowana J.F.,,Spectrophotometric determination of chloride in mineral and drinking waters using sequential injection analysis,Fresenius' J.Anal.Chem.,2001,371(3):396-399.
    [31]杨学芬.分光光度法测定工业亚磷酸中的氯离子,云南化工,2000,27(4):15-16.
    [32]Berkhahn W.,Wiedeking E.,IR-spectroscopic hydrogen chloride measurement in flue gas using the 677 IR hydrogen chloride measuring system,VGB Krafwerkstech.,1983,63(9):801-806.
    [33]Voitsekhovskaya O.K.,Sulakshina O.N.,Cherepanov V.N.,Determination of the concentration of pollutants of industrial origin in the atmosphere.Izv.Akad.Nauk SSSR,Fiz.Atmos.Okeana,1980,16(3):322-325.
    [34]Bak J.,Clausen S.,FTIR emission spectroscopy methods and procedures for real time quantitative gas analysis in industrial environments,Measur.Sci.Tech.,2002,13(2):150-156.
    [35]Chen J.Y.,Matsunaga R.,Ishikawa K.,et.al.,Determination of chloride ion concentration of concentrated-seawater using near-infrared spectrodcopy,Nippon Kaisui Gakkaishi.,2003,57(6):491-497.
    [36]Yano Y.,Suzuki K.,Ubukata A.,et.al..,Simultaneous measurements of HCl and H_2O by laser diode absorption spectroscopy,Nippon Sanso Giho.,2001,20:56-57.
    [37]Beswick R.B.,Pitt C.W.,Optical detection of toxic gases using fluorescent porphyrin langmuir-Blodgett films,J.Colloid Interface Sci.,1988,124(1):146-155.
    [38]Fernando R.P.,Detection of gas-phase hydrogen chloride by the laser-induced sensitized fluorescence of carbon dioxide,Opt.Lett.,1986,11(12):779-781.
    [39]Shakir,Issam M.A.,Determination of oxonium ion in strongly ionizable inorganic acids and determination of substituted acetic acids using flow injection and chemiluminescence detection,Faizuliah,Azad T./Analyst(London) 1990,115(1):69-72.
    [40]Bacon T.,Webber K.,Carpio R.,Contamination monitoring for ammonia,amines and acid gases utilizing ion mobility spectroscopy(lMS),Int.Soc.Opt.Eng.,1998,3332:550-559.
    [41]Bacon T.,Taylor J.,Webber K.,Chlorine and hydrogen chloride monitoring utilizing ion mobility spectroscopy(IMS),Technol.Update,1998,2(6):141-145.
    [42]Eiceman G.A.,Leasure C.S.,Vandiver V.J.,Negative ion mobility spectrometry for selected inorganic pollutant gases and gas mixtures in air,Anal.Chem.,1986,58(1):76-80.
    [43]崔丽英,王在峰,马海丽.离子色谱法测定化工工艺尾气中氯化氢,理化检验-化学分册,2004,40(9):529-530
    [44]汪霄,颜志明.离子色谱法测定空气中的甲酸和氯化氢含量,中国环境监测,2004,20(2):23-24
    [45]Hashimoto Y.,Tanaka S.,Kishi H.,Selective collection of air polltition gases by using porous polytetrafluoroethylene tube and development of automatic measurement system for the gases,Kenkyu Hokoku-Asahi Garasu Zaidan.,1992,61:243-249.
    [46]Oms M.T.,Jongejan P.A.C.,Veltkamp A.C.,et.al.,Continuous monitoring of atmospheric HCl,HNO_2,HNO_3 and SO_2 by wet-annular denuder air sampling with on-line chromatographic analysis,J.Environ.Anal.Chem.,1996,62(3):207-218.
    [47]Nonomura M.,Hobo T.,Simultaneous determination of sufur oxides,nitrogen oxides and hydrogen chloride in flue gas by means of an automated ion chromatographic system,J.Chromatogr.A,1998,804(1,2):151-155.
    [48]Yang X.W.,Ion chromatographic determination of hydrogen chloride in workshop air,Huaxue Fenxi Jiliang,2002,11(2):64.
    [49]华裕超,王伟,王云.工业焚烧尾气中HCl含量的测定,环境保护科学,2001,106(27):20-21
    [50]钱飞中,李应群.离子色谱法测定环境空气中氯化氢,现代科学仪器,2002,6:16-17
    [51]杨一超,赵丽生.离子色谱法同时测定工作场所空气中HF、HCl、H_2SO_4,中国卫生检验杂志,2005,15(4):398-399
    [52]杨泉.离子色谱法测定空气中的氮氧化物和氯化氢含量,福建分析测试,2007:4
    [53]胡培勤,戴桂勋,张春和,等.空气中氯化氢的离子色谱测定法,环境与健康杂志,2006:3
    [54]黄碧兰,张英,黄珠晏.工作场所空气中HF、HCl、H_2SO_4离子色谱法测定的研究,中国卫生检验杂志,2007,17(12):2197-2198
    [55]Cassinelli M.E.,Taylor D.G.,Monitoring for airborne inorganic acids,ACS Symp. Ser.,1981,149:137-152.
    [56]Fuchs G.R.,Lisson E.,Schwarz B.,et.al.,Analysis of anions in atmospheric aerosols,Fresenius' Z.Anal.Chem.,1985,320(5):498-502.
    [57]Vierkom-Rudolph B.,Baechmann K.,Fresenius Z.,Determination of trace amounts of hydrogen choride and chloride by GC or AAS,Anal.Chem.,1984,317(3-4):351-354.
    [58]Komazaki Y.,Hamada Y.,Hashimoto S.,et.al.,Development of an automated,simultaneous and continuous measurement system by using a diffusion scrubber coupled to ion chromatography for monitoring trace acidic and basic gases(HCl,HNO_3,SO_2 and NH_3) in the atmosphere,Analyst,1999,124(8):1151-1157.
    [59]Jongejan P.A.C.,Bai Y.,Veltkamp A.C.,et.al.,An automated field instrument for the determination of acidic gases in air,J.Environ.Ana.Chem.,1997,66(4):241-251.
    [60]Komazaki Y.,Hashimoto S.,Inoue T.,et.al.,Direct collection of HNO_3 and HCl by a diffusion scrubber without inlet tubes,Atm.Environ.,2002,36(7):1241-1246.
    [61]Giuriati C.,Cristofori M.C.,Gorni A.,et.al.,Ion chromatography applications in the determination of HF,HCl,NO_x,SO_x on stationary emissions,Annalidell'Istituto Superiore di Sanita.,2003,39(2):223-228
    [62]Thangavel S.,Dash K.,Dhavile S.M.,et.al.,Determination of trace of chloride and fluoride in H_2SO_4,H_3PO_4 and H_3BO_3 by in situ analyte distillation-ion chromatography,J.Chromatogr.A,2005,1074(1-2):229-233.
    [63]Talebi S.M.,Abedi M.,Determination of atmospheric concentrations of inorganic anions by ion chromatography following ultrasonic extraction,J.Chromatog.A,2005,1094(1-2):118-121.
    [64]Azhari S.,Use of ion chromatography for optimizing and simultaneous determination of inorganic anions,organic acids and its application,J.Ultra Sci.Phy.Sci.,2004,16(3):319-328.
    [65]Yu X.C.,He K.B.,Ma Y.L.,et.al.,Application of ion chromatography to determination of water-soluble inorganic and organic ions in atmospheric aerosols,J.Environ.Sci.,2004,16(5):813-815.
    [66]Kapinus E.N.,Revelsky I.A.,Ulogov V.O.,et.al.,Simultaneous determination of fluoride,chloride,nitrite,bromide,nitrate,phosphate and sulfate in aqueous solutions at 10~(-9) to 10~(-8)%level by ion chromatography,J.Chromatogr.B,2004,800(1-2):321-323.
    [67]Li H.,Makoto N.,Noriko I.,Simultaneous determination of residual chlorine and other anions in water by ion chromatography,Bunseki Kagaku,2003,52(9):819-824.
    [68]Kumar S.D.,Verkatesh K.,Maiti B.,Determination of chloride in nuclear-grade boron carbide by ion chromatography,Chromatographia,2004,59(3/4):243-245.
    [69]Kapinus E.N.,Revelskii I.A.,Ulogov V.O.,et.al.,Determination of F~-,Cl~-,NO_2~-,Br~-,NO_3~-,HPO_4~(2-),SO_4~(2-) in aqueous solutions at 10~(-9)-10~(-8)%level by ion chromatography,Vestnik Moskovskogo Uni.,Seriya 2:Khimiya,2004,45(4):246-249,
    [70]Li B.,Zhang F.,Zhang X.S.,Determination of chloride and sulfate ions in leather picking liquor by low-pressure ion chromatography,J.Soe.Leath.Tech.Chem.,2004,88(1):6-9.
    [71]李永生,张雪琴,孙旭辉.测定凝结水痕量阴离子的色谱法,华东电力,2004,32(5):5-8
    [72]方敏,郭奠茹.离子色谱法测定海水中的Cl~-和NO_2~-,现代科学仪器,2004,6:53-54
    [73]文海初.离子色谱法测定混凝土外加剂中氯含量的研究,混凝土,2004,179(9):71-72
    [74]盛丽娜,林华影,李一丹,等.离子色谱法同时测定饮用水中的十种无机阴离子,实用预防医学,2005,12(5):1044-1045
    [75]陈海燕,徐建,张正兰,等.BHP废液中Cl~-的离子色谱法测定,现代科学仪器,2006,6:116-117
    [76]余波,沈锴.离子色谱法测定固定污染源排气中的氯化物和硝酸盐,浙江科技学院学报,2003,15:113-114
    [77]赵慧.离子色谱法测定饮用水中的氟化物、氯化物、硝酸盐氮和硫酸根,甘肃环境研究与监测,2003,16(4):357-358
    [78]周敏.离子色谱与常规化学法测定饮用水中氯化物的比较,湖南理工学院学报:自然科学版,2004,17(4):66-67
    [79]罗华云,周冀衡,杨虹琦,等.离子色谱法测定烤烟中氯离子和硫酸根离子及氟离子,湖南农业大学学报:自然科学版,2005,31(6):620-622
    [80]Vierkorn-Rudolph B.,Baechmann K.,Determination of trace amounts of hydrogen halides in the atmosphere by collection in sampling tubes and subsequent derivatization and gas chromatography,J.Chromatogr.,1981,217:315-316.
    [81]Arain M.A.,Khuhawar M.Y.,Bhanger M.I.,Gas chromatographic analysis of chloride,bromide,and iodide as trifluoromethylmercury(Ⅱ) nitrate derivatives,J.Separ.Sci.,2002,25(7):462-465.
    [82]Popp P.,Grosse H.J.,Oppermann G.,Determination of gaseous pollutants emitted from the energy economy with an environmental gas chromatograph,Chem.Tech.(Leipzig) 1979,31(1):46-49.
    [83]Stankov I.N.,Tarasov S.N.,Polyakov V.S.,Gas-chromatographic determination of sulfur dioxide,hydrogen chloride,and chlorine in thionyl chloride,J.Anal.Chem.,1999,54(5):473-475.
    [84]杨美玲.烟气中氯化氢气体测定方法的研究,卫生研究,1989,18(3):51-53
    [85]Kertesz S.M.,Havas J.,Determination of chloride content in the free air.and in the water-soluble aeroplankton fraction,with a chloride-selective membrane electrode,Egeszsegludomany,1972,16(1):77-84.
    [86]Lee T.G.,System for continuously monitoring hydrogen chloride concentrations in gaseous mixtures using a chloride ion selective electrode,Anal.Chem.,1969,41(2):391-392.
    [87]Tomcsanyi L.,Farkas F.,Horvath V.,et al.,Method and apparatus for automatic measurement of volatile and aerosol compounds in gases.Hung.Teljes HU 36,927(C1.G01N27/46),28 Oct 1985,Appl.83/2,632,26 Jul 1983;11 pp.
    [88]王卫星,郭朝晖,张玉萍.饮用水中氯化物的氯离子选择电极测定法,环境与健康杂志,2003,20(3):172-173.
    [89]肖惠玉.AgNO_3电位滴定法测定水泥熟料中的微量氯,山东建材,2001,6:21-23.
    [90]叶菁.水中氯化物测定的分析方法,福建化工,2003,1:32-35.
    [91]Itoh T.,Matsushita K.,Kodama M.,Study in analytica method of hydrogen choride emitted from waste incinerators.Potentiometric titration with silver nitrate solution,Hiroshima-ken Kankyo Senta Kenkyu Hokoku,1983,5:53-57.
    [92]Van Staden J.F.;Mashamba M.G.,Stefan R.I.,On-line determination of hydrochloric acid in process effluent streams by potentiometric sequential injection acid-base titration,South African J.Chem.,2002,55:43-55.
    [93]Calliconde A.M.,Guzman A.L.,Yapu M.W.,et.al.,Potentionmetric analysis of chlorides for lowconcentration water,Revista Boliviana de Quimica,2004,21(1):62-64.
    [94]Richter E.M.,De Jesus D.P.,Neves C.A.,et.al.,Electroanalytical applications of silver electrodes built from recordable CDs,Quimica Nova,2003,26(6):839-843.
    [95]Matuszewski W.,Meyerhoff M.E.,Continuous monitoring of gas-phase species at trace levels with electrochemical detectors. Part 2. Detection of chlorine and hydrogen chloride, Anal. Chim. Acta, 1991,248 (2): 391-398.
    [96]Mukuruma H., Ueno S., Fujiyoshi H., et.al., Hydrogen chloride concentration measurement equipment and method,Jpn. Kokai Tokkyo Koho JP., 2006, 64: 499.
    [97]Imaya H., Ishiji T., Takahashi K., Detection properties of electrochemical acidic gas sensors using halide-halate electrolytic solutions,Sens. Act. B: Chem., 2005,B108 (1-2): 803-807.
    [98] Parsons I.W., Lehrle R.S., HC1 quantification in pyrolysis-gas chromatography studies of hydrochlorocarbon polymers, Poly. Prepr. 2001,42 (2): 869-870.
    [99]Marcy T.P., Gao R.S., Northway M.J., et.al., Using chemical ionization mass spectrometry for detection of HNO_3, HC1, and ClONO_2 in the atmolphere,Inter.J.Mass spectro., 2005,243 (1): 63-70.
    [100] Tagami K., Uchida S., Hirai I., et.al., Determination of chlorine, bromine and iodine in plant samples by inductively coupled plasma-mass spectrometry after leaching with tetramethyl ammonium hydroxide under a mild temperature condition, Anal. Chim. Acta, 2006, 570 (1): 88-92.
    [101] Bartman C.D., Connolly E., Renfroe J., et.al., A mass spectrometer-based continuous emissions montoring system for acid-gas emissions and DRE demonstration, Soc. Opt. Eng., 1993,1717: 20-33.
    [102] Arno J., Continous in-line monitoring of Cl_2 and HC1 in water-vapor-saturated gas streams using mass spectrometry, Spectroscopy, 1998,13 (2): 54-62.
    [103] Pereira E.,A. Stevanato A., Cardoso A.A., et.al., Indirect determination of chloride and sulfate ions in alcohol fuel by capillary electrophoresis, Aanl. Bio.Chem., 2004, 380(1): 178-182.
    [104] Richter E.M., de Jesus D.P., Munoz R.A.A., et.al., Determination of anions,cations, and sugars in coconut water by capillary electrophoresis, J. Brazilian Chem. Soc, 2005, 16(6): 1134-1139.
    [105] Naidu R., Chen Z.L., Application of co-electroosmotic capillary electrophoresis for the determination of inorganic anions and carboxylic acids in soil and plant extract with direct UV detection, Chromatographia, 2001, 54(7/8):495-500.
    [106] Zhang Z.X., He Y.Z., Hu Y.Y., On-line sequential priconcentration of inorganic anions by anion-selective exhaustive injection and base-staching in capillary zone electrophoresis, J. Chromatogr. A, 2006, 1109(2): 285-290.
    [107]Kuban P.,Evenhuis C.J.,Macka M.,et.al.,Comparison of different contactless conductivity detectors for the determination of small inorganic ions by capillary electrophoresis,Electroanalysis,2006,18(13-14):1289-1296.
    [108]Abe S.,Murayama J.I.,Maeda M.,et.al.,Simultaneous Determination of Inorganic Cations and Anion in Medical Electrolytes by Capillary Electroptoresis,Anal.Lett.,2006,39:317-326.
    [109]Pavonic M.,Determination of anions in waters by capillary zone electrophoresis,Vodohospodarske Tech.Ekonomicke Infor.,2003,45(1):11-13.
    [110]黄凤珍,石玮,秦俊芳.NaOH溶液吸收分样测定污染源废气中的氯气和氯化氢,环境研究与监测,2006,19(2):24-25
    [111]张衍国,邓高峰,郭亮,等.废弃物焚烧产物中HCl的检测研究,安全与环境学报,2002,2(2):7-9
    [112]Khudyakova T.A.,Automatic conductometric analysis I.The determination of hydrochloric acid and aluminum chloride,Trudy Gor'kovsk.Politekh.Inst.,1957,13(5):37-46.
    [113]Van Standen J.F.,Mashamba M.G.,Stefan R.I.,On-line dilution and determination of the amount of concentrated hydrochloric acid in the final products from a hydrochloric acid production plant using a sequential injection titration system,Talanta,2002,58(6):1089-1094.
    [114]Deki K.,Itagaki Y.,Aono H.,et.al.,Detection of SO_2,NO_2 and HCl gases using absorption spectral changes of porphyrin thin films,Chem.Sens.,2003,19(Suppl.B):172-174.
    [115]Nakashima S.,Deki K.,Itagaki Y.,et.al.,HCl,NO_2 and SO_2 gases detection using porphyrin dispersed polyer and sol-gel silicon oxide films,Chem.Sens.,2005,21:4-6.
    [116]Canada T.A.,Allain L.R.,Beach D.B.,et.al.,High-acidity determination in salt-containing acids by optical sensors.The scope of a dual-transducer approach and the hammett acidity function,Anal.Chem.,2002,75(11):2535-2540.
    [117]Nakagawa K.,Hotani E.,Tsutsumi C.,et.al.,Development of an eco-friendly sensor element-optical HCl detection using composite films of tetraphenylporphyrin-biodegradable polymer,Chem.Sens.,2001,17:484-486.
    [118]Jang J.,Chang M.,Yoon H.,Chemical sensors based on highly conductive poly-(3,4-ethylenedioxythiophene) nanorods,Advan.Mater.,2005,17(13):1616-1620.
    [119]Parham H.,Zargar B.,Simultaneous coulometric determination of iodide,bromide and chloride in a mixture by automated coupling of constant current chronopotentiometry and square wave voltammetry,Anal.Chim.Acta,2002,464(1):115-122.
    [120]Muto S.,Ando A.,Ochiai T.,et.al.,Simple gas sensor using dye-doped plastic fibers,Jpn.J.Appl.Phys.,Part 1,1989,28(1):125-127.
    [121]冯立斌,张衍国,吴占松,等.城市生活垃圾焚烧中的气体污染与防治,环境保护,1999,2:16-18
    [122]Zhao W.M.,Wang Y.,Han T.,et.al.,Electrochemical evaluation of corrosion resistance of NiCrBSi coatings deposited by HVOF,Surf.Coatings Tech.,2004,183:118-125.
    [123]王继斌,罗传义.工业废气中氯化氢的综合利用,吉林化工学院学报,2001,18(2):28-30
    [124]焦艳茹,鲍国栋.复混肥中氯离子含量对农作物的影响,中国农村小康科技,2007,4:72
    [125]廖国胜,刘启华.钢筋混凝土中氯离子侵蚀探讨,山西建筑,2005,31(17):142-150
    [126]苏小东,李树伟,王小红,等.共振散射光谱法测定酸性镀铜液中的氯离子,电镀与涂饰,2003,22(6):45-47
    [127]魏复盛,齐文启,毕彤,等.水和废水监测分析方法(第四版),北京:中国环境科学出版社,2002:38-48,156-161,180,185-187
    [128]魏复盛,滕恩江,池靖,等.空气和废气监测分析方法(第四版),北京:中国环境科学出版社,2003:39-51,298-302,309-311,318,474-477,479-481
    [129]Marcy T.P.,Fahey D.W.,Gao R.S.,et.al.,Quantifying Stratospheric Ozone in the Upper Troposphere with in Situ Measurements of HCl,Science,2004,304(5668):261-265.
    [130]武汉大学主编.分析化学,北京:高等教育出版社,1982:446-447.
    [131]Mchedlov N.O.,Ionzation constants of fluorescein,Zh.Anal.Khim,1979,34:6
    [132]Zhao Z.G.,Shen T.,Xu H.J.,The absorption and structure of flurorescein and its ethyl derivatives in various solution,Spectrochim.Acta,Part A1989,45(11):1113-1116.
    [133]分析化学手册编辑委员会编.分析化学手册,第一分册,北京工业出版社,1997:28
    [134]Anglister J.,Steinberg I.Z.,Measurement of the depolarization ratio of Rayleigh scattering at absorption bands,J.Chem.Phys.,1981,74(2):786.
    [135]Cao Q.E.,Zhao Y.K.,Yao X.J.,et al.,The synthesis and application of 1-(o-nitrophenyl)-3-(2-thiazolyl)triazene for the determination of palladium(Ⅱ) by the resonance enhanced Rayleigh light-scattering technique,Spectrochim.Acta,2000,56:1319-1327.
    [136]汪尔康主编.分析化学进展,北京:科学出版社,2002:280-288.
    [137]Jiang Z.L.,Liu S.P.,Chen S.,A study of the Resonance nonlinear scattering of silver atomic cluster,Spectrochim.Acta,part A,2002,58(14):3121-3126.
    [1]王伟,林潮.分光光度法测定水中铝,广东卫生防疫,1994,13(3):32-34.
    [2]余晓蔚,何应律,赵长才,等.甲壳素色谱柱富集-柱前显色快速分光光度法Ⅶ环境水样中痕量铝的测定,岩矿测试,1996,15(1):27-30.
    [3]谢晖,喻海雅.铬天青S分光光度法测定饮用水中铝,中国卫生检验杂志,1998,8(2):98-100.
    [4]田秋霖,崔绪美,田卫群.铬天青S-异丙醇体系分光光度法测定饮水中微量铝,环境与健康杂志,1999,16(2):108-109.
    [5]任海林.铬天S分光光度法测定水中铝含量分析方法的改进,山西医药杂志,2007,36(1):91-92.
    [6]张丽萍,米泽东.多元体系吸光光度法测定铝,四川轻化工学院学报,1999,12(2):59-61.
    [7]陈伟光,杨齐,胡国云.十六烷基三甲基溴化铵存在下用铬天青S分光光度法测定饮用水中的铝,环境与健康杂志,2000,17(4):234-235.
    [8]赵成曦,容小惠,邢光印.Al-CAS-CPC三元显色体系测定水中铝,冶金分析,1999,19(6):49-51.
    [9]成晓玲,李期颁,余倩,等.铝-铬天青S-聚乙烯醇体系光度法测定沉积物中铝,城市环境与城市生态,2000,2:36-37.
    [10]唐丽娟.水中微量铝的直接测定,湖南化工,1994,2:54-57.
    [11]Shokrollahi A.,Ghaedi M.,Niband M.S.,et.al.,Selective and sensitive spectrophotometric method for determination of sub-micro-molar amounts of aluminium ion,J.Hazard.Mater.,2008,151:642-648.
    [12]肖枫.三元络合物光度法测定粉尘中铝含量,内蒙古预防医学,1998,23(3):123-124.
    [13]郜洪文,章鹏飞.β修正XO新光度法测定环境物质中铝,环境科学研究,1994,7(2):59-61.
    [14]郜洪文,章鹏飞.β修正光度法测定土壤和岩石中铝,化学研究与应用,1995,7(1):105-107.
    [15]顾俊,镇银.Al-XO-甲酰胺体系光度法测定饮用水中铝,江苏预防医学,1996,2:33-34.
    [16]Zhou N.,Selective spectrophotometric determination of aluminium in the presence of beryllium and lanthanide cations,Mikrochim.Acta,2004,146:73-78.
    [17]于辉,高静瑜.十二烷基磺酸钠存在下DBC—偶氮氯膦分光光度法测定化学试 剂中的痕量铝,兵工学报,2007,28(3):343-345.
    [18]余定学,周俊杰,邬春华,等.二磺基苯基荧光酮光度法测定铝的研究与应用,光谱实验室,1999,16(1):71-73.
    [19]朱理哲.苯基荧光酮光度法测定环境水中微量铝,光谱实验室,2002,19(2):230-232.
    [20]林春.PF和吐温-80分光光度法测定铝的研究和应用,光谱实验室,1997,14(3):61-63
    [21]邓满娥.溴邻苯三酚红光度法测定铝,冶金分析,2002,22(3):59-60.
    [22]马莎,殷国健,王亮,等.2-(H酸偶氮)-4,5-二硝基酚光度法测定铝的研究与应用,云南大学学报(自然科学版),2000,22(6):457-459.
    [23]翟庆洲,杨丽娟,邹明强,等.分光光度法测定水样中铝,湿法冶金,1999,3(总第71期):63-65.
    [24]李九玉,徐仁扣,季国亮.8羟基喹啉(pH8.3)分光光度法测定酸性土壤中的可溶性铝,土壤,2004,36(3):307-309.
    [25]郜洪文,章鹏飞.修正-ARS新光度方式测定环境水中铝,光谱学与光谱分析,1995,15(2):123-127.
    [26]Ahmed M.J.,Jamal H.,Spectrophotometric determination of aluminium by morin,Tanlanta,1995,42(8):1135-1142.
    [27]敖登高娃,赵玉梅,姚俊学,等.4,5-二溴邻硝基苯基荧光酮分光光度法测定铝,冶金分析,1998,18(6):21-23.
    [28]邬春华,古昆,尹家元,等.4-(H酸偶氮)-1-苯基-3-甲基吡唑酮光度法测定铝,分析试验室,1999,18(4):83-85.
    [29]赵珍义.沉积物中铝含量的流动注射分光光度法测定,分析化学,1996,24(4):456-458.
    [30]江能,房永.RFA-300微连续流动分析仪对废水中微量铝的定量分析,国外分析仪器,2001,(2):65-67.
    [31]Honorato R.S.,Carneiro J.M.T.,Zagatto E.A.G.,Spectrophotometric flow-batch determination of aluminum in plant tissues exploiting a feedback mechanism,Anal.Chim.Acta,2001,441(2):309-315.
    [32]郭锦泉,王晓菊.分光光度法催化动力学分析痕量铝,长春师范学院学报(自然科学版),2006,2:31-32.
    [33]贾欣欣,秦永惠.催化动力学光度法测定痕量铝(Ⅲ),分析化学,1997,25(11):1360.
    [34]龚仁敏,朱升学,陈发扬,刘慧君.中性红-H2O2体系催化动力学光度法测定 痕量铝,中国卫生检验杂志,2004,1:12-13.
    [35]He R.H.,Wang J.H.,Novel catalytic spectrophotometric procedure for the determination of Trace-level Aluminium,Anal.Chim.Acta,2000,412:241-245.
    [36]Molina-Diaz A.,Herrador-Mariscal J.M.,Pascual-Reguera M.I.,et.al.,Determination of traces of aluminium with chrome azurol S by solid-phase spectrophotometry,Talanta,1993,40(7):1059-1066.
    [37]Valencia M.C.,Boudra S.,Bosque-Sendra J.M.,Simultaneous determination of aluminium and beryllium at the subnanogram per millilitre level by solid-phase derivative spectrophotometry,Anal.Chim.Acta,1996,327(1):73-82.
    [38]Alonso A.,Almendral M.J.,Porras M.J.,et.al.,Flow-injection solvent extraction with and without phase separation Fluorimetric determination of aluminium in water,Anal.Chim.Acta,2001,447(1-2):211-217.
    [39]Raggi M.A.,Sabbioni C.,Forti G.C.,Extractive analysis of aluminum traces in dialysis solutions,J.Pharm.Biomed.Anal.,2000,21(6):1191-1629.
    [40]吴芳英,黄坚峰.新试剂DCOBAQS与铝的荧光反应性能研究及分析应用,光谱学与光谱分析,2001,21(1):92-94.
    [41]Sutheimer S.H.,Cabaniss S.E.,Determination of trace aluminum in natural waters by flow-injection analysis with fluorescent detection of the lumogallion complex,Anal.Chim.Acta,1995,303(2-3):211-221.
    [42]Kara D.,Fisher A.,Hill S.J.,Flow injection determination of aluminium by spectrofluorimetric detection after complexation with N-o-vanillidine-2-amino-pcresol:The application to natural waters,Anal.Chim.Acta,2008,611:62-67.
    [43]Themelis D.G.,Kika F.S.,Flow and sequential inje ction methods for the spectrofluorimetric determination of aluminium in pharmaceutical products using chromotropic acid as chromogenic reagent,J.Pharm.Biomed.Anal.,2006,41:1179-1185.
    [44]李卫华,张楠楠,王国强.偶合反应流动注射化学发光法测定铝,黑龙江医药科学,2003,2:29-30.
    [45]Du M.,Huie C.W.,Sensitive and selective determination of aluminium by peroxyoxalate chemiluminescence detection of the lumogallion complex,Anal.Chim.Acta,2001,443(2):269-276.
    [46]梁瑞英.滴定法快速测定铝锰合金中铝,冶金分析,2001,21:60.
    [47]曾静.EDTA滴定法快速测定铝铁合金中铝,理化检验-化学分册,2005,41:208.
    [48]刘伟,吴宪龙,朱爱丽.反相离子对高效液相色谱法分离和测定铝镓和铟,分析试验室,1999,18(2):31-34.
    [49]杨惠芬.食品卫生理化检验标准手册,北京:中国标准出版社,1996:167-169.
    [50]宋慧坚.石墨炉原子吸收光谱法测定面制品中铝,中国卫生检验杂志,2006,16:316.
    [51]朱力,刘裕婷,杨大鹏.石墨炉原子吸收光谱法测定饮用水中的铝,中国卫生检验杂志,2006,16:687.
    [52]Lian L.,Fast furnace determinations of aluminum and iron in bone and soft tissues,Spectrochim.Acta Part B.,1992,47(2):239-244.
    [53]Campillo N.,Vifias P.,López-Garcia I.,et.al.,Determination of molybdenum,chromium and aluminium in human urine by electrothermal atomic absorption spectrometry using fast-programme methodology,Talanta,1999,48(4,5):905-912.
    [54]Shkinev V.M.,Fedorova O.M.,Spivakov B.Y.,et.al.,Speciation of metals associated with natural water components by on-line membrane fractionation combined with inductively coupled plasma atomic emission and mass spectrometries,Anal.Chim.Acta,1996,327(2):167.
    [55]Tsumura A.,Yamasaki S.,Background levels of trace elements in rain and river waters in Japan,Radiotopes,1998,47:46.
    [56]Durrant S.F.,Multi-elemental analysis of environmental matrices by laser ablation inductively coupled plasma mass spectrometry,Analyst,1992,117:1585.
    [57]Wang C.F.,Chen W.H.,Yang M.H.,Microwave decomposition for air borne particulate matter for the determination of trace elements by inductively couples plasma mass spectrometry,Analyst,1995,120(6):1681.
    [58]Jaulsen P.J.,Beary E.S.,Bushee D.S.,et.al.,Inductively coupled plasma mass spectrometric analysis of ultrapure acids,Anal.Chem.,1988,60(10):971.
    [59]罗小云,刘洪,韦俊,李直,唐伟.ICP2AES法同时测定硅铝钡合金中硅铝钡,理化检验-化学分册,2006,42:130.
    [60]干宁,毕数平,魏宗波,等.酸性媒染紫—示波计时电位法测定天然水和饮用水中铝,分析化学,2001,29:212.
    [61]干宁,毕数平,魏宗波.氯磺酚S—示波计时电位法测定天然水中5种形态铝,应用化学,2001,18:736.
    [62]干宁,王先龙,谭涌霞.邻苯二酚紫—示波计时电位法测定天然水中不同形态铝,分析化学,2001,29:1181.
    [63]Wang X.L.,Lei J.P.,Bi S.P.,Determination of the speciation of aluminum(Ⅲ) in natural waters by absorption stripping voltammetry and complexation with Al (51)-solochrome violet RS,Anal.Chim.Acta,2001,449:35.
    [64]Wang X.L.,Bi S.P.,Gan L.,Alumimum speciation with adsorptive pyrocatechol violet-Al(Ⅲ) complex by derivative adsorption chronopotentiometry,Electroanalysis,2001,13:1279.
    [65]蒋治良,潘宏程,袁伟恩.铬天青S-铝(Ⅲ)-聚乙二醇4000体系的共振散射光谱及其应用,环境化学,2004,5:90.
    [66]Basargin N.N.,Yakoviev P.Ya.,Morozova O.N.,Reaction between aluminium and chromazol KS,Zh.Anal.Khim.,1995,30:1938-1942.
    [67]刘绍璞.快速光度法测定钢铁中铝,分析化学,1980,3:258-260.
    [68]戚文彬,浦炳寅.表面活性剂与分析化学,下册,北京:中国计量出版社,1987:123.
    [1]薛文平.汞的性质和危害及黄金矿山的汞污染,黄金,1988,9(4):63-66.
    [2]Li Y.,Jiang Y.,Yan X.P.,et.al.,Determination of trace mercury in environmental and food samples by online coupling of flow injection displacement sorption preconcentration to electrothermal atomic absorption spectrometry,Envir.Sci.Tech.,2002,36(22):4886-4891.
    [3]Matusiewicz H.,Mikolajczak M.,Determination of As,Sb,Se,Sn,and Hg in beer and wort by direct hydride generation sample introduction-electrothermal AAS,J.Anal.At.Spectrom.,2001,16(6):652-657.
    [4]Petrova N.I.,Korda T.M.,Atomic-absorption determination of mercury in waste water and tap water using electrothermal atomization of the sample,Ind.Lab.,1999(Pub.2000),65(9):570-572.
    [5]Detcheva K.,Grobecker H.,Determination of Hg,Cd,Mn,Pb and Sn in seafood by solid sampling Zeeman atomic absorption spectrometry,Spectrochim.Acta Part B,2006(61):454-459.
    [6]Payman H.,Akram R.,A highly sensitive method for the determination of mercury using vapor generation gold wire microextraction and electrothermal atomic absorption spectrometry,Spectrochim.Acta Part B,2007(62):423-428.
    [7]Voegborlo R.B.,Akagi H.,Determination of mercury in fish by cold vapour atomic absorption spectrometry using an automatic mercury analyzer,Food Chem.,2007(100):853-858.
    [8]Geng W.H.,Nakajima T.,Takanashi H.,et.al.,Utilization of oxygen flask combustion method for the determination of mercury and sulfur in coal,Fuel,2008(87):559-564.
    [9]Geng W.H.,Nakajima T.,Takanashi H.,et.al.,Determination of mercury in ash and soil samples by oxygen flask combustion method-Cold vapor atomic fluorescence spectrometry(CVAFS),J.Hazard.Mater.,2008(154):325-330.
    [10]Rio S.S.,Tyson J.F.,Determination of inorganic mercury and total mercury in biological and environmental sample by flow injection-cold vapor-atomic absorption spectrometry using sodium borohydride as the sole reducing agent,Spectrochim.Acta,Part B,2003,58B(5):797-807.
    [11]Kopysc E.,Pyrzynska K.,Garbos S.,et.al.,Determination of mercury by cold-vapor atomic absorption spectrometry with preconcentration on a gold-trap, Anal.Sci.,2000,16(12):1309-1312.
    [12]Zhang Y.L.,Adeloju S.B.,A novel sequential injection-Cold vapor atomic absorption spectrometric system for rapid and reliable determination of mercury,Talanta,2008(74):951-957.
    [13]Leal L.O.,Elsholz O.,Forteza R.,et.al.,Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry,Anal.Chim.Acta,2006(573-574):399-405.
    [14]Ashkenani H.,Dadfarnia S.,Shabani A.M.H.,et.al.,Preconcentration,speciation and determination of ultra trace amounts of mercury by modified octadecyl silica membrane disk/electron beam irradiation and cold vapor atomic absorption spectrometry,J.Hazard.Mater.,2007,doi:10.1016/j.jhazmat.2008.03.139.
    [15]Pourreza N.,Ghanemi K.,Determination of mercury inwater and fish samples by cold vapor atomic absorption spectrometry after solid phase extraction on agar modified with 2-mercaptobenzimidazole,J.Hazard.Mater.,2007,doi:10.1016/j.jhazmat.2008.04.043.
    [16]Duan T.C.,Song X.J.,Xu J.W.,et.al.,Determination of Hg(Ⅱ) in waters by on-line preconcentration using cyanex 923 as a sorbent-cold vapor atomic absorption spectrometry,Spectrochim.Acta Part B,2006(61):1069-1073.
    [17]Dittert I.M.,Maranhao T.A.,Borges D.L.G.,et.al,Determination of mercury in biological samples by cold vapor atomic absorption spectrometry following cloud point extraction with salt-induced phase separation,Talanta,2007(72):1786-1790.
    [18]陈晓妹.氢化物发生原子荧光法测水中痕量汞,福建分析测试,2000,9(3):1282-1285.
    [19]Khvostikov V.A.,Telegin G.F.,Grazhulene S.S.,Determination of mercury by nondispersive atomic fluorescence spectrometry,J.Anal.Chem.,2003,58(6):519-523.
    [20]杨秀琳,原子荧光光谱法测定水中的痕量砷、硒、汞,化学分析计量,2004,13(1):32-34.
    [21]Shao L.J.,Gan W.E.,Su Q.D.,Determination of total and inorganic mercury in fish samples with on-line oxidation coupled to atomic fluorescence spectrometry,Anal.Chim.Acta,2006(562):128-133.
    [22]Bagheri H.,Gholami A.,Determination of very low levels of dissolved mercury(Ⅱ)and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica gel-2-mercaptobenzimidazol sorbent,Talanta,2001,55(6):1141-1150.
    [23]Zhu X.P.,Alexandratos S.D.,Determination of trace levels of mercury in aqueous solutions by inductively coupled plasma atomic emission spectrometry:Elimination of the 'memory effect',Microchem.J.,2007(86):37-41.
    [24]Carpintriro B.J.,Rodil R.R.,Carro D.A.M.,et.al.,Fast and simultaneous determination of tin and mercury species using SPME,multicapillary gas chromatography and MIP-AES detection,J.Anal.Atom.Spectr.,2002,17(8):904-907.
    [25]魏复盛,寇洪茹,洪水皆,等.水和废水监测分析方法(第三版),北京:中国环境监测出版社,1997,174-177.
    [26]National Standard of China(中华人民共和国国家标准).GB7469—87.
    [27]Rajesh N.,Gurulakshmanan G.,Solid phase extraction and spectrophotometric determination of mercury by adsorption of its diphenylthiocarbazone complex on an alumina column,Spectrochim.Acta Part A,2008(69):391-395.
    [28]Rajesh N.,Hari M.S.,Spectrophotometric determination of inorganic mercury (Ⅱ) after preconcentration of its diphenylthiocarbazone complex on a cellulose column,Spectrochim.Acta Part A,2008(70):1104-1108.
    [29]Yang Y.L.,Yah G.Y.,Lin Q.,Determination of heavy metal ions in Chinese herbal medicine by microwave digestion and RP-HPLC with UV-Vis detection,Microchim.Acta,2004,144(4):297-302.
    [30]Hu Q.F,Yang G.Y.,Zhao Y.Y.,et.al.,Determination of copper,nickel,cobalt,silver,lead,cadmium,and mercury ions in water by solid-phase extraction and RP-HPLC with UV-Vis detection,Anal.Bio.Chem.,2003,375(6):831-835.
    [31]吕明,孙烈刚.Hg(Ⅱ)-SCN~--甲基紫三元络合物光度法测定牛奶中痕量的汞,化学分析计量,2003,12(3):23-24.
    [32]王文忠,分光光度法测定水中微量汞,化学分析计量,2002,11(5):24-25.
    [33]Siddura S.,Mohammed F.S.,Akheel A.S.,Sensitive and selective spectrophotometric determination of Hg(Ⅱ),Cu(Ⅱ) and Co(Ⅱ) using iminodibenzyl and 3-chloroiminodibenzyl as new reagents and their applications to industrial effluents and soil samples,Inter.J.Envir.Anal.Chem.,2002,82(5):275-289.
    [34]Ma W.X.,Liu F.,Li K.A.,et.al.,Preconcentration,separation and determination of trace Hg(Ⅱ) in environmental samples with aminopropylbenzoylazo-2-mercaptobenzothiazole bonded to silica gel,Anal.Chim.Acta,2000,416(2):191-196.
    [35]何晓玲,王永秋,王莉.新试剂4,4-二(2-氯-4-硝基苯基重氮氨基)联苯与汞的显色反应,分析测试学报,2002,21(2):80-82.
    [36]王永秋,刘清理,何晓玲,等.新试剂3,3′-二甲基联苯重氮氨基-4-苯基-2-噻唑分光光度法测定废水中微量汞,分析试验室,2000,19(4):66-68.
    [37]张其颖,潘教麦,李在均.新试剂2,6-二甲基苯基重氮氨基偶氮苯测定化妆品中微量汞,分析试验室,2004,23(3):19-21.
    [38]杨明华,郑云法,金传明,等.新试剂1-(6-乙氧基-2-苯并噻唑基)-3-(4-硝基苯)-三氮烯的合成及其与汞的显色反应,化学试剂,2001,23(5):286-288.
    [39]金传明,龚楚儒,胡宗球,等.新试剂1-(6-硝基-2-苯并噻唑)-3-(4-硝基苯)-三氮烯与汞(Ⅱ)显色反应的研究与应用,化学研究与应用,1998,10(3):298-301.
    [40]杨明华,郑云法,陈爱新,等.新试剂1-(2,6-二溴-4-硝基苯)-3-(4-硝基苯)-三氮烯与汞的显色反应及应用,理化检验-化学分册,2002,38(8):415-416.
    [41]羊波,周丽琼,尹家元.氯磺酚偶氮硫代若丹宁固相萃取光度法测定水中的汞,光谱学与光谱分析,2004,24(9):1110-1112.
    [42]游建南.微量汞的分析研究-SCF分离富集-胶束增溶光度法,铀矿冶,2002,21(3):154-158.
    [43]Muberra A.,Adem A.,Ibrahim I.,Spectrofluorometric determination of mercury(Ⅱ) with murexide,J.Chem.Crystallogr.,2003,33(8):599-603.
    [44]张少全.水杨醛缩氨基硫脲荧光光度法测定微量汞,工业水处理,2005,25(3):60-62.
    [45]彭卫芳,李少旦.巯基棉分离富集一荧光分析法测定水中痕量汞,广东微量元素科学,2005,12(12):52-54.
    [46]Chan W.H.,Yang R.H.,Wang K.M.,Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5,10,15,20-tetraphenylporphyrin,Anal.Chim.Acta,2001,444(2):261-269.
    [47]Xu X.H.,Thundat T.G.,Brown G.M.,et.al.,Detection of Hg~(2+) using microcantilever sensors,Anal.Chem.,2002,74(15):3611-3615.
    [48]Amini M.K.,Khezri B.,Firooz A.R.,Development of a highly sensitive and selective optical chemical sensor for batch and flow-through determination of mercury ion,Sens.Actuators B:Chem.,2008,131(2):470-478.
    [49]李东辉,汪敏,鄂义峰,丁杨栋.利用新型汞离子选择电极测定污水中汞(Ⅱ),理化检验-化学分册,2003,39(4):215-216.
    [50] Lu J.Q., Tong X.Q., He X.W., A mercury ion-selective electrode based on a calixarene derivative containing the thiazole azo group, J. Electro. Chem., 2003,540: 114-117.
    [51]Okcu F., Ertas H., Nil E.F., Determination of mercury in table salt samples by on-line medium exchange anodic stripping voltammetry, Talanta, 2008(75):442-446.
    [52]Romanenko S.V., Larina L.N., A choice of optimal surface modifier of carbon electrodes for mercury determination by stripping voltammetry, J.Electro.Chem.,2005(583): 155-161.
    [53]Hu Q.,Yang GY., Ma J., et.al., Simultaneous determination of tin, nickel, lead,cadmium ,and mercury in cigarette material by solid phase extraction and HPLC,Bull. Korean Chem. Soc, 2003, 24(10): 1433-1436.
    [54]Wang M., Zhang Y., Feng W.Y., et.al., Determination of mercury in fish by isotope dilution inductively coupled plasma-mass spectrometry, Chin. J. Anal.Chem, 2007, 35(7): 945-948.
    [55]Tao G.H., Fujikawa Y., Mitsui M., et.al., Determination of mercury in sediment samples by laser ablation inductively coupled plasma mass spectrometry, J Anal.Atom. Spectro., 2002,17(5): 560-562.
    [56]Nguyen T.N.M., Le T.H., Ho T.B.N., et.al., Determination of Hg, Cd, Cu and Zn,extracted and enriched from water by chitosan using neutron activation analysis method, Tap Chi Phan Tich Hou, Ly Va Sinh Hoc, 2003, 8(3): 41-44,65.
    [57]Li X., Wang Z.H., Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry, Anal. Chim.Acta, 2007(588): 179-183.
    [58] Wang M., Feng W.Y., Shi J.W., et.al., Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS, Talanta, 2007 (71): 2034-2039.
    [59] Vieira M.A., Saint-Pierre T.D., Weiz B., et.al., Determination of As,Hg,Se and Sn in sediment slurries by CVG-ETV-ICP-MS with trapping in an Ir treated graphite tube and calibration against aqueous standards, J. Anal. Atom. Spectro., 2004,19(2): 297-300.
    [60]Rai R., Maher W., Kirkowa F., Measurement of inorganic and methylmercuty in fish tissues by enzymatic hydrolysis and HPLC-ICP-MS, J. Anal. Atom. Spectro.,2002,17(11): 1560-1563.
    [61]Ugo P.,Zampieri S.,Moretto L.M.,et.al.,Determination of mercury in process and lagoon waters by inductively coupled plasma-mass spectrometric analysis after electrochemical preconcentration:comparison with anodic stripping at gold and polymer coated electrodes,Anal.Chim.Acta,2001,434(2):291-300.
    [62]南海军,刘忠芳,刘绍璞.汞(Ⅱ)-碘化物-结晶紫体系的共振瑞利散射光谱及其分析应用研究,西南师范大学学报:自然科学版,2005,30(6):1074-1077.
    [63]刘绍璞,刘忠芳.汞(Ⅱ)-硫氰酸盐-维多利亚蓝4R体系的共振发光和二级散射光谱及其分析应用,高等学校化学学报,1996,17(6):887-892.
    [64]王照丽,李树伟,张万诚,等.共振光散射法测定汞-硫氰酸盐-罗丹明B体系中的汞,四川师范大学学报:自然科学版,2002,25(3):295-297.
    [65]Liu S.P.,Liu Z.F.,Zhou G.M,Resonance Rayleigh scattering for the determination of trace amounts of mercury(Ⅱ) with thiocyanate and basic triphenylmethane dyes,Anal.Lett.,1998,37(7):1247-1259.
    [66]黄德发.四溴汞(Ⅱ)酸钾-异辛基苯二聚乙二醇醚二甲基苄基氯化铵的共振散射光谱及其分析应用,分析试验室,2005,24(10):48-51.
    [67]陈寿椿编.重要无机化学反应(第二版),上海:上海科学技术出版社,1982:68.
    [68]Inczédy J.D.,Analytical Applications of Complex Eguilibria,New York,London Toronto,John Wiley&Sons Inc.,1976,321.
    [69]戚文彬,浦炳寅著.表面活性剂与分析化学(下册),北京:中国计量出版社,123
    [70]Miller G.A.,Fluctuation theory of the resonance enhancement of Rayleigh scattering in absorbing media,J.Phys.Chem.,1978,82(5):616-618.
    [71]刘绍璞,蒋治良,孔玲.[HgX_2]_n纳米微粒的吸收光谱、Rayleigj和共振Rayleigh 散射光谱,中国科学(B辑),2002,32(6):554-560.
    [72]魏复盛,齐文启,毕彤,等.水和废水监测分析方法(第四版),北京:中国环境科学出版社,2002:355-359.
    [73]魏复盛,滕恩江,池靖,等.空气和废气监测分析方法(第四版),北京:中国环境科学出版社,2003:298-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700