用户名: 密码: 验证码:
重楼、白头翁等中药与汉防己甲素抗血管生成作用的筛选及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分具有抗血管生成作用的中药筛选
     摘要:目的筛选重楼、白头翁等14种中药醇提物体外对人肝癌HepG2、SMC7721细胞株,人肠癌Lovo、SW-116细胞株,人胃癌AGS、BGC-823细胞株,人食管癌CaEs-17细胞株和人脐静脉内皮细胞有明显差异细胞毒性的中药。方法采用MTT法测定了14种中药醇提物对人肝癌、胃癌、大肠癌、食管癌细胞和人脐静脉内皮细胞增殖的抑制作用,采用生长曲线测定法检测14种中药醇提物体外培养肿瘤细胞和内皮细胞的差异性细胞毒作用。筛选出中药最敏感的肿瘤细胞株及对内皮细胞有差异细胞毒性的中药。结果人大肠癌Lovo细胞对于药物最为敏感。重楼、白头翁醇提物和汉防己甲素在对肿瘤细胞亚细胞毒浓度下作用于内皮细胞有明显的增殖抑制作用(P值分别为0.003、0.006、0.024),且药物对内皮细胞增殖抑制48h时作用最明显,并有较好的剂量依赖关系。结论重楼醇提物在15-60μg/ml浓度、白头翁醇提物在2-8μg/ml浓度和汉防己甲素在2-8μg/ml浓度对肿瘤细胞和内皮细胞有明显的差异性细胞毒作用,药物对内皮细胞增殖作用的抑制48小时最明显,并有较好的剂量依赖关系。
     第二部分重楼、白头翁醇提物和汉防己甲素体外对血管内皮细胞生物学行为的影响
     目的研究重楼、白头翁醇提物和汉防己甲素对血管内皮细胞迁移、细胞周期、细胞凋亡等方面的作用。方法利用transwell小室趋化实验、体外小管形成实验观察药物对HUVEC迁移、成血管能力的影响。应用AnnexinV荧光染色和流式细胞仪(FCM)检测药物作用后内皮细胞凋亡的发生和细胞周期的变化。结果重楼醇提物(15-60μg/ml)、白头翁醇提物(2-8μg/ml)和汉防己甲素(2-8μg/ml)作用24h后内皮细胞小管数目减少,而且管腔不完整,与对照组相比有显著性差异,且对人脐静脉内皮细胞小管形成能力呈剂量依赖性抑制,相关系数分别为-0.934、-0.982、-0.931,P值分别为0.000、0.000、0.000。药物作用12h后细胞迁移数与对照组相比有显著性差异,且对人脐静脉内皮细胞的迁移能力呈剂量依赖性抑制,相关系数分别为-0.933、-0.929、-0.933,P值分别为0.000、0.000、0.000。重楼(60μg/ml)、白头翁醇提物(8μg/ml)和汉防己甲素(8μg/ml)在48h时可明显诱导人脐静脉内皮细胞凋亡。在药物作用24h时重楼醇提物、汉防己甲素能阻滞细胞周期停滞在G_0-G_1期,白头翁醇提物阻滞细胞周期停滞在G_2-M期。结论重楼、白头翁醇提物和汉防己甲素在体外能有效抑制血管生成,其机制可能与阻断内皮细胞迁移、小管形成和诱导内皮细胞凋亡、阻滞内皮细胞增殖周期有关。
     第三部分重楼、白头翁醇提物和汉防己甲素对鸡胚体内血管生成的作用研究
     目的进一步了解重楼醇、白头翁醇提物和汉防己甲素体内抗血管生成作用。方法引用鸡胚尿囊膜((chickchorio allantoic membrane,CAM)模型观察重楼醇、白头翁醇提物和汉防己甲素对血管生成的作用。结果CAM中加入药物后72h载体周围血管生长受抑制,出现大小不等的无血管区。重楼醇提物在15-60μg/ml浓度、汉防己甲素在2-8μg/ml浓度、白头翁醇提物在2-8μg/ml浓度时对鸡胚尿囊膜血管形成具有抑制作用。结论重楼醇、白头翁醇提物和汉防己甲素在体内有抑制鸡胚尿囊膜血管生成作用。
     第四部分重楼、白头翁醇提物和汉防己甲素对KM小鼠H22细胞移植瘤的作用
     目的研究重楼、白头翁醇提物和汉防己甲素体内对KM小鼠皮下移植瘤的作用。方法体外在鼠H22肝癌细胞株和S180肉瘤细胞株中筛选出对上述中药敏感的H22肝癌细胞,建立H22荷瘤KM小鼠模型,分别给予重楼、白头翁醇提物和汉防己甲素灌胃治疗10天,观察用药后肿瘤的重量及肿瘤微血管密度(MVD)的变化。结果2g/kg、4g/kg重楼醇提物治疗组H22移植瘤重与生理盐水(NS)对照组相比明显减轻(P值分别为0.012、0.001)。2g/kg、4g/kg重楼醇提物治疗组H22移植瘤微血管计数与NS对照组相比明显减少(P值分别为0.015、0.001)。80mg/kg汉防己甲素治疗组H22移植瘤重与NS对照组相比明显减轻(P值为0.017)。40mg/kg、80mg/kg汉防己甲素治疗组H22移植瘤微血管计数与NS对照组相比明显减少(P值分别为0.037、0.003)。20g/kg白头翁醇提物治疗组H22移植瘤重与生理盐水对照组相比明显减轻(P值为0.010)。10/kg、20g/kg白头翁醇提物治疗组H22移植瘤微血管计数与NS对照组相比明显减少(P值分别为0.037、0.010)。结论重楼醇提物、白头翁醇提物及汉防己甲素体内对KM小鼠H22移植瘤具有明显抗肿瘤作用;同时可明显抑制肿瘤组织微血管密度,推测其抗肿瘤作用可能与血管生成抑制有关。
     第五部分重楼、白头翁醇提物和汉防己甲素对裸鼠Lovo细胞移植瘤的作用
     目的研究重楼、白头翁醇提物和汉防己甲素体内对裸鼠Lovo细胞皮下移植瘤的作用。方法建立人大肠癌细胞Lovo移植瘤裸鼠模型,分别给予重楼、白头翁醇提物和汉防己甲素灌胃治疗14天,观察用药后肿瘤体积、肿瘤重量、肿瘤微血管密度(MVD)和裸鼠体重变化。结果4g/kg重楼醇提物治疗组Lovo移植瘤重与NS对照组相比明显减轻(P值为0.017)。2g/kg、4g/kg重楼醇提物治疗组Lovo移植瘤微血管计数与NS对照组相比明显减少(P值分别为0.035、0.003)。20g/kg白头翁醇提物治疗组Lovo移植瘤重与NS对照组相比明显减轻(P值为0.036)。10g/kg、20g/kg白头翁醇提物治疗组Lovo移植瘤的微血管计数与NS对照组相比明显减少(P值分别为0.043、0.033)。80mg/kg汉防己甲素治疗组Lovo移植瘤重与NS对照组相比明显减轻(P值为0.040)。80mg/kg汉防己甲素治疗组Lovo移植瘤的微血管计数与NS对照组相比明显减少(P值为0.035)。10g/kg、20g/kg白头翁醇提物与2g/kg、4g/kg重楼醇提物和80mg/kg汉防己甲素用药后Lovo荷瘤裸鼠体重无明显改变。结论重楼醇提物、白头翁醇提物及汉防己甲素体内对裸鼠Lovo移植瘤具有明显抗肿瘤作用;且可明显抑制肿瘤组织微血管密度,推测其抗肿瘤作用可能与血管生成抑制有关。
     第六部分重楼、白头翁醇提物和汉防己甲素对裸鼠Lovo移植瘤血管生成基因表达的芯片分析
     目的了解重楼、白头翁醇提物和汉防己甲素对裸鼠Lovo细胞移植瘤肿瘤组织血管生成相关的基因表达的变化。方法采用基因芯片技术,检测重楼、白头翁醇提物和汉防己甲素对裸鼠Lovo细胞移植瘤组织血管生成相关基因的影响,从基因水平进一步探讨其作用的靶点。结果在裸鼠Lovo细胞移植瘤肿瘤组织中,13种血管生成相关基因受到了调节,其中表达下调的基因有10种,表达上调的基因有3种。4g/kg的重楼醇提物作用后的裸鼠Lovo细胞移植瘤肿瘤组织上调的抑血管基因有3种:Ⅳ型胶原α3(COL4A3)上调3倍,趋化因子配体9(CXCL9)上调4倍,血小板反应蛋白1(THBS1)上调10倍;下调的促血管基因有3种:趋化因子配体3(CXCL3)下调2.7倍,肝素酶(HPSE)下调113倍,分化抑制因子1(ID1)下调12倍。80mg/kg的汉防己甲素作用后的裸鼠Lovo细胞移植瘤肿瘤组织下调的促血管基因有7种:血管生成素样蛋白4(ANGPTL4)下调3.8倍。碱性成纤维细胞生长因子2(FGF2)下调5.5倍,成纤维细胞生长因子6(FGF6)下调2.4倍,c-fos引导生长因子(FIGF)下调3.8倍,肝素酶(HPSE)下调4.8倍,层粘连蛋白α5(LAMA5)下调2.9倍,血管内皮生长因子B(VEGFB)下调7.9倍。20g/kg的白头翁醇提物作用后的裸鼠Lovo细胞移植瘤肿瘤组织下调的促血管基因有3种:血管生成素样蛋白4(ANGPTL4)下调3.6倍,趋化因子配体2(CCL2)下调4.5倍,血管肉皮生长因子B(VEGFB)下调7.7倍。结论重楼、白头翁醇提物和汉防己甲素可通过不同靶点调控裸鼠Lovo细胞移植瘤肿瘤组织血管生成相关基因的表达。
Part One Screen Traditional Chinese Medicine Which Having Anti-angiogenesis Effect
     Objectives To screen Traditional Chinese Medicine composition of14 alcohol extracts of Traditional Chinese Medicine, paridis and pulsatillae, obviouslydifference cyotoxic on human hepatoma HepG2, SMC7721 cell strain; human colon carcinomaLovo, SW-116 cell strain; human gastric carcinoma AGS, BGC-823 cell strain; humanesophageal carcinoma CaEs-17 cell strain and endothelial cell (EC) of human umbilical veinin vitro. Methods The MTT assay had been developed for quantitative evaluation of theinhibited effect of 14 alcohol extracts of Traditional Chinese Medicine on proliferation ofhuman cell strains of hepatoma、colon carcinoma、gastric carcinoma、esophageal carcinomaand EC of human umbilical vein. Used growth curve assay to detect the variability cell toxicaction to tumour cell and EC which was cultured in vitro by 14 alcohol extracts of TraditionalChinese Medicine. Screened for the most sensitive cell strain to the Traditional ChineseMedicine and for the Traditional Chinese Medicine which had different cytotoxic to EC.Results The most sensitive cell to the medicine was human colon carcinoma Lovo cell.Alcohol extract of paridis, tetrandrine and alcohol extract of pulsatillae could obviously inhibitthe proliferation of EC in deuto-cytotoxic concentration (P=0.003、0.006、0.024). Effect wasmost obviously at 48h, and had fine dose-dependent relationship. Conclusion Alcoholextract of paridis in 15-60μg/ml, tetrandrine in 2-8μg/ml and alcohol extract of pulsatillae in2-8μg/ml had obviously variability cell toxic action to tumour cell and EC, the inhibitory effectto EC proliferation was most obviously at 48h, and had fine dose-dependent relationship.
     Part Two Alcohol Extract of Paridis, Puisatillae and Tetrandrine Effect to The BiologicalBehaviour of Vascular Endothelial Cell in Vitro
     Objectives To investigate the effect of migration, cell cycle andapoptosis mechanism of alcohol extract of paridis, tetrandrine and alcohol extract of pulsatillaeto vascular endothelial cell. Methods Used transwell cabin test and out-body canaliculizationtest to observe the alcohol extract of paridis impact the migrational and vaso-formed ability ofHUVEC. And used Annexin V fluorescein stain and flow cytometry to detect the developmentof apoptosis and the variation of the cell cycle after drugs used to the EC. Results While thealcohol extract of paridis in 15-60μg/ml, tetrandrine in 2-8μg/ml and alcohol extract ofpulsatillae in 2-8μg/ml effected at 24 hours to the EC, the number of the tubule was reducedand lumina became unintegrated. There was significant difference compared with the controlgroup, and the inhibition was dose-dependent to canaliculization of human umbilical veinendothelial cell, R=-0.934,-0.982,-0.931; P=0.000,0.000,0.000. The number of cell migrationhad obviously different compared with the control group after medicine effected for 12 hours,and the capability of HUVEC migration was dose-dependent, R=-0.933,-0.929,-0.933;P=0.000,0.000,0.000. And when alcohol extract of paridis in 60μg/ml, tetrandrine in 8μg/mland alcohol extract of pulsatillae in 8μg/ml at 48h, it could obviously induce human umbilicalvein EC apoptosis. The alcohol extract of paridis and tetrandrine could block the cell cycle andarrest at G0-G1 after 24 hours, and the alcohol extract of pulsatillae arrest at G2-M after 24hours. Conclusion The alcohol extract of paridis, tetrandrine and alcohol extract of pulsatillaecould actively suppress angiogenesis in vitro and the mechanism may related to block themigration, canaliculization of the EC and induce the EC apoptosis, suppress the endothelial cellcycle.
     Part Three Research The Mechanism of Alcohol Extract of Paridis, Pulsatillae and Tetrandrine toAnti-angiogenesis of The Chick Embryo in Vivo
     Objectives To further understand the effect of anti-angiogenesis of thealcohol extract of paridis, tetrandrine and alcohol extract of pulsatillae in vivo. MethodsUsed chickchorio allantoic membrane (CAM) model to observe the effect of anti-angiogenesisof the alcohol extract of paridis, tetrandrine and alcohol extract of pulsatillae. ResultsSurrounding the carrying agent of CAM the blood vessel was suppressed after added medicinefor 72h, then there appeares avascular area that inequality of size. There was inhibitory actionto the CAM angiogenesis when the density of the alcohol extract of paridis is between15-60ng/ml, tetrandrine between 2-8ng/ml and alcohol extract of pulsatillae between2-8ng/ml.Conclusion The alcohol extract of paridis, tetrandrine and alcohol extract ofpulsatillae could inhibit CAM angiogenesis in vivo.
     Part Four The Effect of Alcohol Extract of Paridis, Pulsatillae and Tetrandrine on Bearing H22Tumor Mice
     Objectives To study the antiangiogenic effect of alcohol extract ofparidis, pulsatillae and tetrandrine in vivo on bearing tumor Mice. Methods We discoveredthat the drugs were more sensitive to H22 cell line than S180 cell line in vitro and selected H22cell line to establish H22 transplantation tumor mice models, then intragastric administrationthe alcohol extract of paridis, tetrandrine and alcohol extract of pulsatillae. To observe weightmagnitude and microvessel density of the tumor after management. Results The tumorweight of the alcohol extract of paridis in 2g/kg and 4g/kg were lighter than NS control group(P=0.012, 0.001). The microvessel density of the alcohol extract of paridis in 2g/kg and4g/kg were fewer than NS control group (P=0.015, 0.001). The tumor weight of tetrandrinein 80mg/kg were lighter than NS control group (P=0.017). The microvessel density oftetrandrine in 40mg/kg and 80mg/kg were fewer than NS control group(P=0.015,0.001). Thetumor weight of alcohol extract of pulsatillae in 20g/kg wre lighter than NS control group (P=0.01). The microvessel density of alcohol extract of pulsatillae in 10g/kg and 20g/kg werefewer than NS control group(P=0.037,0.010). Conclusion This experiment showed that thealcohol extract of paridis, alcohol extract of pulsatillae and tetrandrine had antitumor ability invivo on H22 transplantation tumor. They also inhibited tumor MVD. So we presume that theantitumor ability was correlate with the antiangiogenic effect.
     Part Five The Effect of Alcohol Extract of Paridis, Pulsatillae and Tetrandrine on Nude MiceBearing Human Colon Carcinoma (Lovo)
     Objectives To study the effect of alcohol extract of paridis,pulsatillae and tetrandrine in vivo on nude mice bearing Lovo transplantation tumor. MethodsEstablished Lovo transplantation tumor nude mouse models, then intragastric administrationthe alcohol extract of paridis, tetrandrine and alcohol extract of pulsatillae. To observe grosstumor volume, weight magnitude, microvessel density of the tumor and body weight aftermanagement. Results The tumor weight of the alcohol extract of paridis in 4g/kg was lighterthan NS control group (P=0.017). The microvessel density of the alcohol extract of paridis in2g/kg and 4g/kg were fewer than NS control group (P=0.035, 0.003). The tumor weight ofalcohol extract of pulsatillae in 20g/kg was lighter than NS control group (P=0.036). Themicrovessel density of alcohol extract of pulsatillae in 10g/kg and 20g/kg were fewer than NScontrol group (P=0.043,0.033). The tumor weight of tetrandrine in 80mg/kg was lighter thanNS control group (P=0.040). The microvessel density oftetrandrine in 80mg/kg was fewerthan NS control group (P=0.035).The body weight of bearing Lovo transplantation tumornude mouse post-treatment with alcohol extract of pulsatillae (10g/kg,20g/kg), alcohol extractof paridis (2g/kg,4g/kg) and tetrandrine (80mg/kg) had no significant change. ConclusionThis experiment showed that the alcohol extract of paridis, alcohol extract of pulsatillae andtetrandrine had antitumor ability in vivo on Lovo transplantation tumor. They also inhibitedtumor MVD. So we presume that the antitumor ability was correlate with the antiangiogenic effect.
     Part Six Differential Angiogenesis Related Genes Expression of Alcohol Extract of Paridis,pulsatillae and Tetrandrine on nude mice bearing Lovo transplantation tumor
     Objectives To study the differential angiogenesis related genesexpression of alcohol extract of paridis, pulsatillae and tetrandrine in vivo on nude micebearing Lovo transplantation tumor. Methods We used microarray analysis to detect thedifferential genes expression of alcohol extract of paridis, pulsatillae and tetrandrine in vivo onnude mice bearing Lovo transplantation tumor.Then we approached the effective target on thelevel of gene deeply. Results 13 angiogenesis related genes were found regulated above 2folds or more by the arrays on the tissue of nude mice bearing Lovo transplantation tumor, andamong them 3 up and 10 down. 3 genes were found up regulated effected by alcohol extract ofparidis (4g/kg): COL4A3 up regulated above 3 folds, CXCL9 up regulated above 4 folds,THBS1 up regulated above 10 folds. 3 genes were found down regulated effected by alcoholextract of pulsatillae (4g/kg): CXCL3 down regulated above 2.7 folds, HPSE down regulatedabove 11.3 folds, ID1 down regulated above 12 folds. 7 genes were found down regulatedeffected by tetrandrine (80mg/kg): ANGPTL4 down regulated above 3.8 folds, FGF2 downregulated above 5.5 folds, FGF6 down regulated above 2.4 folds, FIGF down regulated above3.8 folds, HPSE down regulated above 4.8 folds, LAMA5 down regulated above 2.9 folds,VEGFB down regulated above 7.9 folds. 3 genes were found down regulated effected byalcohol extract of pulsatillae (20g/kg): ANGPTL4 down regulated above 3.6 folds, CCL2down regulated above 4.5 folds, VEGFB down regulated above 7.7 folds. Conclusion Basedon our nude mice bearing Lovo transplantation tumor model, and by oligonucleotide arrays, wefound paridis, pulsatillae and tetrandrine can ragulate the expression of angiogenesis relatedgenes through different target in vivo on nude mice bearing Lovo transplantation tumor.
引文
[1] Folkman J. Angiogenesis: Therapeutic implication. N Engl J Med. 1971, 285:1182-1186.
    [2] Siemann DW, Chap lin DJ, Horsman MR. Vascular targeting therapies for treatment of malignant disease. Cancer. 2004, 100 (12): 2491-2499.
    [3] Ferrara N, Kerbgel RS. Angiogenesis as a therapeutic target. Nature. 2005, 438 (7070): 967-974.
    [4] Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005, 438 (7070):932-936.
    [5] Klagsbrun M, Eichmann A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev. 2005, 16 (425): 535-548.
    [6] Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003, 9 (6): 653-660.
    [7] Baranska P, Jerczynska H, Pawlowska Z, et al. Vascular endothelial growth factor- -structure and functions. Postepy Biochem. 2005;51 (1): 12-21.
    [8] 张维东,崔亚洲,姚成芳等.蝎毒多肽提取物抗肿瘤血管生成作用的实验研究.中国药理学通报. 2005,21(6):708-711.
    [9] Kathy D. Miller, Christopher J Sweeney. Redefining the targer: chemothera-peutics as antiangiogenics. J clin onco.2001,19(4):1195-1206.
    [10] Coultas L, Chawenqsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005, 438(7070): 937-945.
    [11] Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004, 350(23): 2335-2342.
    [12] Jain RK. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science, 2005, 307(5706): 58-62.
    [13] 陈明伟,倪磊,赵小革,等.人参皂甙-Rg3对肿瘤血管生成调控因子蛋白表达抑制作用的研究.中国中药杂志.2005,30(5):357-360.
    [14] 林洪生,李树奇,裴迎霞,等.川穹嗪、苦参碱对癌细胞与内皮细胞粘附及粘附因子表达的影响.中国新药杂志.1999,8(6):384-386.
    [15] Wartenberg M, Budde P, De Marees M, et al. Inhibition of tumor-induced angiogenesis and matrix-metalloproteinase expression in confrontation cultures of embryoid bodies and tumor spheroids by plant ingredients used in traditional chinese medicine. Lab Invest. 2003,83(1):87-98.
    [16] 吴凯南,林辉,孔令泉,等.云芝多糖对乳腺不典型增生及血管生成的影响.中华实验外科杂志.2001,18(4):372.
    [17] Stanley G, Harvey K, Jiang J, et al. Ganodum lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-beta 1 from prostate cancer cells. Biochem Biophys Res Commun. 2005, 330(1):46-52.
    [18] 徐莉,丁志山,魏颖慧,等.参麦注射液对胃癌中BFGF,PCNA基因表达的影响.2006,28(4):530-532.
    [19] Aggarwal S, Ichikawa H, Takada Y, et al. Curcumin (Diferuloylmethane) Down-Regulates Expression of Cell Proliferation and Antiapoptotic and Metastatic Gene Products through Suppression of I{kappa}B{alpha} Kinase and Akt Activation. Mol Pharmacol. 2006, 69(1): 195-206.
    [20] 徐晓玉,陈刚,严鹏科,等.川穹嗪对小鼠肺癌血管生成和VEGF表达的抑制.中国药理学通报.2004,20(2):151-154.
    [21] Kim MS, Baek JH, Park JA, et al. Wilfoside K1N isolated from Cynanchum wilfordii inhibits angiogenesis and tumor cell invasion, Int J Oncol. 2005,26(6):1533-1539.
    [22] 季亢挺,张怀勤,扬鹏麟,等.复方丹参注射液对内皮祖细胞数量和功能的影响.中国中药杂志. 2006,31(3):246-249.
    [23] 徐中平,李福川,王海仁,等.昆布多塘硫酸酯的抑制血管生成和抗肿瘤作用抑制角膜碱烧伤后新生血管形成的实验研究.中草药.1999,30(7):551-553.
    [24] 姜晓玲,张良,徐卓玉,等.薏苡仁注射液对血管生成的影响.肿瘤.2000,20(4):313-314.
    [25] Chen YJ, Shieh CJ, Tsai TH, et al. Inhibitory effect of norcantharidin, a derivative compound from blister beetles, on tumor invasion and metastasis in CT26 colorectal adenocarcinoma cells. Anticancer Drugs. 2005,16(3):293-299.
    [26] 宗建春,吴诚义,吴凯南.三氧化二砷对乳腺癌细胞血管内皮生长因子表达的影响.中华实验外科杂志.2005,22(5):532-534.
    [27] Lee DY, Yasuda M, Yamamoto T,et al. Bufalin inhibits endothelial cell proliferation and angiogenesis in vitro. Life Sci. 1997,60(2): 127-134.
    [28] Hussain T, Gupta S, Adhami VM, et al. Green tea catechin, epigailocatechin-3-gallate, inhibits vascular endothelial growth factor angiogenic signaling by disrupting the formation of a receptor complex. Int J Cancer. 2005,10; 113(4):660-669.
    [29] Farina HG, Pomies M, Alonso DF, et al. Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol Rep. 2006,16(4):885-891.
    [30] Gamble JR, Xia P, Hahn CN, et al. Phenoxodiol, an experimental anticancer drug, shows potent antiangiogenic properties in addition to its antitumour effects, Int J Cancer. 2006, 15, 118(10): 2412-2420.
    [31] Bukowski RM. AE-941, a multifunctional antiangiogenic compound: trials in renal cell carcinoma. Expert Opin Investig Drugs. 2003,12(8):1403-1411.
    [32] Gingras D, Nyalendo C, Di Tomasso G,et al. Activation of tissue plasminogen activator gene transcription by Neovastat, a multifunctional antiangiogenic agent.Biochem Biophys Res Commun. 2004,16;320(1):205-212.
    [33] Cardenas C, Quesada AR, Medina MA. Effects of ursolic acid on different steps of the angiogenic process. Biochem Biophys Res Commun. 2004,23;320(2):402-408
    [1] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J Immunol Methods. 1983,65(1-2): 55-63.
    [2] Shimoyama Y, Kubota T, Watanabe M, Ishibiki K, Abe O. Predictability of in vivo chemosensitivity by in vitro MTT assay with reference to the clonogenic assay J Surg Oncol. 1989, 41(1): 12-18.
    [3] 刘昌孝,孙瑞元.药物评价实验发计与统计学基础.北京:军事科学出版社,1999.31.32.
    [4] Kathy D. Miller. Christopher J Sweeney. Redefining the targer: chemothera-peutics as antiangiogenics. J clin oncol. 2001,19(4): 1195-1206.
    [1] Leavesley D. I., Fergusson G. D., Wayner E. A., et al. Requirement of the Integrin Beta-3 Subunit for Carcinoma Cell Spreading or Migration on Vitronectin and Fibrinogen.Journal of Cell Biology. 1992,117(5):1101-1107.
    [2] Bauer J. S., Schreiner C. L., Giancatti F. G., et al. Motility of Fibronectin Receptor-Deficient Cells on Fibronectin and Vitronectin: Collaborative Interactions among lntegrins. Journal of Cell Biology. 1992,116(2):477-487.
    [3] 胡光万,雷立公.出自深山的良药.重楼.植物杂志.2002(3):16.
    [4] 国家中医药管理局《中华本草》编委会.中华本草精选本下册.上海:上海科技出版社,1998:2062-2063.
    [5] 围家药典委员会.中华人民共和国药典2005年版一部.北京:化学工业出版社,2005:183.
    [6] 高令山.汉防己甲素合并小剂量放射治疗肺癌97例的临床研究.中医杂志.1980,(8):37.
    [7] 刘楠,郑秀龙.米索硝唑和粉防己碱对白血病L7712细胞DNA辐射损伤与修复的影响.中国药理学报.1985,6(3):209.
    [8] 徐和平,王成业,祝和成,等.汉防己甲素对视网膜母细胞瘤细胞系HXO-Rb44放射敏感性的影响.中国实用眼科杂志.1995,13(11):668.
    [9] 田晖,潘启超.双苄基异喹啉类生物碱粉防己碱与小檗胺逆转多药抗药性的比较研究.药学学报.1997,32(4):245.
    [10] Chang KH, Chen ML, Chen HC. Enhancement of radioseusitivity in human glioblastoma U138MG cells by tetrandrine. Neoplasma. 1999, 46(3): 196.
    [11] 何琪扬,孟凡宏,张冯卿.粉防己碱和蝙蝠葛碱减低抗三杉酯碱的人白血病HL260细胞对阿霉素的抗性.中国药理学报.1996,17(2:)179.
    [12] 许文林,钱军,费霞,等.汉防己甲素逆转血液系统肿瘤细胞多药耐药的临床观察.中华血液杂志.1999,20(7):383.
    [13] Choi SU, Park SH, Kim KH, et al. The bisbenzylisoquinoline alkaloids, tetrandrine and fangehinoline, enhance the cytotoxicity of multidrug resistance related drugs via modulation of P-glycoprotein. Anticnacer Drugs. 1998,9(3): 255.
    [14] 符立梧,潘启超,黄红兵等.粉防己碱逆转肿瘤多药抗药性细胞的凋亡抗性作用.中国药理学报.1998,14(4):309.
    [15] Fu LW, Zhang YM, Liang YJ, Yang XP, Pan QC. The multidrug resistance of tumour cells was reversed by tetrandrine in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells. Eur J Cancer. 2002,38(3):418-426.
    [16] Zhu X, Sui M, Fan W. In vitro and in vivo characterizations of tetrandrine on the reversal of P-glycoprotein-mediated drug resistance to paclitaxel.Anticancer Res. 2005,25(3B):1953-1962.
    [17] 周云,陈宝安,董颖.汉防己甲素联合屈洛昔芬逆转K562PA02细胞耐药与诱导凋亡相关性的研究.中国实验血液学杂志.2004,12(3):321-323.
    [18] 李福全,马春力,张明远,等.粉防己碱对阿霉素心脏损害大鼠的保护作用.佳木斯医学院学报.1994,17(6):12.
    [19] 金洪.汉防己甲素阻断平阳霉素所致肺间质纤维化的实验研究.中华结核和呼吸杂志.1991.14(6):359-360.
    [20] 刘巨源,郭萍,周跃等.汉防己甲素对肺纤维化大鼠肺泡巨噬细胞释放肿瘤坏死因子的影响.郑州大学学报(医学版).2002,37(5):613-615.
    [21] Ma JY, Barger MW, Hubbs AF. Use of tetrandrine to differentiate between mechanisms involvedin silica vesus bleomycin-induced fibrosis. J Toricol Euviron Health.1999,57(4):247.
    [22] Chen YJ, Tu ML, Kvo HC. Protctive effect of tetrandrine on normal human mononclear cells against ionizing irradiation.Biol Pharm Bull. 1997, 20(11): 1160.
    [23] Chen YJ, Dai YS, Chec BF. The effect of tetrandrine and extracts of centella asiatice on acute radiation dermatitis in rats. Biol Pharm Bull. 1999, 22(7): 703.
    [24] 许文林,敖忠芳,陈玉心等.汉防己甲素对柔红霉素和长春新碱增效作用的实验研究.中华血液学杂志.1994,15(5):256.
    [25] Kobayashi S, Inaba K, Kimura I, Kimura M. Inhibitory effects of tetrandrine on angiogenes is in adjuvant-induced chronic inflammation and tube formation of vascular endothelial cells. Biol Pharm Bull. 1998, 21(4): 346-349.
    [26] Aznavoorian S, Murphy AN, Stetler Stevenson WG,et al. Molecular aspects of tumor cell invasion and metastasis. Cancer. 1993, 71(4): 1368-1383.
    [27] Vailhe B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Invest. 2001,81(4): 439-452.
    [28] Nooteboom A, Hendriks T, Otteholler I, et al. Permeability characteristics of human endothelial monolayers seeded on different extracellular matrix proteins. Mediators Inflamm. 2000, 9(5): 235-241.
    [29] 许良中,周晓燕,杨文涛.细胞凋亡的检测方法.见:许良中主编.实用肿瘤病例方法学.上海:上海医科大学出版社,1997.620.
    [1] Kerbel RS.A cancer therapy resistant to resistance. Nature. 1997,390 (6658):335-336.
    [2] Weidner N, Folkma J. Tumoral vascularity as a prognostic factor in cancer. Important Adv Oncol. 1996,167-190.
    [3] Folkman J. Clinical applications of research on angiogenesis. N Engl J Med. 1995, 28;333(26): 1757-1763.
    [4] Hasan J, Shnyder SD, Bibby M, et al. Quantitative angiogenesis assays in vivo. Angiogenesis. 2004,7(1):1-16.
    [5] Crum R, Szabo S, Folkman J. A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science, 1985,20;230(4732): 1375-1378.
    [6] Glatt H J, Vu MT, Butger PC, et al. Effect of irradiation on vascularization of corneas grafted onto chorioallantoic membranes. Invest Ophthalmol Vis Sci. 1985,26(11): 1533-1542.
    [7] Gimbroney M, Grtan RS, Folkman J, et al. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst. 1974,52(2):413-427.
    [8] Schreiber AB, Winkler ME, Derynck R, et al. Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science. 1986, 232(4755): 1250-1253.
    [9] Tufan AC, Satiroglu-Tufan NL. The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr Cancer Drug Targets. 2005,5(4):249-66.
    [10] 呼群,宁涛,苏秀兰,等.鸡胚绒毛尿囊膜技术的改进[J].北京大学学报(医学版).2001,33(4):383-385.
    [11] Schlatter P, Konig MF, Karlsson LM, et al. Quantitative study of intussusceptive capillary growth in the chorioallantoic membrane (CAM) of the chicken embryo. Microvasc Res. 1997,54(1):65-73.
    [12] 王蕾,张树成,吴志奎,等.鸡胚绒毛尿囊膜血管生成模型在中药研究中应用方法探讨.中药药理与临床.2000,16(6):46-47.
    [13] Ribatti D, Vacca A, Roncali L, et al. The chick embryo chorioallantoic membrane as a model for in vivo research on anti-angiogenesis. Curr Pharm Biotechnol. 2000,1(1):73-82.
    [1] 庄贤韩,耿宝琴.雍定国.白头翁抗肿瘤作用实验研究.实用肿瘤杂志.1999,14 (2):94-96.
    [2] 蔡鹰,陆瑜,梁秉文等.白头翁体内抗肿瘤作用的实验研究.中草药.1999,30(12):929-931.
    [3] 王先芳,耿宝琴,章荣华.白头翁醇提物的抗肿瘤作用.浙江医科大学学报.1998,27(5):204-206.
    [4] 李延.8种中草药的抗肿瘤作用实验.时珍国医国药.2001,12(7):587-588.
    [5] 金洪.汉防己甲素阻断平阳霉素所致肺间质纤维化的实验研究.中华结核和呼吸杂志.1991.14(6):359-360.
    [6] 刘巨源,郭萍,周跃等.汉防己甲素对肺纤维化大鼠肺泡巨噬细胞释放肿瘤坏死因子的影响.郑州大学学报(医学版).2002,37(5):613-615.
    [7] Timothy Bowder , Catherine E. Butterfield. Antiangiogenic scheduling of chemotherapy improves efficacy against experimenta drug-resistant cancer. Cancer Res. 2000 ,60 (7): 1878-1888.
    [8] Buckstein R, Kerbel RS, Shaked Y, et al.High-Dose celecoxib and metronomic "low-dose" cyclophosphamide is an effective and safe therapy in patients with relapsed and refractory aggressive histology non-Hodgkin's lymphoma. Clin Cancer Res. 2006,12(17):5190-5198.
    [9] Bottini A, Generali D, Brizzi MP, et al.Randomized phase II trial of letrozole and letrozole plus low-dose metronomic oral cyclophosphamide as primary systemic treatment in elderly breast cancer patients.J Clin Oncol. 2006,24(22):3623-3628.
    [10] Vacca A, Ribatti D, Iurlaro M, et al. Docetaxel versus paclitaxel for antiangiogenesis.J Hematother Stem Cell Res. 2002,11 (1): 103-118.
    [11] Massacesi C, Marcucci F, Boccetti T, Battelli N, Pilone A, Rocchi MB, Bonsignori M. Low dose-intensity docetaxel in the treatment of pre-treated elderly patients with metastatic breast cancer. J Exp Clin Cancer Res. 2005,24(1):43-48.
    [12] Emmenegger U, Man S, Shaked Y, Francia G Wong JW, Hicklin DJ, Kerbel RS. A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens.Cancer Res. 2004,64(11):3994-4000.
    [13] Bocci G Francia G Man S, Lawler J, Kerbel RS. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA.2003,100(22): 12917-12922.
    [14] Man S, Bocci G Francia G Green SK, Jothy S, Hanahan D, Bohlen P, Hicklin DJ, Bergers G Kerbel RS. Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water.Cancer Res. 2002,62(10):2731-2735.
    [1] Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000, 21(3): 505-515.
    [2] Colleoni M, Rocca A, Sandri MT, et al. Low dose oral methotrexate and cyciophosphamide in metastatic breast cancer:antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol. 2002, 13(1): 73-80.
    [3] Kato H, Ichinose Y, Ohta M, et al. A randomized trial of adjuvant chemotherapy with uracil-tegafur for adencocarcinoma of lung. N Engl J Med. 2004, 350(17):1713-1721.
    [4] Emmenegger U, Man S, Shaked Y, et al. A comparative analysis of low-dose metronomic cyciophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens.Cancer Res. 2004,64(11):3994-4000.
    [5] Bocci G, Francia G, Man S, et al. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci U S A. 2003,100(22):12917-12922.
    [6] Man S, Bocci G, Francia G, et al. Antitumor effects in mice of low-dose(metronomic) cyclophosphamide administered continuously through the drinking water.Cancer Res. 2002,62(10):2731-2735.
    [7] 王兵.人参皂苷Rg3对肺癌诱导血管内皮细胞增殖的抑制作用.中国新药杂志.2002,11(9):700-702.
    [8] 冯敢生.中药自及提取物抑制肿瘤血管生成机制的实验研究.中华医学杂志.2003,83(5):412-416.
    [9] Singh AK, Sidhu GS, Deepa T. et al. Curcumin inhibits the proliferation and cell cycle progression of human umbilical vein endothelial cell. Cancer Lett. 1996, 107(1):109-115.
    [10] Arbiser JL, Klauber N, Rohan R, et al. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998, 4(6): 376-383.
    [11] 黄煜伦.雷公滕红素抑制血管生成的实验研究.中华肿瘤杂志.2003,25(5):429-432.
    [12] 吴凯南.林辉,孔令泉等.云芝孢内多糖抑制肿瘤血管生成和移植性乳腺癌生长的实验研究.中华普通外科杂志.2001,16(2):124.
    [13] 高承贤.参麦注射液对移植性肿瘤血.管生成的影响.中成药.2003,25(9):728-731.
    [14] 尹丽慧.参麦注射液对血管生成影响的研究.中国中西医结合杂志.2002,22(10):761-763.
    [15] 姜晓玲,张良,徐卓玉等.薏苡仁注射液对血管生成的影响.肿瘤.2000,20(4):313.
    [16] Kimura H, Nakajima T, Kagawa K, et al. Angiogenesis in hepatocellular carcinoma as evaluated by CD34 immunohistochemistry. Liver. 1998, 18(1):14-19.
    [17] 陈陵际.运用人癌裸小鼠移植瘤模型进行抗癌新药评价.上海实验动物科学.2001,21(4):247-250.
    [18] 张国锋,王元和,王强.人结肠癌裸鼠原位种植癌及转移模型的建立.中国普通外科杂志.2003,12(11):823-826.
    [19] Manzotti C, Audision R A, Pratesi C. Importance of orthotopie implantation for human tumors as model systerms relevance to metastasis and invasion. Clin Exp Metastasis. 1993, 11(1): 5-14.
    [20] Sun F, Tang Z, Lui K, et al. Establishment of a metastatic modelof human hepatocellular carcinoma in nude mice via orthotop ic implantation of histologically intact tissues, Int J Cancer. 1996, 66(2): 239-243.
    [21] 张胜本,张连阳.肿瘤化学治疗敏感性与抗药性.四川科学技术出版社,1995:18.
    [22] Barreto CB,Azeredo RB,Fucs R. Extrat hymic T cells expand in nude mice following different allogeneic stimuli, Immunobiology. 2003,207(5):339.
    [23] 庄贤韩,耿宝琴,雍定国.白头翁抗肿瘤作用实验研究.实用肿瘤杂志.1999,14(2):94-96.
    [24] 蔡鹰,陆瑜,梁秉文等.白头翁体内抗肿瘤作用的实验研究.中草药.1999,30(12):929-931.
    [25] 王先芳,耿宝琴,章荣华.白头翁醉提物的抗肿瘤作用.浙江医科大学学报.1998,27(5):204-206.
    [26] 王艳霞,李惠芬.重楼抗肿瘤作用研究.中草药.2005,36(4):628-629.
    [27] 石小枫,杜德极.重楼总皂甙对H22动物移植性肿瘤的影响.中药材.1992,15(2):33-36.
    [28] 李延.8种中草药的抗肿瘤作用实验.时珍国医国药.2001,12(7):587-588.
    [29] 肖毅良.菊藻丸抗肿瘤临床应用240例.中国中西医结合外科杂志.1997,3(2):132.
    [30] 高尚社.莲花宝胶囊治疗中晚期恶性肿瘤118例近期疗效观察.中国民间疗法.2000,8(7):28-29.
    [31] 陈宝安,王为,林国.汉防己甲素抗肿瘤作用的研究进展.南京中医药大学学报(自然科学版).2001,17(2):128-130.
    [32] 何琪扬,张鸿卿,庞大本,等.抗三尖杉酯碱的HL-60细胞抗粉防己碱诱导的细胞凋亡.中国药理学报.1996,17(6):545.
    [33] 徐和平,王成业,祝和成.汉防己甲素和长春新碱对人视网膜母细胞瘤细胞系HXO-Rb44生长的抑制作用.中国中医眼科杂志.1995,5(2):67.
    [34] 刘力生.汉防己甲素、乙素对L7712和S180细胞DNA、RNA和蛋白质合成的抑制作用.中国药理学通报.1990,(1):53.
    [35] Dong Y, Yang MM, Kwan CY. In vitro inhibition of proliferation of HL-60 cells by tetrandrine and coriolusversicolor peptide derived from Chinese medicinal herbs. Life Sci. 1997,60(8): PL135.
    [1] Bagnato A, Spinella F. Emerging role ofendothelin I in tumor angiogenesis. Trends Endocrinol Metab,2003,14(1): 44.
    [2] Bell SE, Mavila A, Salazar R, et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. Journal of Cell Science 2001;114(15): 2755-2773.
    [3] Barbera, Guillem E, NyhusJK., et al. Vascular endothelial growth factor secretion by tumor infiltrating macrophageses sentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res, 2002, 62(23):7042,
    [4] Vitaliti A, Wittmer M, Steiner R, et al. Inhibition of tumor angiogenesis by a single chain antibody directed against vascular endothelia growth factor. Cancer Res, 2000,60(16):4311.
    [5] Liu J, Razani B, Tang S, et al. Angiogenesis activators and inhibitors differentially regulate caveolin I expression and caveolaefotionin vascular endothelial cells angiogenisis inhibitors block vascular endothelial growth factor induced down regulation of cavolin 1. JBiol Chem,1999,274(22):15781.
    [6] Bryant PA, Venter D, Robins Browne R, et al. Lancet Infect Dts, 2004,4(2):100-111.
    [7] 曹治权.中药药效的物质基础和作用机理研究新思路[J].上海中医药大学学报,2000,14(1):37.
    [8] 李瑶.基因芯片技术[M].北京:化学工业出版社,2004,115.
    [9] Ling MT, Lau TC, Zhou C, et al. Over expression of id-1 in prostate cancer cells promotes angiogenesis through the activation of vascular endothelial growth factor (VEGF). Carcinogenesis, 2005, 26(10): 1668-1676.
    [10] Kim I, Kim HG, Kim H, et al. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin related protein that prevents endothelial cell apoptosis.Biochem J,2000,346(3):603-610.
    [11] Milliken D, Scotton C, Raju S, et al. Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin Cancer Res, 2002,8(4):1108-1114.
    [1] Sanderson RD. Heparan sulfate proteoglycans in vasion and metastasis. Semin Cell Dev Biol. 2001, 12(2): 89-98.
    [2] Miller KD, Sweeney CJ, Sledge GW. Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol. 2001, 19(4): 1195-1206.
    [3] 李博,丁庭,徐继杰.人参皂甙Rg3对乳腺癌细胞(MCF 7)表达金属蛋白酶2、9(MMP 2,MMP 9)的影响.中国实验诊断学.2005,9(4):539-540.
    [4] 陈明伟,倪磊,赵小革,等.人参皂甙-Rg3对肿瘤血管生成调控因子蛋白表达抑制作用的研究.中国中药杂志.2005,30(5):357-360.
    [5] 林洪生,李树奇,裴迎霞,等.川穹嗪、苦参碱对癌细胞与内皮细胞粘附及粘附因子表达的影响.中国新药杂志.1999.8(6):384-386.
    [6] Wartenberg M, Budde P, De Marees M,et al. Inhibition of tumor-induced angiogenesis and matrix-metalloproteinase expression in confrontation cultures of embryoid bodies and tumor spheroids by plant ingredients used in traditional chinese medicine. Lab Invest. 2003,83(1): 87-98.
    [7] 吴凯南,林辉,孔令泉,等.云芝多糖对乳腺不典型增生及血管生成的影响.中华实验外科杂志.2001,18(4):372.
    [8] Stanley G, Harvey K, Jiang J, et al. Ganodum lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-beta 1 from prostate cancer cells. Biochem Biophys Res Commun. 2005, 330(1):46-52.
    [9] 徐莉,丁志山.魏颖慧,等.参麦注射液对胃癌中BFGF,PCNA基因表达的影响.2006,28(4):530-532.
    [10] Belakavadi M, Salimath BP. Mechanism of inhibition of ascites tumor growth in mice by curcumin is mediated by NF-kB and caspase activated DNase. Mol Cell Biochem. 2005,273(1-2):57-67.
    [11] Collado B, Sanchez MG, Diaz-Laviada I, et al. Vasoactive intestinal peptide (VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+ signalling. Implications in angiogenesis and neuroendocrine differentiation. Biochim Biophys Acta. 2005, 30;1744(2):224-233.
    [12] 吴志敏,袁先厚,江普查,等.姜黄素通过改变FAK表达利激活caspase诱导人脑胶质瘤U251细胞凋亡.中国药理学通报.2006,22(4):484-487.
    [13] Gururaj A, Belakavadi M, Venkatesh D, et al. Molecular mechanisms of anti-angiogenic effect of curcunmin. Biochem Biophys Res Commun. 2002,297(4): 934-942.
    [14] Kim J, Shim J, Lee S, et al. Microarray-based analysis of anti-angiogenic activity of demethoxycurcumin on human vmbilical vein endothelial cells: crucial involvement of the down-regulation of matrix metal loproteinase. Jpn J Cancer Res. 2002,93(12): 1378-1385.
    [15] Aggarwal S, Ichikawa H, Takada Y, et al. Curcumin (Diferuloylmethane) Down-Regulates Expression of Cell Proliferation and Antiapoptotic and Metastatic Gene Products through Suppression of I{kappa}B{alpha} Kinase and Akt Activation. Mol Pharmacol. 2006, 69(1): 195-206.
    [16] Yoysungnoen P, Wirachwong P, Bhattarakosol P, et al. Antiangiogenic activity of curcumin in hepatocellular carcinoma cells implanted nude mice. Clin Hemorheol Microcirc. 2005, 33(2): 127-135.
    [17] Woo MS, Jung SH, Kim SY, et al. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys Res Commun. 2005, 7;335(4): 1017-1025.
    [18] Li L, Braiteh FS, Kurzrock R. et al. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer. 2005, 15; 104(6):1322-1331.
    [19] Hahm ER, Gho YS, Park S,et al. Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochem Biophys Res Commun. 2004, 20;321(2):337-344.
    [20] 徐晓玉,陈刚,严鹏科,等.川穹嗪对小鼠肺癌血管生成和VEGF表达的抑制.中国药理学通报.2004,20(2):151-154.
    [21] Kim MS, Baek JH, Park JA, et al. Wilfoside K1N isolated from Cynanchum wilfordii inhibits angiogenesis and tumor cell invasion. Int J Oncol. 2005,26(6):1533-1539.
    [22] 季亢挺,张怀勤,扬鹏麟,等.复方丹参注射液对内皮祖细胞数量和功能的影响.中国中药杂志.2006,31(3):246-249.
    [23] 徐中平,李福川,王海仁,等.昆布多塘硫酸酯的抑制血管生成和抗肿瘤作用抑制角膜碱烧伤后新生血管形成的实验研究.中草药.1999,30(7):551-553.
    [24] 姜晓玲,张良,徐卓玉,等.薏苡仁注射液对血管生成的影响.肿瘤.2000.20(4):313-314.
    [25] Fan YZ, Fu JY, Zhao ZM, et al. Effect of norcantharidin on proliferation and invasion of human gallbladder carcinoma G BC-SD cells. World J Gastroenterol. 2005,28;11(16):2431-2437.
    [26] Chen YJ, Shieh CJ, Tsai TH, et al. Inhibitory effect of norcantharidin, a derivative compound from blister beetles, on tumor invasion and metastasis in CT26 colorectal adenocarcinoma cells. Anticancer Drugs. 2005, 16(3):293-299.
    [27] 宗建春,吴诚义,吴凯南.三氧化二砷对乳腺癌细胞血管内皮生长因子表达的影响.中华实验外科杂志.2005,22(5):532-534.
    [28] Lee DY, Yasuda M, Yamamoto T,et al. Bufalin inhibits endothelial cell proliferation and angiogenesis in vitro. Life Sci. 1997,60(2):127-134.
    [29] Takita H, Kikuchi M, Sato Y, et all Inhibition of BMP-induced ectopic bone formation by an antiangiogenic agent (epigallocatechin 3-gallate) 1 Connect Tissue Res. 2002, 43(2-3): 520-523.
    [30] Hussain T, Gupta S, Adhami VM, et al. Green tea catechin, epigallocatechin-3-gallate, inhibits vascular endothelial growth factor angiogenic signaling by disrupting the formation of a receptor complex. Int J Cancer. 2005,10:113(4):660-669
    [31] 徐峰.宋丹青.佤永苏.咖啡酸钠与丝裂霉素抗肿瘤协同作用.药学学报.2002,37(6):402-408
    [32] Sasamura H, Takahashi A, Miyao N, et al. Inhibitory effect on expression of angiogenic factors by antiangiogenic agents in renal cell carcinoma. Br J cancer. 2002, 86(5): 768-773.
    [33] Farina HG, Pomies M, Alonso DF, et al. Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol Rep. 2006,16(4):885-891
    [34] Su SJ, Yeh TM, Chuang WJ, et al. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem Pharmacol. 2005, 15;69(2):307-318.
    [35] Gamble JR, Xia P, Hahn CN, et al. Phenoxodiol, an experimental anticancer drug, shows potent antiangiogenic properties in addition to its antitumour effects. Int J Cancer. 2006 15;118(10):2412-2420
    [36] Ravindranath MH, Muthugounder S, Presser N, et al. Anticancer therapeutic potential of soy isoflavone, genistein. Adv Exp Med Biol. 2004, 546:121-165.
    [37] Piao M, Mori D, Satoh T, et al. Inhibition of endothelial cell proliferation, in vitro angiogenesis, and the down-regulation of cell adhesion-related genes by genistein combined with a cDNA microarray analysis. Endothelium. 2006,13(4):249-266
    [38] Kim MH, et al. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem. 2003,89(3):529-538.
    [39] Sasamura H, Takahashi A, Yuan J, et al. Antiproliferative and antiangiogenic activities of genistein in human renal cell carcinoma. Urology. 2004,64(2):389-393.
    [40] Valachovicova T, Slivova V, Bergman H, et al. Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. Int J Oncol. 2004,25(5):1389-1395.
    [41] Buchler P, Reber HA, Buchler MW, et al. Antiangiogenic activity of genistein in pancreatic carcinoma cells is mediated by the inhibition of hypoxia-inducible factor-1 and the down-regulation of VEGF gene expression. Cancer. 2004,100(1): 201-210.
    [42] 余小平,糜漫天,朱俊东.三羟异黄酮对HER-2/neu高表达乳腺癌细胞血管生成相关因子表达的影响.实验生物学报 2004,37(3):251-253.
    [43] Chen HH, Zhou HJ, Wu GD, et al. Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1. Pharmacology. 2004,71(1):1-9.
    [44] Huan-huan C, Li-Li Y, Shang-Bin L. Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cell. Cancer Lett. 2004, 10:211(2):163-173.
    [45] Bukowski RM. AE-941, a multifunctional antiangiogenic compound: trials in renal cell carcinoma. Expert Opin Investig Drugs. 2003,12(8):1403-1411.
    [46] Beliveau R, Gingras D, Kruger EA, et al. The antiangiogenic agent neovastat(AE-941) inhibits vascular endothelial growth factor mediated biological effects. Clinical Cancer Res. 2002,8(4): 1242-1250.
    [47] Berbari P, Thibodeau A, Germain L, et al. Antiangiogenic effects of the oral administration of liquid cartilage extract in human. J Surg Res. 1999,87(1):108-113.
    [48] Shepherd FA. Angiogenesis inhibitors in the treatment of lung cancer. Lung Cancer. 2001,34(3):81-89
    [49] Boivin D, Gendron S, Beaulieu E, et al. The antiangiogenic agent Neovastat(AE-941) induces endothelial cell apoptosis. Mol Cancer Ther. 2002,1(10):795-802
    [50] Gingras D, Labelle D, Nyalendo C,et al. The antiangiogenic agent Neovastat (AE-941) stimulates tissue plasminogen activator activity. Invest New Drugs. 2004,22(1): 17-26.
    [51] Gingras D, Nyalendo C, Di Tomasso G, et al. Activation of tissue plasminogen activator gene transcription by Neovastat, a multifunctional antiangiogenic agent. Biochem Biophys Res Commun. 22004,16;320(1):205-212.
    [52] Cardenas C, Quesada AR, Medina MA. Effects of ursolic acid on different steps of the angiogenic process. Biochem Biophys Res Commun. 2004,23;320(2):402-408.
    [53] Shishodia S, Majumdar S, Banerjee S,et al. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003,63(15):4375-4383.
    [54] 范跃祖 陈春球 赵泽明等.去甲斑蝥素对胆囊癌肿瘤血管生成的作用及机制研究.中华医学杂志.2006,86(10):693-699.
    [55] Kiriakidis S, Hogemeier O, Starcke S, et al. Novel tempeh (fermented soyabean) isoflavones inhibit in vivo angiogenesis in the chicken chorioallantoic membrane assay. Br J Nutr. 2005,93(3): 317-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700