用户名: 密码: 验证码:
地磁场测量及水下磁定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为确保潜艇水下生存能力,发挥突袭效果,潜艇必须具备水下长时间高精度定位和隐蔽航行的手段与能力。惯性导航系统因其自主性及全维导航信息的特点而成为潜艇的核心导航设备,但由于惯性器件的固有漂移和误差,惯导定位误差随时间积累,必须予以重调与校正。地磁场为潜艇提供了隐蔽性好的外部校正信息源,地磁/惯性组合导航系统的研究与应用,可延长潜艇重调周期,提高潜艇的远程导航精度与自主导航能力。本文着重研究基于地磁异常反演的水下载体定位、磁场梯度测量技术及惯性/地磁异常反演测速组合导航方法。
     鉴于有效地磁图难以构建,地磁测量值还有无法预知的磁异常等客观事实,将地形匹配方法移植于水下地磁导航还存在不少困难。本文提出基于地磁异常反演的水下定位方法,将地磁异常场看作一个偶极子磁性目标,通过测量目标磁场大小及梯度计算载体相对于目标的位置。详细推导了地磁特征反演的计算公式。针对反演公式中正负号及一元六次方程的多根问题,根据特征反演的实际意义给出了真实根的三个约束条件,对符号及多根进行取舍。提出并描述了基于先验的位置磁矩迭代修正方程系数的方法,建立迭代误差指标函数及迭代公式,并进行了数值仿真实验。
     分析了测量磁场梯度张量的必备条件,得出最简测量配置为七单轴磁力计,结合磁场梯度最优测量矩阵,提出了一种安装于立方体顶点的七磁力计配置。分析了磁场量测固有误差与测量基线长间的关系,提出了测量磁场大小及梯度的十单轴和八单轴两种磁力计配置方式,表明十单轴配置优于八单轴配置,根据两种磁力计安装结构,分析了产生这种差异的内在原由。讨论了磁场梯度张量的标量磁力计测量方案可行性。
     推导了十单轴磁力计配置下偶极子磁场测量误差同磁力计三轴非正交误差、轴间增益及零点漂移偏差、安装中心错位、对应轴指向偏差间的关系,分析了磁力计三轴不共点带来的额外测量误差,给出并对比了十单轴磁力计的两种放置方式,表明在磁力计组对应轴间距相等的放置方式下误差较小
     建立了适用于强噪声下三轴磁力计正交及增益误差模型,给出了误差模型参数辨识算法及不同信噪比条件下校正精度与采样点个数的关系。进一步考虑到磁力计零点漂移及磁场测量系配准误差后,建立了磁场分量梯度计和磁场大小梯度计测量误差模型,提出了一种基于FLANN和最小二乘法的磁场分量梯度计和磁场大小梯度计误差参数辨识及校正算法,实验证明了算法在一定噪声范围内的收敛性与有效性。
     为验证异常场梯度反演地磁特征的可行性,设计了地磁梯度测量及定位的地面模拟实验。利用两个分辨力为1nT的三轴磁通门磁力计搭建了磁场梯度测量装置,编写了基于Labview的上位机软件,进行了室外磁场梯度测量及磁性目标定位实验,对实验数据进行处理,表明磁场梯度定位的可行性。
     针对地磁背景场下目标磁场大小难以测量的问题,提出了载体潜深辅助磁场梯度水下定位新方法,由两次潜深量测值直接计算载体垂向相对位置,分析了潜深测量误差对定位精度的影响。为避免载体不断垂向移动以测量潜深,提出了基于磁矩的水下地磁异常连续定位方法,并进行了仿真验证。
     最后,研究了水下载体姿态变化对目标磁场大小与梯度测量及定位精度的影响,表明磁场梯度随姿态呈周期性变化,而定位距离与姿态无关。根据磁矩与载体姿态角的关系,提出了磁矩辅以一维倾斜仪的姿态变化解算方法。根据目标位置固定及定位距离与姿态无关的特点,提出由两次定位距离差解算地速的绝对测量方法,推导了地速及其分量计算公式。提出将地速作为观测量,构建地磁/惯性组合导航系统,对比分析了卡尔曼与H∞滤波器的滤波效果。
To assure underwater survival capability of submarine, it must be provided with means and competences of both high precise localization and hidden navigation, and then it can make a surprise attack on enemy. INS (Inertial Navigation System) has been the key navigation equipment of submarine due to its excellences such as independence and whole navigation information. But the localization error of INS increases with time due to the inherent drifts and error of its inertial components, so INS must be regulated again and again or correction. Geomagnetic field can provide external resource of correction information with good concealment for submarine. Through the research and application of INS/geomagnetic integrated navigation system, the period of regulation would be prolonged, and long distance navigation precision and automatic navigation ability would be improved. The dissertation will focus on the study of underwater localization method based on geomagnetic anomaly inversion, magnetic gradient measurement technology and INS integrated navigation system with ground speed detected by geomagnetic anomaly inversion.
     Aimed at these facts that effective geomagnetic map is difficult to build up and geomagnetic anomaly is not forecasted in geomagnetic data, there are some difficulties for explanting terrain matching method to underwater geomagnetic navigation. A new underwater localization method based on geomagnetic anomaly inversion is put forward in this dissertation, where geomagnetic anomaly can be viewed as a magnetic dipole target and the position of vehicle relative to target can be calculated by magnetic magnitude and gradients of target field. The calculated formula of geomagnetic feature inversion is deduced in detail. Focused on both positive/negative symbol in inversion formula and many roots of a six order equation with one variable, three restricted terms of the true root are given according to the factual meaning of inversion, which can be used to select both symbol and many roots. A combined iterative correction with position and magnetic moment is put forward and described in detail. On the other hand, the index function of iterative calculation error and iterative equation of position and magnetic moment are set up, and then the numerical simulation experiment is carried out.
     The relationship between inherent errors of magnetic field measurement and baseline length is analyzed. Two kinds of magnetometer configuration schemes for ten single-axes and eight single-axes are put forward and compared, and the results show that ten single-axis configuration scheme is better than eight single-axis one. According to two kinds of placement structure of magnetometers, the inherent reason of this difference is analyzed. The essential conditions and optimal matrix of magnetic gradients measurement are analyzed, and thus we can conclude that the simplest configuration is seven single-axis magnetometers. A kind of configuration for seven single-axis magnetometers is put forward, which are installed vertexes of cubic supporter. The feasibility of measurement scheme about scalar magnetometer is discussed.
     The relationships between the measurement errors of magnetic dipole magnitude and gradients and three-axis nonorthonity, gain and zero-drift error, displacement central inaccuracy and sensitive axis direction deviation of magnetometers are deduced. The calculated errors of magnetic magnitude and gradients caused by no-co-point of magnetometer are analyzed, and two kinds of configuration modes about ten magnetometers are given and compared. These errors are less for the configuration mode where the displacement between the corresponding sensitive axes is equal.
     The error model applicable to strong noise for nonorthobonality and different sensitivities among three axes of magnetometer is established, and the error parameters identification and related correction algorithm are also given. The relation between correction precision and sampling number is studied on condition of different SNRs. Considering secondly that the zero-drift error of tri-axis magnetometer and registration error among two magnetic measurement coordinate systems, we establish the error model of magnetic component gradiometer and magnetic magnitude gradiometer, and then bring forward their error parameters identification and correction algorithm based on functional link artificial neural network (FLANN) and least-squares method. The experiments prove good convergence and validity of the algorithm in a certain noise range.
     To verify the feasibility of geomagnetic character inversion based on magnetic anomaly gradients, the ground experiment of geomagnetic gradient measurement and localization is designed. Magnetic gradient measurement device is put up by two three-axis fluxgate magnetometer whose resolution is 1nT, and up-plane software based on Labview is designed and organized. Magnetic gradient measurement and target localization experiments are carried out outdoor, and experimental data disposed show that the feasibility of geomagnetic gradient.
     Aimed at the problem that target magnetic magnitude is difficult to measure in the geomagnetic background field, new vehicle localization method based on draft depth and magnetic gradients is brought forward. The vertical relative position is directly calculated by twice measurements of draft depth. The effect of draft depth measurement error on localization precision is analyzed. A continuous localization method using magnetic moment of target is put forward to avoid vehicle moving in vertical direction endlessly, and simulation is performed.
     Finally, effect of underwater vehicle attitude variation on magnetic magnitude, gradients and localization is studied, and results show that magnetic gradients vary with a certain period and however the localization distance isn't related to attitude. According to the relationship between target moment and attitude angles of vehicle, a novel method to calculate attitude variation by target magnetic moments is put forward combined with inversed magnetic moment and one-dimensional tiltmeter. According to the feature that the position of magnetic target is fixed and the localization distance isn't related to attitude, the calculation method of ground speed by twice localization distances is brought forward. The calculated equation of ground speed and its components is deduced, and the calculated error of ground speed is analyzed theoretically. And then, applicable condition of the calculation equation is discussed. Viewed the ground speed as measurement quantity, the geomagnetic/INS integrated navigation system is constructed, and the filter effects of Kalman filter and H∞filter are compared by simulation.
引文
[1]Rice H, Kelmenson S, Mendelsonhn L. Geophysical navigation technologies and applications. IEEE PLANS, San Diego,2004:618-624P
    [2]金翔龙.海洋地球物理技术的发展.东华理工学院学报.2004,27(1):6-13页
    [3]彭富清,霍立业.海洋地球物理导航.地球物理学进展.2007,22(3):759-764页
    [4]徐遵义,俨磊,宁书年等.海洋重力辅助导航的研究现状与发展.地球物理学进展.2007,22(1):104-111页
    [5]蔡兆云,魏海平,任治新.水下地磁导航技术研究综述.国防科技.2007,3:28-29页
    [6]Psiaki M L and Martel F. Autonomous magnetic navigation for earth orbiting spacecraft. Proceedings of the Third Annual AIAA/USU conference on Small Satellites, Logan, UT,1989. unnumbered
    [7]Psiaki M L, Huang L, Fox S M. Ground tests of magnetometer-based autonomous navigation (MAGNAV) for low-earth-orbiting spacecraft. Journal of Guidance, Control and Dynamics.1993,16 (1):206-214 P
    [8]Psai M L. Autonomous orbit and magnetic field determination using magnetometer and star sensor data. Journal of Guidance, Control and Dynamics.1995,18 (3) 584-592P
    [9]Psiaki M L. Autonomous low-earth orbit determination from magnetometer and sun sensor data. Journal of Guidance, Control and Dynnamics.1999,22 (2):296-304P
    [10]Hee Jung, Psiaki M L. Tests of magnetometer/sun-sensor orbit determination using flight data. AIAA/AAS Astrodynamics Conf., San Diego, CA,1996:556-563 P
    [11]Shorshi G, Bar-Itzhack I Y. Satellite automous navigation based on magnetic field measurements. Journal of Guidance, Control and Dynamics.1995,18(4):843-850P
    [12]Deutschmann J, Bar-Itzhack I. Attitude and trajectory estimation using earth magnetic field data. AIAA/AAS Astrodynamics Conf., San Diego, CA,1996:937-945P
    [13]Deutschmann J, Bar-Itzhack I Y. Evaluation of attitude and orbit estimation using actual earth magnetic field data. Journal of Guidance, Control and Dynamics.2001, 24 (3):616-626 P
    [14]Deutschmann J, Bar-Itzhack I. An innovative method for low cost, autonomous navigation for low earth orbit satellites. Proc. of the 1998 AIAA/AAS Astrodynamics Spectialist Conf., Boston, Massachusetts,1998:387-394P
    [15]J. Thienel, R. Harman, I. Bar-Itzhack, et al. Results of the magnetometer navigation (MAGNAV) inflight experiment. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, Rhode Island,2004:875-881 P
    [16]Y. Sartiel, A. Shiryaev, M. Shachar. Approximation of the geomagnetic field for the TechSat-1 attitude control system. Proceedings of the 38th Iseral Annual Conference on Aerospace Sciences, Israel,1998:1245-1250 P
    [17]Matthias Wiegand. Autonomous satellite navigation via Kalman filtering of magnetometer data. Acta Astronautica.1996,38 (4-8):395-403 P
    [18]Soohong Kim, Joohwan Chun. Satellite orbit determination using a magnetometer based bootstrap filter. Proceedings of the American Control Conference, Chicago,2000:1467-1473 P
    [19]Kim Soohong, Chun Joohwan. Bayesian bootstrap filtering for the LEO satellite orbit determination. Proceedings of IEEE 51st Vehicular Techonology Conference,2000: 1611-1615 P
    [20]Sangwoo Cho, Joohwan Chun. Bayesian bootstrap filtering for the satellite attitude determination using a star sensor. Proceedings of the SPIE-The International Society for Optical Engineering,2001, v4477:88-95 P
    [21]Cho sangwoo, Bae Jinho, Chun Joohwan. A low-cost orbit determination method for mobile communication satellites. AIAA International Communications Satellite Systems Conference and Exhibit,18th, Oakland, CA,2000, Collection of Techincal Papers. Vol.2 (A00-25001 06-32), Reston, VA, American Insitute of Aeronautics and Astronautics,190:951-956 P
    [22]Goldenberg F. Geomagnetic navigation beyond magnetic compass. IEEE PLAN, San Diego, California,2006:684-694 P
    [23]张纯学.地磁导航技术及其应用.飞航导弹.2004,2:63-65页
    [24]Metrger E. H, Jircitano A. Analysis of real time mapping of horizontal and vertical gravity anomalies on board of moving vehicle such as aircraft. International Symposium on Application of Marine Geodesy, Battle Institute, Columbus Ohio,1974:128-131P
    [25]彭富清.地磁模型与地磁导航.海洋测绘.2006,26(2):73-75页
    [26]Felix Goldenberg,范凯峰译.优于磁罗经的地磁导航.舰船导航.2010,2:1-15页
    [27]C. Tyren. Magnetic anomalies as a reference for ground speed and map matching navigation. The Journal of Navigation.1982,35 (2):242-254 P
    [28]C.Tyren. Magnetie terrain navigation. Proceedings of the 5th Int. Symp. On Unmanned Submersible Technology,1987:245-256 P
    [29]Kenneth J. Lohmann, Catherine M. F. Lohmann, Llewellyn M. Ehrhart et al. Animal behavior:Geomagnetic map used in sea-turtle navigation. Nature.2004,428:909-910 P
    [30]John J. Leonard, Andrew A. Bennett, Christopher M.Smith et al. Autonomous underwater vehicle navigation. MIT Marine Robtics Laboratory Technical Memorandum 98-1:1-17 P
    [31]Donald G, Polvani, Aronold Md. Magnetic maker position fixing system for underwater vehicles. United States Patent:5357437,1994
    [32]左文辑,宋福香.微小卫星磁测自主导航方法.宇航学报.2000,21(2):100-104页
    [33]赵黎平,周军,周凤歧.基于磁强计的卫星自主定轨.航天控制.2001,3:7-11页
    [34]王建琦,曹喜滨,孙兆伟.基于GPS与磁强计组合的姿态确定.中国空间科学与技术.2002,2:49-55页
    [35]王建琦,曹喜滨,孙兆伟.基于GPS及其与磁强计组合的姿态确定算法研究.上海航天.2002,6:24-28页
    [36]赵敏华,石萌,曾雨莲等.基于地磁定轨和扩展卡尔曼滤波的导航算法.西安交通大学学报.2004,38(12):1315-1318页
    [37]赵敏华,石萌,曾雨莲等.基于磁强计的卫星自主定轨算法.系统工程与电子技术.2004,26(9):1236-1238,1281页
    [38]赵敏华,吴斌,石萌等.基于三轴磁强计与雷达高度计的融合导航算法.宇航学报.2004,25(4):411-415页
    [39]赵敏华,吴斌,石萌等.基于GPS和三轴磁强计的联合导航算法.天文学报.2006,47(1):93-99页
    [40]王淑一,杨旭,杨涤等.近地卫星磁测自主导航算法研究.宇航学报.2003,24(6):634-637,660页
    [41]王淑一,杨旭,杨涤等.近地卫星磁测自主定轨及原型化.飞行力学.2004,22(2):89-93页
    [42]杨旭,王淑一,曹喜滨.基于地磁场模型修正的自主定轨.航天控制.2005,23(5):23-26页
    [43]杨旭,程杨,曹喜滨等.粒子滤波在卫星轨道确定中的应用.控制理论与应用.2005,22(4):573-577页
    [44]邢艳军,曹喜滨,张世杰.基于磁强计和红外地平仪的卫星轨道姿态一体化确定方法.宇航学报.2009,30(4):1574-1581页
    [45]邢艳军,张世杰,曹喜滨.基于地磁场的轨道姿态确定.哈尔滨工业大学学 报.2009,41(7):1 1-15页
    [46]邢艳军,张世杰,曹喜滨.微小卫星轨道姿态一体化确定算法研究.航天控制.2009,27(5):11-15页
    [47]高长生,荆武兴,张燕等.基于Unsceneted卡尔曼滤波器的近地卫星磁测自主导航.中国空间科学技术.2006,1:27-32页
    [48]黄琳,荆武兴.卫星姿态确定与三轴磁强计校正.宇航学报.2008,29(3):854-859页
    [49]史连艳,姚志敏,尉广军.应用磁强计确定飞行器姿态的KF算法设计.军械工程学院学报.2003,15(1):25-28页
    [50]周健,朱振才,王建宇.利用磁强计数据确定卫星三轴姿态的方法.宇航学报.2001,22(2):106-110页
    [51]姜雪原,马广富,石忠.基于TAM的卫星角速度粒子滤波估计算法.哈尔滨工业大学学报.2007,39(11):1681-1685页
    [52]姜雪原,马广富.基于平方根Unscented卡尔曼滤波的无陀螺卫星的姿态估计,南京理工大学学报.2005,29(4):399-402,410页
    [53]姜雪原,马广富,胡庆雷.改进型UKF滤波算法的卫星姿态估计.哈尔滨工程大学学报.2005,26(4):544-549页
    [54]杨艳,赵黎平,赵光恒.基于磁强计测量的一种姿态估计方法.航天控制.2006,24(4):51-56页
    [55]田菁,吴美平,胡小平.三轴磁强计姿态确定.国防科技大学学报.2001,23(5):17-21页
    [56]吴美平,田菁,胡小平.三轴磁强计轨道确定.国防科技大学学报.2002,24(3):90-93页
    [57]郁丰,刘建业,熊智等.基于伪陀螺/磁强计/地球敏感器的微卫星姿态自适应确定方法.应用科学学报.2007,25(1):108-110页
    [58]刘建业,段方,李丹等.基于太阳电池板与磁强计的小卫星姿态确定算法.宇航学报.2007,28(1):218-222页
    [59]李素敏,张万清.地磁场资源在匹配制导中的应用研究.制导与引信.2004,25(3):19-21页
    [60]胡正东,郭才发,张士峰等Unscented卡尔曼滤波在飞航导弹地磁导航中的应用.宇航学报.2009,30(4):1443-1448页
    [61]蔡洪,郭才发,胡正东.惯性/地磁组合导航算法.中国惯性技术学报.2009,17(3):333-337页
    [62]郭才发,赵星,蔡洪.有色噪声作用下的INS/地磁组合导航算法研究.飞行器测控学报.2010,29(4):84-88页
    [63]郭才发,胡正东,赵星等.自适应滤波在磁暴期间地磁导航中的应用.宇航学报.2010,31(8):1927-1932页
    [64]施桂国,周军,葛致磊.基于无迹卡尔曼滤波的巡航导弹地磁自主导航方法.兵工学报.2008,29(9):1088-1093页
    [65]黄峥,李科杰,金连宝.火炮弹丸捷联式地磁-太阳方位姿态测量模型研究.兵工学报.2001,22(1):19-22页
    [66]冯杰,鲜勇.基于地磁信息的弹道导弹爆高控制方法误差分析.弹箭与制导学报.2007,27(2):206-208,215页
    [67]施桂国,周军,葛致磊.一种多地球物理特征匹配自主导航方法.西北工业大学学报.2010,28(1):18-22页
    [68]王哲,王仕成,张金生等.一种地磁匹配制导基准图制备方法及其有效性评价.系统工程与电子技术.2008,30(11):2207-2211页
    [69]王哲,王仕成,张金生等.一种地磁匹配制导适配性特征参数选取方法.宇航学报.2009,30(3):1057-1063,1078页
    [70]王哲,王仕成,张金生等.一种基于层次分析法的地磁匹配制导适配性评价方法.宇航学报.2009,30(5):1871-1878页
    [71]王仕成,王哲,张金生等.总磁场强度梯度模作为匹配特征量的基准图制备技术.系统工程与电子技术.2009,31(4):881-885页
    [72]乔玉坤,王仕成,张金生等.采用矩谐分析和支持向量机的地磁导航基准图构建方法.西安交通大学学报.2010,44(10):47-51页
    [73]乔玉坤,王仕成,张金生等.基于矩谐分析和BP神经网络的地磁基准图构建方法.兵工学报.2010,31(9):1254-1258页
    [74]乔玉坤,王仕成,张金生等.基于BP网络的地磁基准图制备及其精度评价.中国惯性技术学报.2009,17(1):53-57页
    [75]焦巍,刘光斌,张金生等.基于免役粒子群算法的地磁特征区域选择.宇航学报.2010,31(6):1547-1551页
    [76]郭庆,魏瑞轩,胡明朗等.地磁匹配双等值线算法仿真研究.系统仿真学报.2010,22(7):1576-1579页
    [77]郭庆,魏瑞轩,周炜等.基于投影寻踪的多维地磁匹配融合算法.兵工学报.2010,31(2):235-238页
    [78]杨功流,李士心,姜朝宇.地磁辅助惯性导航系统的数据融合算法.中国惯性技术 学报.2007,15(1):47-50页
    [79]任治新,罗诗途,吴美平等.基于改进ICP算法的地磁图匹配技术.计算机应用.2008,28(6):351-354页
    [80]任治新,罗诗途,穆华等.基于EKF的地磁导航策略研究.微计算机信息.2008,24(7):11-13页
    [81]穆华,任治新,胡小平等.船用惯性/地磁导航系统信息融合策略与性能.中国惯性技术学报.2007,15(3):322-326页
    [82]任治新,罗诗途,刘颖等.基于等值线约束的地磁匹配定位技术.火力与指挥控制.2009,34(11):26-30页
    [83]刘颖,吴美平,胡小平等.基于等值线约束的地磁匹配方法.空间科学学报.2007,27(6):505-507页
    [84]吴美平,刘颖,胡小平.ICP算法在地磁辅助导航中的应用.航天控制.2007,25(6):17-21页
    [85]罗诗途,任治新.基于仿射模型变换的地磁匹配导航算法.中国惯性技术学报.2010,18(4):462-465页
    [86]陈龙伟,张辉,任治新等.水下地磁辅助导航中地磁场延拓方法.中国惯性技术学报.2007,15(6):693-697页
    [87]张辉,赵磊,陈龙伟.球面泊松小波在全球地磁场建模中的应用.中国惯性技术学报.2010,18(4):450-454页
    [88]徐世浙.迭代法与FFT法位场向下延拓效果的比较.地球物理学报.2007,50(1):285-289页
    [89]徐世浙,王瑞,周坚鑫等.从航磁资料延拓出海面磁场.海洋学报.2007,29(6):53-57页
    [90]赵建虎,张红梅,王爱学等.利用ICCP的水下地磁匹配导航算法.武汉大学(信息科学版).2010,35(3):261-264页
    [91]赵建虎,王胜平,王爱学.一种改进型TERCOM水下地磁匹配导航算法.武汉大学(信息科学版).2009,34(11):1320-1323页
    [92]朱海,王顺杰,蔡鹏.基于ICCP的水下直线段地磁匹配.中国惯性技术学报.2009,17(2):153-155页
    [93]郝燕玲,赵亚凤,胡峻峰.地磁匹配用于水下载体导航的初步分析.地球物理学进展.2008,23(2):594-598页
    [94]赵亚凤,刘繁明,胡峻峰.基于磁力仪的惯导姿态校正系统设计与仿真.系统仿真学报.2008,20(12):3241-3243页
    [95]周军,葛致磊,施桂国等.地磁导航发展与关键技术.宇航学报.2008,29(5):1467-1472页
    [96]郭才发,胡正东,张仕峰 等.地磁导航综述.宇航学报.2009,30(4):1314-1319,1389页
    [97]W. M. Wynn, C. P. Frahm, P. J. Carroll, et al. Advanced superconducting gradiometer/Magnetometer Arrays and a Novel Signal Processing Technique. IEEE Trans. Mag.1975,11 (2):701-707P
    [98]Wynn W M. Magnetic dipole localization using the gradient rate tensor measured by a five-axis gradiometer with known velocity. SPIE proceedings,1995,2496:357-367 P
    [99]W. M. Wynn. Magnetic Dipole Localization with a Gradiometer:Obtaining Unique Solutions. IEEE International.1997,4:1483-1485 P
    [100]Lathrop. John D, Shih. Hansen, Wynn. W. M. Enhanced clutter rejection with two-parameter magnetic classification for UXO. Proceedings of SPIE,1999,3710 (1):37-51 P
    [101]Carroll P. J, Wynn W. M, Purpura J. W. Assessment of an active electromagnetic sensor for hunting buried naval mines, part Ⅱ. IEEE OCEANS,2006:230-237 P
    [102]Wilson. Michael A, McCarthy. Sharon A, Collin. Philip J, et al. ALKENE TRANSFORMATION CATALYSED BY MINERAL MATTER DURING OIL SHALE PYROLYSIS. Organic Geochemistry.1985,9(5):245-253 P
    [103]Emerson D W, Clark D A, Saul S J. Magnetic exploration models incorporating remanence, demagnetization and anisotropy:HP 41C handheld computer algorithms. Exploration Gepophysics.1985,16 (1):1-22 P
    [104]Bradley N J. Calculation of the magnetic gradient tensor from total field gradient measurements and its application to geophysical interpretation. Geophysics.1988,33 (7):957-966 P
    [105]John E. McFEE, Yogadhish DAS and Robert O. Ellingson. Locating and identifying compact ferrous objects. IEEE Transactions on geoscience and remote sensing. 1990,28 (2):182-193 P
    [106]M.Hirota, T. Furuse, K. Ebana et al. Magnetic Detection of a Surface Ship by an Airborne LTS SQUID MAD. IEEE Transactions on applied superconductivity. 2001,11 (1):884-887 P
    [107]Heath P, Heinson G and Greenhalgh S. Some comments on potential field tensor data. Exploration Gepophysics.2003,34:57-62 P
    [108]David V S, Robert E. Field experiments with the tensor magnetic gradiometer system for UXO surveys:A case history.74th SEG Technical Program Expanded Abstracts. [S.l.]:[S. n.],2004:806-809 P
    [109]Brown P J, Braoken E B, Smith D V. A case study of magnetic gradient tensor invarients applied to the UXO problem.74th SEG Technical Program Expanded Abstracts. [S.l.]:[S.n.],2004:794-797 P
    [110]R. F. Wiegert and B. L. Price. Magnetic Anomaly Sensings System and Methods for Maneuverable Sensing Platforms. Unite States Patent:64767610,2002-05-11
    [111]R. F. Wiegert. Magnetic Anomaly Sensing System for Detection, Localization and Classification of Magnetic Objects. Unite States Patent:6841994,2005-01-11
    [112]R. F. Wiegert and J. Oeschger. Generalized Magnetic Gradient Contraction Based Method for Detection, Localization and Discrimination of Underwater Mines and Unexploded Ordance. Proceedings of IEEE Oceans,2005,2:1325-1332 P
    [113]R. F. Wiegert and B. L. Price. Magnetic Sensor Development for Mine Countermeasures Using Autonomous Underwater Vehicles. Proceedings of SPIE,2000,4039:93-103 P
    [114]R. F. Wiegert. Magnetic Anomaly Guidance System and Method. Unite States Patent:6865455,2005-03-08
    [115]R. F. Wiegert, B. L. Price and J. Hyder. Magnetic Anomaly Sensing System for Mine Countermeasures Using High Mobility Autonomous Sensing Platforms. Proceedings of IEEE Oceans,2002,2:937-944 P
    [116]R. F. Wiegert. Magnetic Anomaly Guidance System for Mine Countermeasures Using Autonomous Underwater Vehicles. Proceedings of IEEE Oceans,2003,4:2002-2010 P
    [117]R. F. Wiegert, J. Oeschger and J. W. Purpura. Magnetic Scalar Triangulation and Ranging System for Detection, Localization and Classification of Magnetic Targets. Proceedings of IEEE Oceans,2004,2:890-896 P
    [118]R. F. Wiegert. Portable magnetic sensing system for real-time, point-by-point detection, localization and classification of magnetic objects. Unite States Patent:7688072,2010-03-30
    [119]R. F. Wiegert. Magnetic anomaly sensing system for detection, localization and classification of a magnetic object in a cluttered field of magnetic anomalies. Unite States Patent:7603251,2009-10-13
    [120]R. F. Wiegert and J. Oeschger. Portable Magntic Gradiometer for Real-Time Localization and Classification of Unexploded Ordance. Proceedings of IEEE Oceans, 2006,1:1-6 P
    [121]R. F. Wiegert, J. Oeschger and E. Tuovila. Demonstration of a Novel Man-Portable Magnetic STAR Technology for Real-Time Localization of Unexploded Ordance. Proceedings of IEEE Oceans,2007,1:1-7P
    [122]R. F. Wiegert. Magnetic STAR technology for real-time localization and classification of unexpoded ordnance and buried mines. Proceedings of SPIE,2009,7303 U:1-9 P
    [123]Wiegert. Roy, Lee. Kwang, Oeschger. John. Improved magnetic star methods for real-time, point-by-point localization of unexploded ordnance and buried mines. Proceedings of IEEE Oceans,2008,1:1-7 P
    [124]Arie Scheinker, Biaz Lerner, Nizan Salomonski, et al. Localization and magnetic moment estimation of a ferromagnetic target by simulated annealing. Measurement Science and Technology.2007,18:64-67P
    [125]Arie Sheinker, Nizan Salomonski, Boris Ginzburg, et al. Magnetic anomaly detection using entropy filter. Measurement Science and Technology.2008:045205 (5pp)
    [126]Lev Frumkis, Boris Ginzburg, Nizan Salomonski, et al. Optimization of scalar magnetic gradiometer signal processing. Sensors and Actuators.2005,121:88-94 P
    [127]D.Williams, C. Wang. X. Liao, et al. Classification of unexploded ordnance using incomplete multisensory multiresolution data. IEEE Transactions on Geoscience and Remote Sensing.2007,45 (7):2364-2373 P
    [128]Michael J. A. new perspective on magnetic sensoring. www.honeywell.com
    [129]J. B. Nelson and T.C.Richards. Magnetic source parameters of MR offshore measured during trial MONGOOSE 07.2007, Tech. Rep., Defence R & D-Atlantic, Dartmouth NS, Canada
    [130]Dalichaouch. Yacine, Czipott. Peter V, Perry. Alex R. Magnetic sensors for battlefield applications. Proceedings of SPIE,2001,4393:129-134P
    [131]Michael J. Vehicle detection and compass applications using AMR magnetic snesors.www.ssec.honeywell.com
    [132]张河.目标探测与识别技术.哈尔滨:哈尔滨理工大学出版社,2005:15-30页
    [133]胡祥超.基于磁异信号的目标探测技术实验研究.国防科学技术大学硕士学位论 文.2005:4-5页
    [134]王金根,龚沈光,刘胜道.磁性目标的高精度建模方法.海军工程大学学报.2001,13(3):49-52页
    [135]王金根,林春生,龚沈光.一种基于神经网络的磁性目标定位方法.海军工程大学学报.2000,12(4):27-30页
    [136]王金根,龚沈光.基于运动标量磁强计的磁性目标定位问题研究.电子学报.2002,30(7):1057-1060页
    [137]刘胜道,王金根,龚沈光.磁性探雷可行性研究.水雷战与舰船防护.2001,3:9-11页
    [138]唐劲飞,龚沈光,王金根.磁偶极子信号检测和参数估计.海军工程大学学报.2001,13(2):54-58页
    [139]唐劲飞,龚沈光,王金根.磁偶极子模型下目标定位和参数估计的两种新方法.电子学报.2003,31(1):154-157页
    [140]胡海滨,林春生,龚沈光.基于正交函数的模型化磁性物体标量探测.武汉理工大学学报(交通科学与工程版).2004,28(4):550-553页
    [141]胡海滨,林春生,龚沈光.基于母函数正交化的模型化磁性物体矢量探测和定位.探测与制导学报.2006,28(3):4-8,11页
    [142]胡海滨,龚沈光,林春生.基于静止标量磁强计的运动舰船定位问题的研究.海军工程大学学报.2004,16(2):56-60页
    [143]李华,李庆民.基于舰船磁场模型的离线磁定位研究.海禁工程大学学报.2007,19(3):90-93,103页
    [144]林春生,向前,龚沈光.水中磁性运动目标信号的模型化检测.兵工学报.2005,26(2):192-195页
    [145]蒋敏志,林春生.船舶水下被动磁性定位研究.武汉理工大学学报(信息与管理工程版).2003,25(6):168-170,187页
    [146]张朝阳,肖昌汉,阎辉.小波多尺度变换在水中磁性目标定位中的应用.测控技术.2008,27(11):86-88,90页
    [147]张朝阳,肖昌汉,高俊吉等.磁性物体磁偶极子模型适用性的试验研究.应用基础与工程科学学报.2010,18(5):862-867页
    [148]张朝阳,肖昌汉,徐杰.基于微粒群优化算法的舰船磁模型分析.华中科技大学学报(自然科学版).2010,38(11):124-128页
    [149]张朝阳,肖昌汉,阎辉.磁性目标的单点磁梯度张量定位方法.探测与控制学报.2009,31(4):44-48页
    [150]隗燕琳,肖昌汉,陈敬超等.基于舰船矢量磁场的定位方法.上海交通大学学报.2009,43(8):1216-1221,1227页
    [151]隗燕琳,肖昌汉,陈敬超等.基于混合优化算法的单分量磁性定位方法.海军工程大学学报.2009,21(6):20-25,71页
    [152]郭成豹,肖昌汉,刘大明.基于积分方程法和奇异值分解的磁性目标磁场延拓技术研究.物理学报.2008,57(7):4182-4187页
    [153]郭成豹,张晓峰,肖昌汉等.薄钢板船舶磁性的物理模型和数值模拟混合建模.哈尔滨工程大学学报.2008,29(3):247-250页
    [154]周国华,肖昌汉,刘胜道等.船舶磁场的面磁荷建模方法及稳定性分析.哈尔滨工程大学学报.2010,31(5):553-558页
    [155]周国华,肖昌汉,刘胜道等.一种舰艇磁隐身中磁场推算的新方法.兵工学报.2009,30(7):951-957页
    [156]阎辉,肖昌汉,周国华.基于曲面积分的磁场矢量延拓方法.兵工学报.2008,29(7):839-843
    [157]阎辉,肖昌汉,殷克全等.递推算法在船舶磁场远场向近场换算中的应用.兵工学报.2010,31(9):1200-1205页
    [158]袁方,颜国民.船舶磁场的旋转椭球体阵列模拟.上海交通大学学报.1982,4:91-102页
    [159]颜国民,毛定祥,范懋基.船舶磁场的回归数学模型.上海交通大学学报.1992,26(2):83-89页
    [160]蔡雪祥,翁行泰,倪振群.舰船主甲板模型感应磁场计算中等效磁化率的应用.上海交通大学学报.1996,30(9):81-85页
    [161]翁行泰,曹梅芬,吴文福等.磁异探潜中潜艇的数学模型.上海交通大学学报.1995,29(3):27-32页
    [162]翁行泰,曹梅芬.潜艇感应磁场的三维有限元法计算研究.上海交通大学学报.1994,28(5):69-76页
    [163]倪振群,蔡雪祥,翁行泰.舰船主甲板模型感应磁场的计算.上海交通大学学报.1996,30(7):84-89页
    [164]管志宁.地磁场与地磁勘探.北京:地质出版社,2007:3-18页
    [165]D G Egziabhe, G H Elkaim, J D Powell et al. A non-linear two-step estimation algorithm for calibrating solid-state strapdown magnetometers. The International Conference on Integrated Navigation Systems, Peterburg Russian,2001:21-25P
    [166]温强,李怀昆,赵希人等.双三轴正交测量系配准误差建模与校正研究.系统仿真 学报.2009,21(5):1274-1277页
    [167]M P Lasshan, G Trenkler. Vectorial calibration of 3D magnetic field sensors arrays. IEEE Transactions on Instrumentation and Measurement.1995,44 (2):360-36 P
    [168]D G Egziabhe. Magnetometer autocalibration leveraging measurement locus constraints. Journal of Aircraft.2007,44 (4):1361-1368 P
    [169]J M G Merayo, F Primdahl, P Braueret, et al. The orthogonalization of magnetic systems. Sensors and Actuators A.2001,89:185-196 P
    [170]J M G Merayo, P Brauer, F Primdahl, et al. Scalar calibration of vector magnetometers. Measurement Science and Technology.2000,11:120-132 P
    [171]T Pylvanainen. Automatic and adaptive calibration of 3D field sensors. Applied Mathematical Modeling.2008,32:575-587 P
    [172]胡海滨,林春生,龚沈光.基于共轭次梯度法的非理想正交三轴磁传感器的校正.数据采集与处理.2003,18(1) :88-91页
    [173]林春生,向前,龚沈光.三轴磁强计正交误差分析与校正.探测与控制学报.2005,27(2):9-12页
    [174]吴德会.基于SVR的三轴磁通门传感器误差校正研究.传感器与微系统.2008,27(6):43-46页
    [175]吴德会,黄松岭,赵伟.基于FLANN的三轴磁强计误差校正研究.仪器仪表学报.2009,30(3):449-453页
    [176]温强,宋丽梅,黄玉等.三轴测量装置正交及增益误差修正算法研究.系统仿真学报.2008,20(23):6542-6544页
    [177]Bartington公司. Mag-03系列三轴磁场探头http://www.bartington.com/ templates/asset-relay.cfm?frmAssetFileID=162
    [178]钱新,钱春华.电容压力传感器的FLANN建模方法.仪器仪表学报.2003,24(2):148-151页
    [179]闫辉,肖昌汉,张朝阳.三分量磁通门传感器水平修正方法.电子测量及仪器学报.2006,20(16):90-93页
    [180]崔晓军,司书春,王蕴珊.回声测深仪在水深测量中的误差修正.计量技术.2007,7:34-36页
    [181]刘志平.无陀螺捷联惯导系统若干关键技术的研究与仿真.哈尔滨工程大学博士学位论文.2009:63-66页
    [182]M Fujita, A Maruyama, T Taniguchi. Finite horizon discrete-time H∞ filter with application to an active system. Proceedings of the 32nd Conference on Decision and Control,1993:2194-2196P
    [183]李亮SINS/DVL组合导航技术研究.哈尔滨工程大学硕士学位论文.2009:40-41页
    [184]曹洁,刘繁明,陈勤等.AUV中SINS/DVL组合导航技术研究.中国航海.2004,2:55-59页
    [185]万德钧,房建成.惯性系统初始对准.南京:东南大学出版社,1998:165-170页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700