用户名: 密码: 验证码:
大黄酸对高糖环境下肾小管上皮细胞转分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的
     糖尿病肾病(Diabetic nephropathy,DN)是糖尿病主要的微血管并发症之一,肾小管间质纤维化是糖尿病肾病进展为终末期肾脏病(end stage renal disease,ESRD)的重要病理基础,细胞外基质(extracellular matrix,ECM)在肾间质过量堆积是其基本病理特征。目前认为肾间质ECM主要由肌成纤维细胞(myofibroblast,MyoF)产生。研究发现在病理条件下,肾小管上皮细胞可发生上皮细胞-肌成纤维细胞转分化(Tubular epithelial-myofibroblasttransdifferentiation,TEMT),即丧失原有的上皮细胞表型特征:E-钙粘蛋白(E-Cadherin),而获得MyoF的新特征:α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA),其是肾间质MyoF的重要来源。许多因素可诱导TEMT,而采用高糖模拟体内高血糖环境,肾小管上皮细胞是否发生TEMT?目前尚少见报道。
     大黄是临床治疗慢性肾脏病处方中使用频率很高的一味中药。大黄酸(Rhein)是从大黄蒽醌衍生物中分离出的一种前体组分,为大黄的主要有效成分。糖尿病肾病动物模型中大黄酸具有减少蛋白尿,减轻肾组织病变的作用,其机制是否与TEMT有关目前尚未见报道,本实验采用大黄酸干预高糖环境下肾小管上皮细胞,观察大黄酸是否对TEMT有影响,试从TEMT这一途径阐述糖尿病肾病可能的发病机制及大黄酸对其的影响。
     本研究模拟糖尿病高糖环境,体外培养人近端肾小管上皮细胞(human proximal tubular epithelial cells,HK-2),采用反映上皮细胞表型特征的E-Cadherin、反映MyoF表型特征的α-SMA和作为ECM成分之一的纤维连接蛋白(fibronectin,FN)等指标,观察高糖单因素作用下是否存在TEMT;并用大黄酸干预处理,观察其对TEMT的影响,初步探讨大黄酸防治糖尿病肾病的可能机制。
     方法
     按下列实验条件分六组培养HK-2细胞:空白对照(N组),低糖(5.5mmol/l)DMEM培养基;甘露醇(含24.5 mmol/l D-甘露醇+5.5mM D-葡萄糖)对照组(M组);高糖(H组)葡萄糖浓度30mmol/L;高糖+大黄酸25ug/ml(H+25R组);高糖+大黄酸50ug/ml(H+50R组);高糖+大黄酸100ug/ml(H+100R组),于48h观察细胞形态,收集各组细胞,western-blotting法检测E-Cadherin、α-SMA和FN蛋白水平。
     结果
     高糖组与低糖组比较,E-Cadherin蛋白表达减少(P<0.05),α-SMA和FN蛋白表达增多(P<0.05);甘露醇组与低糖组比较,E-Cadherin蛋白、α-SMA和FN蛋白表达无明显差异(P>0.05)。经大黄酸处理后的各大黄酸组与高糖组比较E-Cadherin蛋白表达上调(P<0.05),α-SMA和FN蛋白表达下调(P<0.05),且与大黄酸呈剂量依赖性关系。
     结论
     1.高糖因素可导致HK-2细胞E-Cadherin蛋白表达减少,α-SMA和FN蛋白表达增加,提示高糖能促发TEMT。
     2.大黄酸可抑制高糖环境下的HK-2细胞向MyoF转分化,阻抑TEMT,这可能是大黄酸防治DN的作用机制之一。
Background and objectives:
     Diabetic nephropathy(DN)is one of blood capillary complications. Tubulointerstitial fibrosis is an essential pathological basis in the progression of diabetic nephropathy to end stage renal disease(ESRD), the basic pathological character of which is excessive extracellular matrix (ECM)accumulation in the renal interstitium.Currently,it is considered that the renal interstitial ECM is mainly secreted by the myofibroblast (MyoF).Researches have shown that tubular epithelial-myofibroblast transdifferentiation(TEMT)can occur to the renal tubular epithelial cells in pathological condition.During TEMT,renal tubular epithelial cells lose their original phenotypic characteristics:E-cadherin,then gain MyoF characteristics:α-smooth muscle actin(α-SMA),which is a principal source of renal interstitium MyoF.More and more concern is gradually focused on the role of TEMT in tubuinterstitial fibrosis.A considerable number of factors have been suggested as potential inductors of TEMT. However,it is still unknown whether the same TEMT process will take place with high glucose stimulation human proximal tubular epithelial cells(HK-2).
     A traditional Chinese medicine frequently appears in clinical prescription,Rhein is a prosoma component extracted from the rhubarb anthraquinone ramifications and is the primary active ingredient of rhubarb.Rhein has the effect of decreasing proteinuria and attenuating nephridial tissue process in Diabetic Nephropathy,few is reported that the mechanism is related to TEMT process.Rhein intervenes in HK-2 in high glucose in our experience,then we observe whether TEMT process is influenced by Rhein and try to explain the possibility mechanism in diabetic nephropathy through TEMT.
     From cell culture HK-2 in vitro,by imitation of high glucose and refering to indexes like fibronectin(FN),which is one of the ingredients of ECM,E-Cadherin andα-SMA,which respectively reflects the phenotypic characteristics of renal tubular epithelial cells and MyoF,the objective of this study is to illustrate the effect of high glucose on the phenotypic transformation of renal tubular epithelial cells,and to observe the influence of Rhein as an intervener in the above-mentioned processes,then initially probe the possibility of mechanism of rhein preventing and curing diabetic nephropathy.
     Methods:
     Human proximal tubular epithelial cells(HK-2)were divided into six groups:Group N,cultured with glucose(5.5mmol/l)DMEM;Group M,cultured with mammite(24.5mmol/l)and glucose(5.5mmol/L) DMEM;Group H,cultured with 30mmol/l glucose DMEM;Group H+25R,cultured with 30mmol/l glucose DMEM+Rhein 25ug/ml;Group H+50R,cultured with 30mmol/l glucose DMEM+Rhein 50ug/ml;Group H+100R,cultured with 30mmol/l glucose DMEM+Rhein 100ug/ml. Each group cells were collected at 48 hours when we observe cell morphology and the vary of protein expression of TEMT.The protein expression of E-Cadherin,α-SMA and FN were assessed by Western-blotting method.
     Results.
     Compared with group N,the protein expression of E-cadherin,α-SMA and FN in group M did not have distinct change(P>0.05);the protein expression of E-cadherin in HK-2 cells decreased(P<0.05);while the protein expression ofα-SMA and FN increased(P<0.05)in high glucose environment(group H).The protein expression of E-cadherin increased(P<0.05)while the protein expression ofα-SMA,FN decreased (P<0.05)in Rhein treated group(group R)with dose-dependent manner, compared with group H(P<0.05).
     Conclusion:
     1.With high glucose,the express of E-Cadherin protein decrease,while the express ofα-SMA and FN increase,indicating that high glucose can induce the phenotypic transformation of renal tubular epithelial cells into mesanchymal cells.
     2.Rhein can repress the phenotypic transformation of renal tubular epithelial cells into mesanchymal cells and attenuate the process of TEMT, this may be a function mechanism of Rhein as a prevention to DN.
引文
[1]中华医学肾脏病分会透析移植登记工作组,1999年全国透析移植登记报告.中华肾脏病杂志.2001,(17)2:77-78
    [2]Ziyadeh FN.Significance of tubulointerstitial changes in diabetes renal disease.Kidney Int,1996,54(suppl):S10-3
    [3]Oldfield MD,Bach LA,Forbes JM,et al.Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products(RAGE).J Clin Invest 2001,108(12):1853-1863
    [4]Rastaldi MP,F Ferrario,L Giardino,et al.Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies.Kidney Int,2002,62(1):137-146
    [5]Kalluri R,Neilson EC.Epithelial-mesenchymal transition and its implication for fibrosis.J Clin Invest,2003,112(12):1776-1784
    [6]Goumenos DS,Brown CB,Shortland J,et al.Myofibroblasts,predictors of progression of mesangial IgA nephropathy? Nephrol Dial Transplant,1994,9(10):1418-1425
    [7]Roberts IS,Burrows C,Shanks JH,et al.Interstitial myofibroblasts:predictors of progression in membranous nephropathy.J Clin Pathol,1997,50(2):123-127
    [8]Hewitson TD,Wu HL,Becker GJ.Interstitial myofibroblasts in experimental renal infection and scarring.Am J Nephrol,1995,15(5):411-417
    [9]Hay ED,Zuk A.Transformations between epithelium and mesenchyme:normal,pathological,and experimentally induced.Am J Kidney Dis,1995,26(4):678-690
    [10]Strutz F,kada H,Lo CW,et al.Identification and characterization of a fibroblast marker:FSP1.J Cell Biol,1995,130(2):393-405
    [11]Ng YY,Huang TP,Yang WC,et al.Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats.Kidney Int,1998,54(3):864-876
    [12]Yang J,Liu Y.Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis.Am J Pathol,2001,159(4):1465-1475
    [13] Strutz F, A Muller, G Neilson. Transdifferentiation: a new angle on renal fibrosis. Exp Nephrol, 1996, 4(5): 267-270
    [14] Okada H, TM Danoff, R Kalluri, et al. Early role of FSP1 in epithelial-mesenchymal transformation. Am J Physiol 1997,273(4 Pt 2): F563-F574
    [15] Fan JM, XR Huang, YY Ng, DJ Nikolic-Paterson, et al. Interleukin-1 induces tubular epithelialmyofibroblast transdifferentiation through a transforming growth factor-beta1-dependent mechanism in vitro. Am J Kidney Dis, 2001,37(4): 820-831
    [16] Strutz F, M Zeisberg, FN Ziyadeh, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation.Kidney Int, 2002, 61(5): 1714—1728
    [17] Ha H, HB Lee. Reactive oxygen species and matrix remodeling in diabetic kidney. J Am Soc Nephrol, 2003, 14( 8 Suppl 3): S246—S249.
    [18] Lan HY, W Mu, N Tomita, et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol, 2003,14(6): 1535-1548.
    [19] Fan JM,g YY,ill PA, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int 1999;56:1455-1467
    
    [20] Yang J, Lui Y. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol, 2002, 13(1): 96-107
    
    [21] Twigg SM, Cao Z, MCLennan SV, et al. Renal connective tissue growth factor induction in experimental diabetes is prevented by aminoguanidine. Endocrinology, 2002, 143(12): 4907—4915
    [22] Brigstock DR. The CCN family: a new stimulus package. J Endocrinol, 2003, 178(2): 169—175
    [23] Burns WC, M Twigg, M Forbes, et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol, 2006, 17(9): 2484-2494
    [24] Gore-Hyer E, Shegogue D, Markiewicz M, et al. TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol,2002,283(4):F707-F716
    [25]Li JH,XR Huang,HJ Zhu,et al.Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms:implications for diabetic renal and vascular disease.FASEB J,2004,18(1):176-178
    [26]Li,JH,W Wang,XR Huang,et al.Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway.Am J Pathol,2004,164(4):1389-1397
    [27]Thomas MC,WC Bums,ME Cooper.Tubular changes in early diabetic nephropathy.Adv Chronic Kidney Dis,2005,12(2):177-186
    [28]Wendt TM,N Tanji,J Guo,et al.RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy.Am J Pathol,2003,162(4):1123-1137
    [29]L ls.End-stage renal disease in China.Kidney Int,1996,49(1):287-301
    [30]戴春笋,刘志红,陈惠萍等.大黄酸治疗STZ诱导糖尿病大鼠的远期实验研究.肾脏病与透析肾移植杂志,1999,8(5):413-419
    [31]郭啸华,刘志红,彭艾,等.大黄酸对2型糖尿病肾病大鼠疗效的观察.中华肾脏病杂志,2002,18(4):280-284
    [32]朱加明,刘志红,黄燕飞,等.大黄酸对db/db小鼠糖尿病肾病疗效的观察.肾脏病与透析肾移植杂志,2002,11(1):3-10
    [33]郭啸华,刘志红,王建平,等.大黄酸对NOD小鼠糖尿病。肾病的治疗作用的观察.肾脏病与透析肾移植杂志,2002,11(1):11-16
    [34]龚伟,黎磊石,孙骅,等.大黄酸对糖尿病大鼠转化生长因子β及其受体表达的影响.肾脏病与透析肾移植杂志,2006,15(2):101-111
    [35]刘志红,朱加明,黄海东,等.大黄酸对转化生长因子诱导内皮细胞纤溶酶原激活物抑制物1表达的影响.中华肾脏病杂志,2002,18(5):337-341
    [36]Essawy M,Soylemezoglu O,Muchaneta-Kubara EC,et al.Myofibroblasts and the progression of diabetic nephropathy.Nephrol Dial Transplant.1997,12(1):43-50
    [37]Iwano M,Plieth D,Danoff TM,et al.Evidence that fibroblasts derived from epithelium during tissue fibrosis.J Clin Invest.2002,110(3):341-350
    [38]杨俊伟,黎磊石.大黄延缓慢性肾衰进展的实验研究.中华肾脏病杂志,1993,9(2):65-68
    [39]何东元,王笑云,王宁宁,等.大黄酸抑制肾间质成纤维细胞激活的实验研 究.中华肾脏病杂志,2006,22(2):105-108
    [40]郭啸华,刘志红,戴春笋,等.大黄酸抑制TGF-β1诱导的肾小管上皮细胞肥大及细胞外基质产生肾脏病与透析肾移植杂志,2001,10(2):101-105
    [41]谭正怀,沈映军,赵军宁,等.大黄酸对人肾小球系膜细胞功能的影响.药学学报,2004,39(11):881-886
    [42]刘志红,李颖健,章精,等.转化生长因子及大黄酸对肾小管系膜细胞葡萄糖转运蛋白功能的影响.中华医学杂志,1999,79(10):780-783
    [43]王晓华,王笑云,熊明霞,等.大黄蒽醌提取物缓解小鼠肾组织纤维化作用的实验研究.中华肾脏病杂志,2006,22(6):360-363
    [1]Ziyadeh FN,Sharma K.Combating diabetic nephropathy.J Am Soc Nephrol,2003;14(5):1355-1357
    [2]Mason RM,Abdel Wahab N.Extracellular matrix metabolism in diabetic nephropathy.J Am Soc Nephrol,2003,14(5):1358-1373
    [3]Caramori ML,Mauer M.Diabetes and nephropathy.Curr Opin Neprol Hypertens,2003,12(3):273-282
    [4]Wolf G,Chen S,Ziyadeh FN.From the periphery of the glomerular capillary wall toward the center of disease. Diabetes, 2005, 54(6): 1626—1634
    [5] Fogo AB, Kashgarian M. Vascular diseases- Diabetic nephropathy. In:Fogo AB, Kashgarian M (eds). Diagnostic Atlas Renal Pathology. Philadelphia: Elsevier, 2005 pp 277—289
    [6] Eddy AA. Can renal fibrosis be reversed? Pediatr Nephrol , 2005, 20(10): 1369-1375
    [7] Fogo AB. The potential for regression of renal scarring. Curr Opin Nephrol Hypertens, 2003, 12(3): 223—225
    [8] Harris RC, Neilson EG. Toward a unified theory of renal progression. Annu Rev Med, 2006, 57: 365—380
    [9] Chatziantoniou C, Dussaule JC. Insights into the mechanisms of renal fibrosis: is it possible to achieve regression? Am J Physiol Renal Physiol, 2005, 289(2): F227-F234
    [10] Fioretto P, Steffes MW, Sutherland D, et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. New Engl J Med, 1998, 339(2): 69— 75
    [11] Fioretto P, Sutherland DE, Najafian B, et al. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int, 2006, 69(5): 907— 912
    [12] Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis, 1992, 20(3): 1 — 17
    [13] Healy E, Brady HR. Role of tubular epithelial cells in the pathogenesis of tubulointerstitial fibrosis induced by glomerular disease. Curr Opin Nephrol Hypertens, 1998, 7(1): 525—530
    [14] Healy E, Brady HR. Role of tubular epithelial cells in the pathogenesis of tubulointerstitial fibrosis induced by glomerular disease. Kidney Int, 1999, 56(3): 1627—1637
    [15] Katz A, Caramon ML, Sisson-Ross S, et al. An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients. Kidney Int, 2002, 61(6): 2058—2066
    [16] Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis.New Engl J Med, 1994, 331(19): 1286-1292
    [17] Ziyadeh FN, Hoffman BB, Han DC, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal anti-transforming growth factor beta antibody in db/db diabetic mice. Proc Natl Acad Sci,USA, 2000, 97(14): 7667— 7669
    [18] Schnaper HW, Hayashida T, Hubchak SC, et al. TGF-β signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol, 2003, 284(2): F243-F252
    [19] Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int, 2006, 69(2): 213-217
    [20] Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003, 112(12): 1776-1784
    [21] Neilson EG. Mechanisms of disease: fibroblasts - a new look at an old problem. Nat Clin Pract Nephrol, 2006, 2(3): 101-108
    [22] Powell DW, Mifflin RC, Valentich JD, et al. Myofibroblasts -Paracrine cells important in health and disease. Am J Physiol, 1999,277(1 Pt 1): C— C9
    [23] Schelling JR, Sinha S, Konieczkowski M, et al. Myofibroblast differentiation: plasma membrane microdomains and cell phenotype.Exp Nephrol, 2002, 10(5-6): 313-319
    [24] Desmouliere A, Darby IA, Gabbiani G. Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest, 2003, 83(12): 1689-1707
    [25] Leask A, Abraham DJ. TGF- 3 signaling and the fibrotic response.FASEB J ,2004, 18(7): 816—827
    [26] Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest, 2002, 110(3): 341—350
    [27] Liu Y. Epithelial to mesenchymal transition in renal fibrosis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol, 2004, 15(1): 1-12
    [28] Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med ,2003, 9(7): 964-968
    [29] Bou-Gharios G, Ponticos M, Rajkumar V, et al. Extra-cellular matrix in vascular networks. Cell Prolif, 2004, 37(3): 207-220
    [30] Raghow R. The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J, 1994, 8(11): 823—831
    [31] Tosh D, Slack JM. How cells change their phenotype.Nat Rev Mol Cell Biol, 2002,3(3): 187-194
    [32] Hay ED. The mesenchymal cells, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dynam, 2005, 233(3): 706—720
    [33] Li WC, Yu WY, Quinlan JM, et al. The molecular basis of transdifferentiation. J Cell Mol Med, 2005, 9(3): 569-582
    [34] Pomerantz J, Blau HM. Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nat Cell Biology, 2004, 6(9): 810—816
    [35] Collas P, Hakelien AM. Teaching cells new tricks. Trends Biotechnol, 2003, 21(8): 354-361
    [36] Latta H. An approach to the structure and function of the glomerular mesangium. J Am Soc Nephrol, 1992,2(10 Suppl): S65—S73
    [37] Mene P, Simonson MS, Dunn MJ. Physiology of the mesangial cell.Physiol Rev, 1989, 69(4): 1347-1424
    [38] Johnson RJ, Floege J, Yoshimura A, et al. The activated mesangial cell: a glomerular 'myofibroblast'? J Am Soc Nephrol, 1992, 2 (10 Suppl): S190— S197
    [39] Alexakis C, Maxwell P, Bou-Gharios G. Organ-specific collagen expression: implications for renal disease. Nephron Exp Nephrol, 2006, 102(3-4): e71 —e75
    [40] Dalla Vestra M, Sailer A, Mauer M, et al. Role of mesangial expansion in the pathogenesis of diabetic nephropathy. J Nephrol, 2001,14 Suppl 4: S51—S57
    [41] Fogo AB. Mesangial matrix modulation and glomerulosclerosis. Exp Nephrol, 1999,7(2): 147-159
    [42] Li Y, Yang J, Dai C, et al. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest, 2003, 112(4): 503-516
    [43] Strutz F, Okada H, Lo CW, et al. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol, 1995, 130(2): 393-405
    [44] Ng YY, Huang TP, Yang WC, et al. Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int, 1998, 54(3): 864—876
    [45] Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006, 7(2): 131 — 142
    [46] Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat Rev Mol Cell Biol, 2002, 3(4): 349—363
    [47] Ponticos M, Abraham D, Alexakis C, et al. ColⅠα 2 enhancer regulates collagen activity during development and in adult tissue repair. Matrix Biol, 2004, 22(8): 619-628
    [48] Ina K, Kitamura H, Tatsukawa S, et al. Transformation of interstitial fibroblasts and tubulointerstitial fibrosis in diabetic nephropathy. Med Electron Microsc, 2002, 35(2): 87-95
    [49] Coimbra TM, Janssen U, Grone HJ, et al. Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int, 2000, 57(1): 167— 182
    [50] Dai C, Yang J, Bastacky S et al. Intravenous administration of hepatocyte growth factor gene ameliorates diabetic nephropathy in mice. J Am Soc Nephrol, 2004, 15(10): 2637-2647
    [51] Matsubara T, Abe H, Arai H, et al. Expression of Smadl is directly associated with mesangial matrix expansion in rat diabetic nephropathy. Lab Invest, 2006; 86(4):357-368
    [52] Oldfield MD, Bach LA, Forbes JM et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest, 2001, 108(12):1853-1863
    [53] Essawy M, Soylemezoglu O, Muchaneta-Kubara EC, et al. Myofibroblasts and the progression of diabetic nephropathy. Nephrol Dial Transplant, 1997, 12(1): 43-50
    [54] Pedagogos E, Hewitson T, Fraser I, et al. Myofibroblasts and arteriolar sclerosis in human diabetic nephropathy. Am J Kidney Dis, 1997, 29(6):912—918
    [55] Rastaldi MP, Ferrario F, Giardino L, et al. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int, 2002, 62(1): 137— 146
    [56] Makino H, Kashihara N, Sugiyama H, et al. Phenotypic modulation of the mesangium reflected by contractile proteins in diabetes. Diabetes, 1996,45(5): 488-495
    [57] Direkze NC, Forbes SJ, Brittan M, et al. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells, 2003,21(5): 514—520
    [58] Ishii G, Sangai T, Sugiyama K, et al. In vivo characterization of bone marrow-derived fibroblasts recruited into fibrotic lesions. Stem Cells, 2005, 23 (5): 699-706
    [59] Russo FP, Alison MR, Bigger BW, et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology, 2006, 130(6): 1807—1821
    [60] Jabs A, Moncada GA, Nichols CE, et al. Peripheral blood mononuclear cells acquire myofibroblast characteristics in granulation tissue. J Vasc Res, 2005, 42(2): 174—180
    [61] Forbes SJ, Russo FP, Rey V, et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology, 2004, 126(4):955-963
    [62] Hashimoto N, Jin H, Liu T, et al. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest, 2004, 113(2): 243—252
    [63] Yano T, Miura T, Ikeda Y, et al. Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc Pathol, 2005,14(1): 241—246
    [64] Yokota T, Kawakami Y, Nagai Y, et al. Bone marrow lacks a transplantable progenitor for smooth muscle type alpha-actin-expressing cells. Stem Cells 2006,24(1): 13—22
    [65] Chang HY, Chi JT, Dudoit S, et al. Diversity, topographic differentiation,and positional memory in human fibroblasts. Proc Natl Acad Sci, USA, 2002, 99(20): 12877-12882
    [66] Oliver JA, Barasch J, Yang J, et al. Metanephric mesenchyme contains embryonic renal stem cells. Am J Physiol Renal Physiol, 2002, 283(4): F799— 809
    [67] Cornacchia F, Fornoni A, Plati AR, et al.Glomerulosclerosis is transmitted by bone marrow-derived mesangial cell progenitors. J Clin Invest, 2001, 108(11): 1649-1656
    [68] Imasawa T, Utsunomiya Y, Kawamura T, et al. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol, 2001, 12(7): 1401 — 1409
    [69] Abe T, Fleming PA, Masuya M, et al.Granulocyte/macrophage origin of glomerular mesangial cells. Int J Hematol, 2005, 82(2): 115—118
    [70] Brodie JC, Humes HD. Stem cell approaches for the treatment of renal failure. Pharmacol Rev, 2005, 57(3): 299-313
    [71] Vigneau C, Zheng F, Polgar K, et al. Stem cells and kidney injury. Curr Opin Nephrol Hypertens, 2006, 15(3): 238-244
    [72] Szczypka MS, Westover AJ, Clouthier SG, et al. Rare incorporation of bone marrow-derived cells into kidney after folic acid-induced injury.Stem Cells, 2005, 23(1): 44-54
    [73] Roufosse C, Bou-Gharios G, Prodromidi E, et al. Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis. J Am Soc Nephrol, 2006, 17(3): 775—782
    [74] Faulkner JL, Szcykalski LM, Springer F, et al. Origin of interstitial fibroblasts in an accelerated model of angiotensin Il-induced renal fibrosis. Am J Pathol, 2005, 167(5): 1193-1205
    [75] Nguyen TQ, Chon H, van Nieuwenhoven FA, et al. Myofibroblast progenitor cells are increased in number in patients with type 1 diabetes and express less bone morphogenetic protein 6: a novel clue to adverse tissue remodelling? Diabetologia, 2006, 49(5): 1039—1048
    [76] Zheng F, Cornacchia F, Schulman I, et al. Development of albuminuria and glomerular lesions in normoglycemic B6 recipients of db/db mice bone marrow: the role of mesangial cell progenitors. Diabetes, 2004, 53(9): 2420-2427.
    [77] Li B, Morioka T, Uchiyama M, et al. Bone marrow cell infusion amerliorates progressive glomerulosclerosis in an experimental rat model. Kidney Int, 2006, 69(2): 323-330
    [78] Dai C, Liu Y. Hepatocyte growth factor antagonizes the profibrotic action of TGFb1 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF. J Am Soc Nephrol, 2004,15(6): 1402-1412
    [79] Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis.Am J Pathol, 2001, 159(4): 1465—1475
    [80] Skill NJ, Johnson TS, Courts IG, et al. Inhibition of transglutaminase activity reduces extracellular matrix accumulation induced by high glucose levels in proximal tubular epithelial cells. J Biol Chem , 2004, 279(46): 47754—47762
    [81] Kobayashi T, Inoue T, Okada H, et al. Connective tissue growth factor mediates the profibrotic effects of transforming growth factor- 3 produced by tubular epithelial cells in response to high glucose. Clin Exp Nephrol, 2005, 9(2): 114— 121
    [82] Brownlee M. The pathobiology of diabetic complications. Diabetes, 2005,54(6): 1615—1625
    [83] Cooper ME. Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease. Am J Hypertens , 2004, 17(12 Pt2): 31S—38S
    [84] Burns WC, Twigg SM, Forbes JM et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol, 2006, 17(9): 2484-2494
    [85] Ng CP, Hinz B, Swartz MA. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci, 2005, 118(Pt 20): 4731—4739
    [86] Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis: the role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int, 2003, 64(Suppl 87):S105-S112
    [87] Cruzado JM, Lloberas N, Torras J, et al. Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats. Diabetes 2004, 53(4): 1119-1127
    [88] Mizuno S, Nakamura T. Suppressions of chronic glomerular injuries and TGF β 1 production by HGF in attenuation of murine diabetic nephropathy. Am J Physiol, 2004, 286(1): F134-F143
    [89] Kagawa T, Takemura G, Kosai K, et al. Hepatocyte growth factor gene therapy slows down the progression of diabetic nephropathy in db/db mice. Nephron Physiol ,2006, 102(3-4): 92-102
    [90] Wang S, Chen Q, Simon TC, et al. Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int, 2003, 63(6): 2037—2049
    [91] Wang S, de Caestecker M, Kopp J, et al. Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J Am Soc Nephrol, 2006, 17(9): 2504— 2512
    [92] Wang S, Hirschberg R. BMP7 antagonizes TGF-β -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol, 2003, 284(5): F1006—F1013
    [93] Wang S, Hirschberg R. Bone morphogenetic protein-7 signals opposing transforming growth factor β in mesangial cells. J Biol Chem, 2004, 279(22): 23200-23206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700