用户名: 密码: 验证码:
亚波长金属材料及低维纳米结构光学性能调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚波长金属材料呈现出许多迷人的物理现象,在技术应用领域极具潜力,是当前凝聚态物理和近场光学研究的热点。在光与亚波长金属结构相互作用而引起的许多现象中,表面等激元起到了至关重要的作用。因此,对表面等离激元传播行为、规律及其操控手段的认识和探索,理论上将进一步加深和丰富人们对光与亚波长金属材料相互作用的认识,同时也将促进新一代微纳光子器件、全光回路的研究进展。本论文采用时域有限差分法(FDTD)针对亚波长金属结构中表面等离激元传播规律、行为的人工调控问题以及相关光学性质进行了比较系统的研究;在有效质量近似下对含结构缺陷半导体超晶格光学性质等问题进行了计算,获得的主要结果如下:
     通过改变相邻两波导的缝隙高度和在窄缝波导插入高折射率介质材料的方法,在理论上提出宽带隙等离子波导的设计原理。改变这种等离子波导的其中一层的宽度,在原来的光子禁带中出现了局域共振电磁模,并且这种电磁模局域在缺陷附近随着禁带宽度的加大而耦合减弱。提出在每个周期包含三个MIM波导的多禁带等离子波导结构对SPPs禁带的个数进一步进行调整,数值模拟计算证实这种三元金属波导结构可以形成多个光子禁带,在透射谱上的光子禁带之间的宽度可以通过改变其中相邻两层波导的宽度进行调节,为相关纳米光子器件设计提供了理论依据。
     研究了复合原胞周期性金属纳米方孔阵列的SPPs相位共振,发现复合金属纳米孔阵列的对称性破缺引起表面等离激元相位匹配条件被破坏,这使得在SPR共振透射带内特定的波长处透射率突然急剧降低形成SPPs相位共振。对于大小完全相同的复合周期方孔阵列,SPPs传播过程中的的相位差别主要依赖于孔阵列的对称性,当孔阵列的对称性发生改变时,透射谱的简并性随之发生变化。
     提出交替地填充两种不同的介质的方法实现对复合金属纳米孔阵列透射谱的调制。计算表明:当矩形孔的有效折射率差别较大时,孔的几何排列方式以及孔间距离并不能明显地改变矩形孔透射谱中由于局域表面等离子共振形成的透射峰;当矩形孔的有效率折射率差别较小时,复合矩形孔阵列的排列方式对透射谱有一定的影响。只有在局域共振峰与表面等离子共振峰重合时,孔间距离的改变只能在一定程度上改变透射谱的简并性。这些结果表明,通过改变孔内填充介质材料以及孔的排列方式通过改变矩形孔电磁模的耦合关系,有效调控LSP激发、耦合效率从而实现对透射谱的调节。这些研究结果为理解光与复合周期金属结构的相互作用提供了新的知识。
     探讨了结构缺陷和组分层厚度对含结构缺陷的半导体超晶格光跃迁几率的影响,分别计算了局域电子态-局域电子态之间和局域电子态-非局域扩展电子态之间电子在光照射下的跃迁几率。发现缺陷层厚度和与缺陷最近邻的组分层厚度对显著地改变这些电子态的跃迁几率,并且当改变这些层的厚度时局域电子态之间的跃迁几率对超晶格的微带微隙指数有明显的依赖作用,而局域态到非局域的扩展电子态之间的电子跃迁几率并不受微隙指数的影响。
Subwavelength metallic materials are currently investigated intensively on manyfields including condensed matter physics and near fields optics, since they show intrigu-ing physics and potential application in many aspects. SPPs play a vital role in manyoptical phenomena on the subwavelenth dimensions, which make it enrich our knowl-edge about interactions between light and subwavelength metallic materials to study SPPspropagation behavior and related manipulation methods. At the same time, these investi-gations will promote the advance about the new generation of nanophotonic devices andall-optical circuits. By using the finite difference time domain (FDTD) method, this dis-sertation introduce a series of works on SPPs’s propagation law and some methods tomanipulate them, as well as related optical properties for subwavelength metallic mate-rials and structures. On the other hand, the modification of optical properties in semi-conductor superlattices with structure defects is discussed by using the effective massiveapproximation. The main results are summarized as follows:
     A wide bandgap plasmonic Bragg re?ector was proposed by changing the slit wide ofmetal-insulator-metal (MIM) waveguide and inserting dielectrics with high index. Whenchanging one of the thickness, the defect were introduced for this periodic structures, theresonant electromagnetic mode appear in the photonic band gap (PBG). Moreover, wefound this localized mode coupled poorer with the enlargement of PBG. Furthermore,the multiple PBG plasmonic Bragg re?ector was suggested, where three MIM waveguidewere included into every cell. Our numerical calculation verified SPPs can form morephotonic band gaps in this structures. Also, the width of PBG can be modified by changingthe slit width of MIM waveguide, which may be helpful to design the related nanophotoicdevices.
     SPPs phase resonance on the compound subwavelength hole arrays were investi-gated. It is found that phase match condition is broken when the symmetry of complexunit cell is destroyed, resulting in the transmission decrease suddenly at certain wave-length, namely the SPPs phase resonance. For the compound subwavelength hole arrayscomposed of identical square holes, the phase difference for SPPs are mainly governed bythe symmetry of complex unit cell, which leads to the degeneracy of transmission spectravary with the geometrical arrangement of this compound subwavelength hole arrays.
     A method was proposed that the transmission spectra of compound subwavelength arrays of rectangular hole can be modified by the filled dielectric alternately in a com-pound unit cell. The simulated results exhibit that the transmission for compound holearrays of rectangular holes with grater contrast of effective refractive, can not be affectedremarkably by the arrangement style or the symmetry of complex unit cell. However, thetransmission spectra may be modified at some extent by the interspace between holes forthe rectangular holes with low contrast of effective refractive. Only when the transmis-sion peak corresponding to LSP combines with SPPs resonance together, the variation ofsymmetry for complex unit cell makes its degeneracy be modified. These results showthat the transmission for compound arrays of rectangular holes can be manipulated bythe filled dielectric within the holes and/or the arrangement of compound unit cell, whichchanges the cutoff wavelength, leading to the variation of the excitation efficiency of LSPand its coupling behavior. These studies provide new knowledge about the interactionsbetween light and compound periodic metallic nanostructures.
     The effects of defect layers and constituent layers thickness on optical transition insemiconductor superlattice with structural defect were demonstrated, including transitionfrom localized electronics states to other localized electronic states, delocalized scatteringelectronic states. Our calculation displayed these transition probabilities are sensitiveto the defect layers and the nearest constituent layer thickness. Moreover, when theselayers thickness are altered, the variation tendency for transition probabilities between twolocalized states are governed by the parity of minband gap index n. However, transitionprobabilities between localized states and delocalized transition are not related to n.
引文
[1] Yablonoviteh. Inhibited spontaneous emission in solid-state physics and electron-ics. Phys. Rev. Lett. 1970, 58(20):2059-2062
    [2] Yablonoviteh, Gmitte T J, Leun K M. Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 1970, 67(17):2295-2298
    [3] Yablonoviteh. Photonic band-gap structure. J. OPt. Soc. Am. B, 1993, 10(17):283-295
    [4] John S. Localization of light. Phys. Today, 1991, 44(17):32-40
    [5] Kight, Birks T A,Russell P S J, Atkin D M. All-siliea single-modeo optical fiberwith photon crystal cladding. Opt. Lett., 1993, 21(17):1547-1549
    [6] Russell. Photon crystal fibe. Science, 2003, 299(17):358-362
    [7]付勇.纳米尺度周期性金属结构的异常光传输现象的FDTD数值分析: [山东大学博士学位论文].济南:山东大学,2008, 1-2
    [8] Ozbay E. Plasmonic: merging photonics and electronics at nanoscale dimensions.Science, 2003, 311(13):189-193
    [9] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A. Extraordinary op-tical transmission through sub-wavelength hole arrays. Nature(London),1998,391(11):667-669
    [10] Altewischer E, Exter M P, Woerdman J P. Plasmon-assisted transmission of entan-gled photons. Nature(London),2002, 418(11):304-306
    [11] Sambles R. More than transparent. Nature(London), 1998, 391(11):641-642
    [12]任希峰,郭国平,黄运峰,郭光灿.表面等离子体辅助光传送的实验研究.中国科学(G缉), 2007, 37(6):706-715
    [13]国家自然科学基金委员会数学物理学部.物理学学科发展研究报告.北京:科学出版社, 2008, 171-172
    [14] Agranovich V M. Surface polaritons. Amsterdam: North-Holland, 1982.
    [15] Raether H. Surface plasmon. Berlin: Springer, 1988:
    [16] Maier S A. Plasmonic: fundamentals and applications. Berlin: Springer, 2007:
    [17] Zayats A V, Smolyaninov I I. Near-field photonics: surface plasmon polaritons andlocalized surface plasmons. J. Opt. A: Pure Appl. Opt., 2003, 5(03):S16–S50
    [18] Bethe H A. Theory of diffraction by small hole. Phys. Rev., 1944, 66(6):163-182
    [19] Ghaemi H F, Thio T, Grupp D E, Ebbesen T W, Lezec H J. Surface plasmonsenhance optical transmission through subwavelength holes. Phys. Rev. B, 1998,58(11):6779-6782
    [20] Mart′?n-Moreno L , Garc′?a-Vidal F J, Lezec H J, Pellerin K M, et al. Theory ofextraordinary optical transmission through subwavelength hole arrays. Phys. Rev.Lett., 2001, 86(2):1114-1117
    [21] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics.Nature, 2003, 424(14):824-830
    [22] Barnes W L, Murray W A, Dintinger J, Dereux E, Ebbesen T W. Surface plasmonpolaritons and their role in the enhanced transmission of light through periodic ar-rays of subwavelength holes in a metal film. Phys. Rev. Lett., 2004, 92(10):107401-1~4
    [23] Salomon L, Grillot F, Zayats A V, Fornel F. Near-field distribution of optical trans-mission of periodic subwavelength holes in a metal film. Phys. Rev. Lett., 2001,86(12):1110-1113
    [24] Fang X, Li Z, Long Y, et al. Surface-plasmon-polariton assisted diffraction in pe-riodic subwavelength holes of metal films with reduced interplane coupling. Phys.Rev. Lett., 2007, 96(6):066805-1~4
    [25] Treacy M M J. Dynamical diffraction explanation of the anomalous transmissionof light through metallic gratings. Phys. Rev. B, 2002, 66(19):195105-1~11
    [26] Cao Q, Lalanne P. Negative role of surface plasmons in the transmission of metallicgratings with very narrow slits. Phys. Rev. Lett., 2005, 88(5):057403-1~4
    [27] Koerkamp K J K, Enoch S, Segerink F B, et al. Strong in?uence of hole shape onextraordinary transmission through periodic arrays of subwavelength holes. Phys.Rev. Lett., 2004, 92(17):183901
    [28] Molen K L, Koerkamp K K J, Enoch S, et al. Role of shape and localized res-onances in extraordinary transmission through periodic arrays of subwavelengthholes: Experiment and theory. Phys. Rev. B, 2005, 72(4):045421-1~9
    [29] Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelengthholes: The role of localized waveguide resonances. Phys. Rev. Lett., 2006, 96(23):233901
    [30] Mary A, Rodrigo S G, Martin-Moreno L, Garc′?a-Vidal F J. Theory of light trans-mission through an array of rectangular holes. Phys. Rev. B, 2007, 76(19):195414-1~5
    [31] Lezec H J, Thio T. Diffracted evanescent wave model for enhanced and sup-pressed optical transmission through subwavelength hole arrays. Opt. Express,2004, 12(16):3629-3651
    [32] Gay G, Alloscheryll O, Lesegno B V D, et al. The optical response of nanostruc-tured surfaces and the composite diffracted evanescent wave model. Nature Phys.,2006, 2(4):262-267
    [33] Gay G, Alloschery O, Lesegno B V D, Weiner J, Lezec H J. Surface wave gener-ation and propagation on metallic subwavelength structures measured by far-fieldinterferometry. Phys. Rev. Lett., 2006, 96(21):213901-1~4
    [34] Liu L, Lalanne P. Microscopic theory of the extraordinary optical transmission.Nature, 2008, 452(8):728-731
    [35] Weeber J C, Dereux A, Girard C, et al. Plasmon polaritons of metallic nanowiresfor controlling submicron propagation of light. Phys. Rev. B, 1999, 60:(12):9061-9068
    [36] Wang B, Wang G P. Metal heterowaveguide for nanometric focusing of light. Appl.Phys. Lett., 2004, 85(16):3599-3601
    [37] Bozhevolnyi S I, Erland J, Leosson K, Skovgaard P M W, Hvanm J M. Waveg-uiding in surface plasmon polariton band gap structures. Phys. Rev. Lett., 2001,86(14):3008-3011
    [38] Liu J Q, Wang L L, He M D, et al. A wide bandgap plasmonic Bragg re?ector.Opt.Express, 2008, 16(7):4888-4894
    [39] Stockman M I. Nanofocusing of optical energy in tapered plasmonic waveguides.Phys. Rev. Lett., 2004, 93(13):137404-1~4
    [40] Bozhevolnyi S I, Volkov V S, Devaux E, Ebbesen T W. Waveguiding in surfaceplasmon polariton band gap structures. Phys. Rev. Lett., 2005, 95(4):046802-1~4
    [41] Moreno E, Rodrigo S G, Bozhevolnyi S I, Mart′?n-Moreno L, Garc′?a-Vidal F J .Guiding and focusing of electromagnetic fields with wedge plasmon polaritons.Phys. Rev. Lett., 2008, 100(1):023901-1~4
    [42] Wang B, Wang G P. Plasmon Bragg re?ectors and nanocavities on ?at metallicsurfaces. Appl. Phys. Lett., 2004, 87(1):013107-1~3
    [43] Maier S. Clear for launch. Nature Phys., 2007, 3(5):301-301
    [44] Quinten M, Leitner A, Krenn J R, Aussenegg F R. Electromagnetic energy transportvia linear chains of silver nanoparticles. Opt. Lett., 1998, 23(17):1331-1333
    [45] Quinten M, Girard C, Weeber J C, Dereux A. Tailoring the transmittance of inte-grated optical waveguides with short metallic nanoparticle chains. Phys. Rev. B,2004, 69(8):085407-1~7
    [46] Linden S, Kuhl J, Giessen H. Controlling the interaction between light andgold nanoparticles: selective suppression of extinction. Phys. Rev. Lett., 2001,86(20):4688-4691
    [47] Fan X, Wang G P, Lee J C W, Chan C T. All-angle broadband negative refractionof metal waveguide arrays in the visible range: Theoretical analysis and numericalDemonstration. Phys. Rev. Lett, 2006, 97(7):073901-1~4
    [48] Bao J Y, Peng R W, Shu D J, Wang M. Role of interference between localizedand propagating surface waves on the extraordinary optical transmission through asubwavelength-aperture array. Phys. Rev. Lett, 2008, 101(8):087401-1~4
    [49]焦小瑾.亚波长金属结构中表面等离子体相关光学问题的研究: [中国科技大学博士学位论文].合肥:中国科技大学, 2005, 23-24
    [50] Yee K S. Numerical solution of initial boundary value problems involving Maxwellequations in isotropic media. IEEE Trans. Anten. Prop., 1966, AP-14(3):302-307
    [51]葛德彪,闫玉波.电磁波时域有限差分法(第二版).西安:西安电子科技大学出版社, 2005, 1-2
    [52] R. Muller, C. Ropers and C. Lienau. Femtosecond light pulse propagation throughmetallic nanohole arrays: The role of the dielectric substrate. Opt. Express, 2004,21(1):5067-5081
    [53] Chang S H, Gray S K. Surface plasmon generation and light transmission by iso-lated nanoholes and arrays of nanoholes in thin metal films. Opt. Express, 2005,13(8):3150-3165
    [54] Bohren C, Huffman D. Absorption and scattering of light by small particles. Wiley,New York. 1983:
    [55] Vial A, Grimault A S, Mac′?as D, et al. Improved analytical fit of gold disper-sion: Application to the modeling of extinction spectra with a finite-differencetime-domain method. Phys. Rev. B, 2005, 71(8):085416-1~7
    [56] Gray S K, Kupka T. Propagation of light in metallic nanowire arrays: Finite-difference time domain studies of sliver cylinders. Phys. Rev. B, 2003,68(4):045415-1~11
    [57] Ta?ove A, Hagness S C. Computational Electrodynamics: The Finite-DifferenceTime-Domain Method. Artech House, Boston. 2000:
    [58]玻恩马科斯,沃耳夫埃米尔.光学原理(上册).北京:电子工业出版社, 2005,94-96
    [59] Lezec H J, Degiron A, Devaux E, et al. Beaming light froma a subwavelengthaperture. Science, 2002, 297(1):820-316
    [60] Baida F I, Belkhir A Subwavelength metallic coaxial waveguides in the opticalrange: Role of the plasmonic modes. Phys. Rev B, 2006, 74(20):205419-1~7
    [61] Li K, Stockman M I, Bergman D J. Self-similar chain of metal nanospheres as anefficient nanolens. Phys. Rev. Lett., 2003, 91(22):227402-1~4
    [62] Dilbacher H, Krenn J R, Leitner A, Aussenegg F R. Surface plasmon polariton-based optical beam profiler. Opt. Lett., 2004, 29(21):1408-1~3
    [63] Hosseini A, Nejati H, Massoud Y. Design of a maximally ?at optical low pass filterusing plasmonic nanostrip waveguides. Opt. Express, 2007, 23 (3):15280-15286
    [64] Hosseini A, Nejati H, Massoud Y. Triangular lattice photonic band gapsin subwavelength metal-insulator-metal structures. Appl. Phys. Lett., 2008,92(1):013116-1~3
    [65] Kitson C, Barnes W L, Sambles J R. Full photonic band gap for surface modes inthe visible. Phys. Rev. Lett.., 1996, 77(13):2670 - 2673
    [66] Dilbacher H, Krenn J R, Schider G, et al. Two-dimensional optics with surfaceplasmon polaritons. App. Phys. Lett., 2002, 81(10):1762-1764
    [67] Weeber J C, Baudrion A L, Bouhelier A, Bruyant A, et al. Efficient surface plasmonfield confinement in one-dimensional crystal line-defect waveguides. App. Phys.Lett., 2006, 89:(21):211109-1~3
    [68] Verhagen E, Polman A, Kuipers L. Nanofocusing in laterally tapered plasmonicwaveguides. Opt. Express 16, 2008, 1(2):45-57
    [69] Wang B, Wang G P. Plasmon Bragg re?ector and nanocavities on ?at metallicsurfaces. App. Phys. Lett., 2005, 87(1):013107-1~3
    [70] Dionne J A, Sweatlock L A, Atwater H A. Plasmon slot waveguides: Towardschip-scale propagation with subwavelength-scale localization. Phys. Rev. B, 2006,73(3):035407-1~9
    [71] Zhou L, Yu X, Zhu Y Y. Propagation and dual-localization of surface plasmonpolaritons in a quasiperiodic metal heterowaveguide. App. Phys. Lett., 2006,89(5):051901-1~3
    [72] Houseini A, Massoud Y. A low-loss metal-insulator-metal plasmonic bragg re?ec-tor. Opt. Express, 2006, 14(23):11318-11323
    [73] Han Z H, Forsberg E, He S L. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Tech. Lett., 2007, 19(2):91-93
    [74] Houseini A, Nejati H, Massoud Y. Modeling and design methodology for metal-insulator-metal plasmonic Bragg re?ectors. Opt. Express, 2008, 16(3):1475-1480
    [75] Economou E N. Surface plasmons in thin films. Phys. Rev., 1969, 182 (2):539-554
    [76] Palik E D. Handbook of optical constants and solids. C Academic, Orlando, Fla,1985.
    [77] Garc′?a de Abajo F J. Colloquium: Light scattering by particle and hole arrays. Rev.Mod. Phys., 2007, 79(4):1267-1290
    [78] Genet C, Ebbesen T W. Light in tiny holes. Nature (London), 2007, 445(4):39-46
    [79] Porto J A, Garc′?a-Vidal F J, Pendry J B. Transmission resonance on metallic grat-ings with very narrow slits. Phys. Rev. Lett., 1999, 83(14):2845-2848
    [80] Xie Y, Zakharian A R, Moloney J V, Mansuripur M. Transmission of light througha periodic array of slits in a thick metallic film. Opt. Express, 2005, 13(12):4485-4491
    [81] Mart′?n-Moreno L, Garc′?a-Vidal F J. Optical transmission through circular holearrays in optically thick metal films. Opt. Express, 2004, 12(16):3619-3628
    [82] Rockstuhl C, Lederer F. Enhanced transmission of periodic, quasperiodic and ran-dom nanoaperture arrays. Appl. Phys. Lett., 2007, 91(15):151109-1~3
    [83] Skigin D C, Depine R A. Transmission resonances of metallic compound gratingswith subwavelength slits. Phys. Rev. Lett., 2005, 95(21):217402-1~4
    [84] Skigin D C, Depine R A. Narrow gaps for transmission through metallic structuredgratings with subwavelength slits. Phys. Rev. E , 2006, 74(4):046606-1~6
    [85] Ma Y G, Rao X S, Zhang G F, Ong C K. Microwave transmission modes in com-pound metallic gratings. Phys. Rev. B, 2007, 76(8):085413-1~5
    [86] Skigin D C, Loui H, Popovic Z, et al. Bandwidth control of forbidden transmis-sion gaps in compound structureswith subwavelength slits. Phys. Rev. E , 2007,76(1):016604-1~6
    [87] Skigin D C, Loui H, Popovic Z, et al. Resonances on metallic compound trans-mission gratings with subwavelength wires and slits. Opt.Commun , 2006,262(1):270–275
    [88] Wang Q J, Li J Q, Huang C P, Zhang C, Zhu Y Y. Enhanced optical transmissionthrough metal films with rotation-symmetrical hole arrays. Appl. Phys. Lett., 2005,87(9):091105-1~3
    [89] Wang Q J, Huang C P, Li J Q, Zhu Y Y. Suppression of transmission minma andmaxima with structural metal surface. Appl. Phys. Lett., 2006, 89(22):221121-1~3
    [90] Ye Y H, Wang Z B, Cao Y. Enhanced transmission through metal films perforatedwith circular and cross-dipole apertures. Appl. Phys. Lett., 2007, 91(8):251105-1~3
    [91] Garc′?a-Vidal F J, Moreno E, Porto J A, Moreno L M. Transmission of light througha single rectangular hole. Phys. Rev. Lett., 2005, 95(10):103901-1~4
    [92] Lee J W, Seo M A, Kang D H, et al. Terahertz electromagnetic wave transmissionthrough random arrays of single rectangular holes and slits in thin metallic sheets.Phys. Rev. Lett., 2007, 99(13):137401-1~4
    [93] Tsai M W, Chuang T H, Chang H Y, Lee S C. Dispersion of surface plasmonpolaritons on silver film with rectangular hole arrays in a square lattice. Appl.Phys. Lett., 2006, 89(9):093102-1~3
    [94] Jia W, Liu X. Origin of superenhanced light transmission through two-dimensionalsubwavelength rectangular hole arrays. Eur. Phys. J. B, 2005, 46(9):343–347
    [95] Degiron A, Ebbesen T W. The role of localized surface plasmon modes in theenhanced transmission of periodic subwavelength apertures. J. Opt. A: Pure Appl.Opt., 2005, 7(7):S90–S96
    [96] Schro¨ter U ,Heitmann D. Surface-plasmon-enhanced transmission through metallicgratings. Phys. Rev. B, 1998, 58(23):15419–15421
    [97] Astilean S, Lalanne P, Palamaru M Light transmission through metallic channelsmuch smaller than the wavelength. Opt. Commun., 2000, 175(11):265–273
    [98] Takakura Y. Optical resonance in a narrow slit in a thick metallic screen. Phys.Rev. Lett., 2001, 86(24):5601–5603
    [99] Hibbins A P, Hooper I R, Lockyear M J, Sambles R. Microwave transmission of acompound metal grating. Phys. Rev. Lett., 2001, 86(24):5601–5603
    [100] Schouten H F, Kuzmin N, Dubois G, et al. Plasmon-assisted two-slit transmission:Young’s experiment revisited. Phys. Rev. Lett., 2005, 94(5):053901-1~4
    [101] Huang X R, Peng R W, Wang Z, Gao F, Jiang S S. Charge-oscillation-inducedlight transmission through subwavelength slits and holes. Phys. Rev. A, 2007,76(3):035802-1~4
    [102] Esaki,Tsu R. Superlattice and negative differential conductivity in semiconductors.IBM J. Res. Devel. 1970, 14(1):61-65
    [103] Cho A Y. Growth of periodic structures by the molecular-beam method. Appl.Phys. Lett.,1971, 19(11):467-468
    [104] Combescot M, Benoit a la Guillaume C. Two-dimensional electrons-holes dropletsin superlattices. Solid State Commun., 1981, 39(3):651-654
    [105] Lenz G, Salzman J. Bragg confinement of carriers in a quantum barrier. Appl.Phys. Lett., 1990, 56(9):871-873
    [106] Zahler M, Brener I, Lenz G, et al. Experimental evidence of Bragg confinement ofcarriers in a quantum barrier. Appl. Phys. Lett., 1992, 61(8):949-951
    [107] Capasso F, Sirtori C, Faist J, et al. Observation of an electronic bound state abovea potential well. Nature, 1992, 358(13):565-567
    [108] Suris R A, Lavallard P. Calculated defect states in semiconductor superlatticeswithin a tight-binding model. Phys. Rev. B, 1994, 50(12):8875-8877
    [109] Indjin D, Milanovic V, Ikonic Z. Application of Bragg-confined semiconductorstructures for higher-energy resonant intersubband second-harmonic generation.Phys. Rev. B, 1997, 55(15):9722-9730
    [110] Wang X H, Gu B Y, Yang G Z, et al. Parity anomaly of bound states and opticalproperties in semiconductor superlattices with structural defects. Phys. Rev. B,1998, 58(8):4629-4635
    [111] Huang F Y, Morkog H. Electronic surface state (Tamm state) under electric field insemiconductor superlattices. J. Appl. Phys., 1992, 71(1):524-526
    [112] Sy H K, Chua T C. Internal Tamm state in finite and infinite superlattices. Phys.Rev. B, 1993, 48(11):7930-1~5
    [113] Ohno H, Mendez E E, Brum J A. Observation of Tamm state in semiconductorsuperlattices. Phys. Rev. Lett., 1990, 64(21):2555-25558
    [114] Miller T, Chiang T C. Study of a surface state in Ag-Si superlattices. Phys. Rev.Lett, 1992, 68(22):3339-3342
    [115]黄维清.低维纳米结构的电子态、声子态及热输运性质研究: [湖南大学博士学位论文].长沙:湖南大学物理系, 2005, 6-7
    [116] Chen K Q, Wang X H, Gu B Y. Localized folded acoustic phonon modes in coupledsuperlattices with structural defects. Phys. Rev. B, 1999, 61(18):12075-12081
    [117] Chen K Q, Wang X H, Gu B Y. Localized interface optical-phonon modes insuperlattices with structural defects. Phys. Rev. B, 2000, 62(15):9919-9922
    [118] Chen K Q, Wang X H, Gu B Y. Effect of structural defects consisting of ternarymixed crystals on localized interface optical modes in superlattices. Phys. Rev. B,2001, 65(15):155305-1~4
    [119] Chen K Q, Duan W H, Gu B L, et al. Localized interface optical phonon modesin a semi-infinite superlattice with a cap layer. J. Phys.: Condens. Matter, 2002,14(2):13761–13775
    [120] Nojima S, Kanagawa A. Intraband optical absorption in semiconductor superlat-tices. Phys. Rev. B, 1990, 41(14):10214-10217
    [121] Olajos J, Wegscheider W, Abstreiter G. Interband absorption inα-Sn/Ge short-period superlattices. Appl. Phys. Lett., 1992, 61(26):3130-3132
    [122] Fenigstein A, Finkman E, Bahir G, Schacham S E. X ?Γindirect intersubbandtransitions in type II GaAs/AlAs superlattices. Appl. Phys. Lett., 1996, 69(9):1758-1760
    [123] Ikonic Z, Kelsall R W, Harrison P. Virtual-crystal approximation and alloy broad-ening of intersubband transitions in p-type SiGe superlattices. Phys. Rev. B, 2001,64(12):125308-1~6
    [124] Korovin A V, Vasko F T, Mitin V V. Resonant generation of difference harmon-ics due to intersubband transitions in a biased superlattice. Phys. Rev. B, 2002,66(8):085302-1~6
    [125] Kim B W, Mao E, Majerfeld A. Analysis of optical properties of p-type GaAs/Al-GaAs superlattices for multiwavelength normal incidence photodetectors. J. Appl.Phys., 1997, 81(4):1883-1889
    [126] Landi S M, Tribuzy C V B, Souza P L, et al. Photoluminescence of GaAs ?Ga1?xAlxAs multiple quantum well structures containing d-doping superlattices.Phys. Rev. B, 2003, 67(8):085304-1~11
    [127] Sprung D W L, Jagiello P, Sigetich J D. Continuum bound states as surface statesof a finite periodic system. Phys. Rev. B, 2003, 67(8):085318-1~14
    [128] Sun H. Subband optical absorption in lateral-surface superlattices under normallyapplied electric fields. Phys. Rev. B, 1993, 48(8):17906 - 17912
    [129] Takeuchi M, Imanishi T, Ushijima D, et al. Selectivity control of Stark-laddertransitions in asymmetric double-well GaAs/AlAs superlattices by barrier sequencemodulation. Physica E, 1998, 2(1):303-307
    [130] Maihiot C, Smith D J. Effects of external stress on the electronic structure and op-tical properties of (001)- and (111)-growth-axis semiconductor superlattices. Phys.Rev. B, 1988, 38(5):5520 - 5529
    [131] Spasov S, Allison G, Patane` A, Eaves L. Modifying the electronic properties ofGaAs/AlAs superlattices with low-density nitrogen doping. J. Appl. Phys., 2006,100(15):063718-1~5
    [132] Waldron E L, Schubert E F, Dabiran A M. Multisubband photoluminescence inp-type modulation-doped AlxGa1?xN/GaN superlattices. Phys. Rev. B, 2003,67(4): 045327-1~7
    [133] Steslicka M, Kucharczyk R, Akjouj A, et al. Localised electronic states in semi-conductor superlattices. Surf. Sci. Reps., 2002, 47(2):93-196
    [134] Royo P, Stanley R P, Ilegems M. Coupling of impurity modes in one-dimensionalperiodic systems. Phys. Rev.E, 2001, 64(1):016604-1~6
    [135] Wang X H, Chen K Q, Gu B Y. Localized mixed acoustic modes in superlatticeswith structural defects. J. App. Phys., 2002, 92(9):5113-5118
    [136] Huang W Q, Chen K Q, Shuai Z G, et al. In?uence of the coupling between thenormal and lateral motions on surface states of a semi-infinite superlattice with acap layer. Phys. Letts. A, 2004, 325(11): 70-78
    [137] Ihm G, Falk M L, Noh S H. Symmetry-dependent localization in a finite superlat-tice. Phys. Rev. B, 1992, 46(15):9564 - 9568
    [138] Kucharczyk R, Steslicka M, Rouhani B D. Electronic level structure and density ofstates of a terminated biperiodic superlattice. Phys. Rev. B, 2000, 62(7):4549-4556
    [139] Song J J, Yoon Y S, Fedotowsky A, et al. Barrier-width dependence of optical tran-sitions involving unconfined energy states in GaAs ? AlxGa1?xAs superlattices.Phys. Rev. B, 1986, 34(12):8958 - 8962
    [140] Zucker J E, Pinczuk A, Chemla D S, et al. Delocalized excitons in semiconductorheterostructures. Phys. Rev. B, 1984, 29(12): 7065-7068
    [141] Jones H. Theory of Brillouin Zones and Electronic States in Crystals. North-Holland, Amsterdam, 1960
    [142] Nelson D F, Miller R C, Kleinman D A. Band nonparabolicity effects in semicon-ductor quantum wells. Phys. Rev. B, 1987, 35(14):7770-7773
    [143] Wang X H, Gu B Y, Yang G Z. Coupling between the transverse and longitudinalcomponentsof an electron in resonant tunneling . Phys. Rev. B, 1997, 55(15):9340-9343
    [144] Ekenberg E. Nonparabolicity effects in a quantum well: Sublevel shift, parallelmass, and Landau levels. Phys. Rev. B, 1989, 40(11):7714-7726
    [145] Huang W Q, Chen K Q, Shuai Z G, et al. Localized electronic states in N-layer-based superlattices with structural defects. Physica E, 2005, 28(4):374-384
    [146] Greene R L, Bajaj K K. Binding energies of wannier excitons in GaAs?Ga1?xAxAs quantum well structures. Soli. Stat. Comm., 1982, 45(5):831-835
    [147] Greffet J J, Carminati R, Joulain K, et al. Coherent emission of light by thermalsources. Nature, 2002, 416(3):61-64.
    [148] Lu M H, Liu X K, Feng L, Li J Q, et al. Extraordinary acoustic transmission througha 1D grating with very narrow apertures. Phys. Rev. Lett., 2007, 99(17):174301-1~4
    [149] Ferna′ndez-Dom′?nguez A I, Mart′?n-Cano D, Moreno E, Mart′?n-Moreno, Garc′?a-Vidal F J. Resonant transmission and beaming of cold atoms assisted by surfacematter waves. Phys. Rev. A, 2008, 78(2):023614-1~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700