用户名: 密码: 验证码:
等效异向介质的特性与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异向介质是当前科学研究的热点之一,它的发现被认为是2003年度十大科学突破之一,是当前物理与电磁学研究领域中的前沿与热点问题。异向介质是指等效的介电常数和磁导率同时为负值的人工合成电磁材料。电磁波在这种介质中传播时将显现与传统介质不同的各种逆向或反向效应,如负折射效应、逆多普勒效应、逆切仑科夫辐射等等。对于其特性的研究,在理论分析、数值计算和实际应用等方面还需要不断地完善和深入发展。
     在经典电动力学中,介质的电磁性质是用介电常数和磁导率两个宏观参数来描述的,我们所讨论的异向介质模型通常是等效的双负或单负介质,所以在理论分析中应该强调“等效”的概念。
     本文主要对不同等效异向介质模型的特性进行了研究,在理论上涉及了等效各向同性异向介质、等效单负介质、等效各向异性异向介质、等效非线性异向介质等近几年陆续提出的复杂模型,从而向实际结构靠近,以揭示异向介质的物理本质;而在异向介质结构方面,设计了以三角形开口环为基础的单环、对环结构,诣在简化传统内外嵌套式结构。论文的主要工作可以概括为:
     (1)简要介绍了异向介质的研究现状和进展,分析了它的理论基础和实验基础及简单构造。其次研究了电磁波在几种等效各向同性异向介质模型中的传播特性,并结合常规介质作了比较,结果表明异向介质存在很多特殊的传播规律,深入研究将能挖掘出其巨大的意义;
     (2)研究了沿等效单负介质平板波导传播表面波的特性,根据本征方程运用图解法得到沿单负介质平板传播的奇、偶对称TE极化表面波的色散曲线图和能流分布图,发现表面波在单负介质波导中传播的比传统介质波导中慢,场和能量集中于介质板的上下表面,一定频率范围内奇、偶表面波型能流反向,该慢波特性在发展微波器件的小型化方面有着潜在的应用价值;使用传输矩阵方法对等效负介电常数材料和负磁导率材料双层结构进行分析,发现某些角度的入射波存在零反射率、无衰减的完全隧穿、带通的特性,并得到数值结果对结论进行了验证;
     (3)针对实际复合材料构成的异向介质都是各向异性的特点,提出了电磁波从各向同性右手介质斜入射到等效各向异性异向介质时发生负折射应满足的条件。根据理论分析结果,给出了满足条件的介电常数和磁导率组合;同时研究了不同参数条件下,等效各向异性异向介质界面出现的正、负、零Goos-H(a|¨)nchen位移的情况,数值结果验证了理论的正确性;
     (4)详细研究了等效非线性异向介质中的二次非线性现象。推导了异向性材料非线性互相作用的电磁公式;发现非线性异向介质中的二次谐波过程、和频过程和差频过程具有与传统非线性介质完全不同的能流传播方向以及场分布;同样介质厚度的非线性参量放大过程,异向介质能够得到比传统介质大得多的信号波和闲频波能量输出;分析了等效非线性异向与等效非线性右手介质界面表面波的传播特性,运用图解法研究了表面波的频率范围和能流方向与右手材料参量的关系;
     (5)针对现有的内外嵌套开口双环异向介质结构,其结构形式过于复杂,根据单开口环结构同样具有磁响应和负磁导率的性质,提出一种简化的三角形单环谐振结构,并引申出两种形式的三角形对环结构。通过参数提取、棱镜仿真、能量传输实验等三种方式验证其左手特性,结果吻合良好。
The newly discovery of left-handed material (LHM) has been regarded as one of the ten most significant discoveries in science community in 2003, and has been the front and focus area in physics and electromagnetics research. LHM is an electromagnetic artificial metamaterial with simultaneously negative equivalent permittivity and equivalent negative permeability. Compared with traditional materials, electromagnetic waves transmitted in such material will behave some fantastic phenomena, such as negative Snell refraction, reversed Dollper effect, reversed Cerenkov radiation, and so on. However, for the newly artificial electromagnetic materials, theories, numerical methods and applications of electromagnetic fields need to be developed.
     In classical electrodynamics, electromagnetic properties of mediums are described by the two macroscopical parameters: permittivity and permeability. The metamaterial models we discussed are usually equivalent double-negative or single-negative. So the term of“equivalent”should be emphasized in the theoretical analysis of metamaterials.
     This thesis mainly focuses on the research of properties of different equivalent metamaterial models. It involves complex models proposed in recent years, such as equivalent isotropy metamaterials, equivalent single-negative materials, equivalent anisotropy metamaterials and equivalent nonlinear metamaterials, so as to indicate the metamaterials’physical essence. To simplify the complex frame of the double open-loop resonators, single triangular open-loop resonators and symmetric triangular open-loop resonators are proposed. The author’s work mainly consists of:
     (1) The present research status on metamaterials around the world and analysis of the theoretical and experimental basis of metamaterials are introduced. Comparing with the traditional material, detail description about the wave reflection and transmission in some equivalent isotropy metamaterial models are made. The results indicate that metamaterials represent lots of particular propagated properties, and the significance is to be seen by deep research.
     (2) The properties of surface waves along the equivalent single-negative slab waveguide are analyzed. According to the eigen mode equations, the graphical-solution technique is used in order to get dispersion curves profiles and energy fluxes distribution profile of odd and even symmetric TE surface modes which propagate along the epsilon-negative slab. It is found that surface waves propagate along the single-negative slab more slower than that along the traditional slab waveguide; Field and energy is confined on the top and bottom surfaces; Energy fluxes of odd and even symmetric surface waves have the opposite directions in a certain frequency range. This slow wave property may be utilized to design novel compact RF/microwave devices. Propagation matrices method is used to analyze the wave propagation properties in a pair of equivalent single negative slabs. Phenomena of bandpass, zero reflection and complete tunneling without any phase delay perform at some incident angles. Simulation results validate the salient features of such paired slabs.
     (3) The conditions that the negative refraction takes place when a plane wave passes from an equivalent isotropic right-handed material into another equivalent anisotropic metamaterial are presented in order to study the negative refraction of anisotropic metamaterials constituted by the practicable composite meta-materials. The conditions of the existence and the sign of the Goos-H(a|¨)nchen shift on this interface are also discussed. Simulation results are presented and used to prove the validities of the theoretical analysis.
     (4) Quadratic nonlinear phenomena in equivalent nonlinear metamaterials are detailedly analyzed. General coupled-mode equations for quadratic coupling in nonlinear metamaterials are studied. It is found that energy flow directions and energy spatial distributions are absolutely different in nonlinear metamaterials and in nonlinear traditional materials. It is shown that through a parametric amplification process, bigger output power of signal wave and idle wave can be obtained in a metamaterial slab than a traditional slab of the same thickness. The frequency range and energy fluxes’direction of surface waves on the interface of equivalent nonlinear metamaterials are dependent on the parameters of traditional materials, and their relations are analyzed by the graphical method.
     (5) Aiming at the complex frame of the double open-loop resonators, a simplified single triangular open-loop resonator is proposed, for simultaneously negative permittivity and negative permeability can be achieved by a single open-loop. Two kinds of symmetric triangular open-loop resonator combinations are designed. Parameter retrieval algorithms, refraction lens simulations and power transmission experiments are employed to validate the negative properties of these structures. The results are in well agreements.
引文
[1] V. G. Veselago. The electrodynamics of substances with simultaneously negative values ofεandμ. Sov. Phys. Uspekhi, 1968, 10: 509-514.
    [2] J. B. Pendry. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory and Technology, 1999, 47: 2075-2084.
    [3] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev.Lett., 1996, 76: 4773-4776.
    [4] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Low frequency plasmons in thin-wire structures. J . Phys.: Condens. Matt., 1998, 10: 4785-4809.
    [5] M. Sigalas, C. T. Chan, K. M. Ho, et al. Metallic photonic band-gap materials. Phys. Rev. B , 1995, 52: 11744-11751.
    [6] D. R. Smith, S. Schultz, N. Kroll, et al. Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity. Appl. Phys. Lett., 1994, 65: 645-647.
    [7] A. K. Sarychev and V. M. Shalaev. Comment on“Extremely low frequency plasmons in metallic microstructures”. Phys. Rev. B. 2001, March, 6: 0103145.
    [8] A. L. Pokrovsky, A. L. Efros. Electrodynamics of Metallic Photonic Crystals and the Problem of Left-Handed Materials. Phys. Rev. Lett., 2002, 89: 093901-093904.
    [9] D. R. Smith, N. Kroll. Negative Refractive Index in Left-Handed Materials. Phys. Rev. Lett., 2000 , 85: 2933-2936.
    [10] W. Richard, Ziokowski, E. Heyman. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E., 2001, 64: 056625.
    [11] D. R. Smith, W. Padilla, D. Vier, et al. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett., 2000, 84: 4184-4187.
    [12] R. A. Shelby, D. R. Smith, N. S. C. Nemat et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys.Lett., 2001, 78: 489-491.
    [13] R. A. Shelby, D. R. Smith and S. Schultz. Experimental Verification of a Negative Index of Refraction. Science, 2001, 292: 77-79.
    [14] C. G. Parazzoli, R. B. Gregor, K. Li, et al. Experimental Verification and Simulation of Negative Index of Refraction Using Snell’s Law. Phys. Rev. Lett., 2003, 90: 107401.
    [15] J. B. Pendry. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett., 2000, 85: 3966-3969.
    [16] P. M. Valanju, R. M. Walser and A. P.Valanju. Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous. Phys. Rev. Lett., 2002, 88: 187401.
    [17] D. R. Smith, D. Schurig and J. B. Pendry. Some of the waves emitted or reflected. Appl. Phys. Lett., 2002, 81: 2713.
    [18] N. Garcia, V. M. Nieto. Is there an experimental verification of a negative index of refraction yet. Optics Lett., 2002, 27: 885-887.
    [19] M. Sanz, A. C. Papageorgopoulos and Jr. W. F. Egelhoff, et al. Transmission measurements in wedge-shaped absorbing samples: An experiment for observing negative refraction. Phys.Rev. E, 2003, 67: 067601.
    [20] D. R. Smith, J. B. Pendry and M. Wiltshire. Metamaterials and Negative Refractive Index, Science. 2004, 305: 788-792.
    [21] D. R. Smith, J. B. Pendry. Reversing Light With Negative Refraction. Phys. Today, 2004, June, 6: 37-43.
    [22] S. A. Ramakrishna. Physics of negative refractive index materials. Rep. Prog. Phys., 2005, 68: 449-521.
    [23] G. W. Hoof. Comment on“Negative Refraction Makes a Perfect Lens”. Phys. Rev. Lett., 2001, 87: 249701.
    [24] J. M. Williams. Comment on“Negative Refraction Makes a Perfect Lens”. Phys. Rev. Lett., 2001, 87: 249703.
    [25] N. Garcia, V. M. Nieto. Is there an experimental verification of a negative index of refraction yet. Phys. Rev. Lett., 2002, 88: 207403.
    [26] J. B. Pendry. Replies to [23] ,[24]. Phys. Rev. Lett., 2001, 87: 249702-249704.
    [27] J. B. Pendry. Comment On“Is there an experimental verification of a negative index of refraction yet”. E-print cond-mat, 2002, 16: 0206563.
    [28] J. B. Pendry, D. R. Smith. Comment on“Wave refraction in negative-indexmedia: always positive and very inhomogeneous”. E-print cond-mat, 2002, 88: 0207689.
    [29] W. T. Lu, J. B. Sokoloff, S. Sridhar. Refraction of Electromagnetic Energy for Wave Packets Incident on a Negative Index Medium is Always Negative. Phys. Rev. Lett., 2004, 92: 127401.
    [30] M. Ayindir, K. Aydin, E. Ozbay, et al. Transmission properties of composite metamaterials in free space. Appl.Phys. Lett. 2002, 81: 120-122.
    [31] N. Katsarakis, T. Koschny, M. Kafesaki, et al. Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials. Appl. Phys. Lett. 2004, 84: 2943-2945.
    [32] L. Zhang, G. Tuttle, C. M. Soukoulis. GHz magnetic response of split ring resonators. Photon. and Nanostruct., 2004, 2: 155-159.
    [33] N. Katsarakis, T. Koschny, M. Kafesaki, et al. Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials. Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 70: 201101.
    [34] K. Aydin, K. Guven, L. Zhang, et al. Experimental observation of true left-handed transmission peaks in metamaterials. Opt. Lett. 2004, 29: 2623-2625.
    [35] K. Aydin, K. Guven, N. Katsarakis, et al. Effect of disorder on magnetic resonance band gap of split-ring resonator structures. Opt. Express, 2004, 24: 5896-5901.
    [36] K. Guven, K. Aydin, K. B. Alici, et al. Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70: 205125(1)-205125(4).
    [37] R. Moussa, S. Foteinopoulou, L. Zhang, et al. Negative refraction and superlens behavior in a two-dimensional photonic crystal, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 71: 085106.
    [38] K. Aydin, K. Guven, C. M. Soukoulis, et al. Observation of negative refraction and negative phase velocity in left-handed metamaterials. Appl. Phys. Lett., 2005, 86: 124102.
    [39] R. Ruppin. Surface polaritons of a left-handed medium. Phys. Lett. A, 2000, 277: 61-64.
    [40] R. Ruppin. Surface polaritons of a left-handed medium. J. Phys.: Condens. Matt., 2001, 13: 1811-1819.
    [41] F. D. M. Haldane. Electromagnetic surface modes at interfaces with negative refractive index make a“Not quite perfect”lens. E-print cond-mat, 2002, 15:0206420.
    [42] D. R. Smith, D. Schurig. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett., 2003, 90: 077405.
    [43] M. W. Feise, P. J. Bevelacqua, J. B. Schneider. Effects of surface waves on the behavior of perfect lenses. Phys. Rev. B, 2002, 66: 035113.
    [44] I. S. Nefedov, S. A. Tretyakov. Photonic band gap structure containing metamaterial with negative permittivity and permeability. Phys. Rev. B, 2002, 66: 036611-036614.
    [45] J. B. Pendry. Electromagnetic materials enter the negative age. Physics World, 2001, 14: 47-52.
    [46] M. Wiltshire, J. B. Pendry, I. R. Young, et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science, 2001, 291: 843-848.
    [47] M. Notomi. Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62: 10696-10705.
    [48] C. Luo, S. G. Johnson, J. D. Joannopoulos, et al. All-angle negative refraction without negative effective index. Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 65: 201104.
    [49] C. Luo, S. G. Johnson, J. D. Joannopoulos, et al. Subwavelength imaging in photonic crystals. Phys. Rev. B: Condens.Matter Mater. Phys., 2003, 68: 045115.
    [50] S. Foteinopoulou, E. N. Economou, C. M. Soukoulis. Refraction in media with a negative refractive index. Phys. Rev. Lett., 2003, 90: 107402.
    [51] S. Foteinopoulou, C. M. Soukoulis. Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67: 235107.
    [52] S. Foteinopoulou, C. M. Soukoulis. Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects. Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 72: 165112.
    [53] E. Cubukcu, K. Aydin, E. Ozbay, et al. Electromagnetic waves: Negative refraction by photonic crystals. Nature 2003, 423: 604-605.
    [54] E. Cubukcu, K. Aydin, E. Ozbay, et al. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett., 2003, 91:207401.
    [55] P. V. Parimi, W. T. Lu, P. Vodo, et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys. Rev. Lett., 2004, 92: 127401.
    [56] P. Vodo, P. V. Parimi, W. T. Lu, et al. Microwave photonic crystal with tailor-made negative refractive index. Appl. Phys. Lett., 2004, 85: 1858.
    [57] P.Vodo, P. V. Parimi, W. T. Lu, et al. Focusing by planoconcave lens using negative refraction, Appl. Phys. Lett., 2005, 86: 201108.
    [58] M. Kafesaki, T. Koschny, R. S. Penciu, E. N. Economou, C. M. Soukoulis. Left-handed metamaterials: detailed numerical studies of the transmission properties. J. Opt. A: Pure Appl. Opt., 2005, 7: s12-s22.
    [59] T. Koschny, L. Zhang, C. M. Soukoulis. Isotropic three-dimensional left-handed metamaterials. Phys. Rev. B: Condens., Matter Mater. Phys., 2005, 71: 036617.
    [60] T. J. Yen, W. J. Padilla, N. Fang, et al. Terahertz Magnetic Response from Artificial Materials. Science 2004, 303: 1494-1496.
    [61] S. Linden, C. Enkirch, M. Wegener, et al. Magnetic Response of Metamaterials at 100 Terahertz. Science 2004, 306: 1351-1353.
    [62] N. Katsarakis, G. Konstantinidis, A. Kostopoulos, et al. Magnetic response of split-ring resonators in the far-infrared frequency regime. Opt. Lett., 2005, 30: 1348-1350.
    [63] C. Enkrich, S. Linden, M. Wegener, et al. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett., 2005, 95: 203901.
    [64] C. Enkrich, F. Perez-Willard, D. Gerthsen, et al. Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials. Adv. Mater. 2005, 17: 2547-2549.
    [65] G. Dolling, C. Enkrich, M. Wegener, et al. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett. 2005, 30: 3198-3200.
    [66] N. Fang, H. Lee, C. Sun, et al. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science 2005, 308: 534-537.
    [67] H. Sailing, J. Yi, R. Z. Chao, et al. On subwavelength and open resonators involving metamaterials of negative refraction index. New Journal of Physics, 2005, 7: 210-220.
    [68] H. Sailing, H. Xin, H. J. Long, et al. Abnormal guiding and filtering properties for some composite structures of right/left-handed metamaterials. Proceedings of Asia-Pacific Microwave Conference, 2005, 33-35.
    [69] T. J. Cui. Localization of electromagnetic energy using a left-handed medium slab. Physical Review B, 2005, 71: 045114(1)-045114(6).
    [70] T. J. Cui et al. Electromagnetic wave localization using a left-handed transmission-line superlens. Physical Review B, 2005, 72: 035112.
    [71] H. F. Zhang, Q. Wang, N. H. Shen, et al. Optically uniaxial left-handed material. Phys. Rev. B, 2005, 72: 153104.
    [72]赵乾,赵晓鹏,康雷等,微波左手材料的反射率和相位随频率的变化特性,科学通报,2005,50(6), 584-587.
    [73]罗春荣,康雷,赵乾等,非均匀缺陷环对微波左手材料的影响,物理学报, 2005, 54 (4), 1607-1612.
    [74]康雷,赵乾,赵晓鹏,负磁导率材料的微波反射行为,自然科学进展, 2005, 15(10), 1271-1275.
    [75]杨娟,梁昌洪,平面波在双负和双正参数媒质界面的反射与折射,电波科学学报,2005,20(3),321-324.
    [76]杨娟,梁昌洪,李乐伟,二维光子晶体的负折射现象,电波科学学报,2005,20(6),703-706.
    [77]杨娟,二维光子晶体及左手媒质研究,西安电子科技大学博士论文,2005.
    [78]仇欣杰,陈鸿,李宏强,光子晶体中的反常折射现象,光电子与激光,2001,12(12),1317-1321.
    [79]何金龙,沈林放,何赛灵等,负折射率介质光纤的导模异常特性分析,光子学报,2004,33(11),1327-1330.
    [80]杨立功,顾培夫,黄弼勤,从几何光学研究负折射透镜的有限尺寸效应,光子学报,2003,32(11),1396-1398.
    [81] R. P. Liu, L. J. Chun, T. J. Cui and D. R. Smith. Progress of metamaterials at microwave frequencies. Proceedings of the 2008 International Workshop on Metamaterials, 2008, 47-49.
    [82] J. B. Pendry. Negative refraction at optical frequencies. Proceedings of the 2008 International Workshop on Metamaterials, 2008, 2.
    [83] Z. P. Wang, L. H. Wu and X. L. Zhang. Theoretical studies on the Epsilon’s nonlinearity of a left-handed material. Proceedings of the 2008 International Workshop on Metamaterials, 2008, 91-94.
    [84] C. J. Guo, P. Niu, Q. Xu and Z. X. Wei. Parameter design of cylindrical invisible clock applied nonlinear transformation. Proceedings of the 2008 International Workshop on Metamaterials, 2008, 107-109.
    [85] G. Shaik, H. Schenkel, J. Detlefsen and G. Fischer. Composite right/left handed metamaterial structures for RF narrow band-pass filter design. Proceedings of the 2008 International Workshop on Metamaterials, 2008, 291-296.
    [86] R. W. Ziolkowski. Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. Optics Express, 2003, April, 11(7): 662–681.
    [87] C. Caloz, C. C. Chang and T. Itoh. Full-wave verification of the fundamental properties of left-handed materials(LHMs) in waveguide configurations. J.App.Phys., 2001, Dec., 90(11): 5483–5486.
    [88] P. Markos and C. M. Soukoulis. Numerical studies of left-handed materials and arrays of split ring resonators. Phys. Rev. E, 2002, 65: 036622(1-8).
    [89] P. Markos and C. M. Soukoulis. Transmission studies of left-handed materials. Phys.Rev.B, 2002, 65:033401(1-4).
    [90] P. P. M. So and W. J. R. Hoefer. Time domain TLM modeling of metamaterials with negative refractive index. IEEE-MTT International Symp., 2004, June., Fort Worth, TX, 1779-1782.
    [91] P. P. M. So, H. Du and W. J. R. Hoefer. Modeling of metamaterials with negative refractive index using 2D-shunt and 3D-SCN TLM networks. IEEE Trans. Microwave Theory Tech., 2005, April, 53(4):1496–1505.
    [92] I.V.Lindell, S. A. Tretyakov, K. I. Nikoskinen and S. Ilvonen. BW-media with negative parameters, capable of supporting backward waves. Micr. Opt. Technol.Lett., 2001, Oct., 31(2): 129–133.
    [93] J. A. Kong. Electromagnetic waves in stratified negative isotropic media. Progress in Electromagnetics Research. PER 35, EMW Publishing, Massachusetts, 2002: 1-52.
    [94] J. Pachmo Jr., T. M. Grzegorczyk, B. I. Wrr, Y. Zhang and J. A. Kong. Power propagation in homogeneous isotropic frequency-dispersive left-handed media. Phys. Rev. Lett. 2002, 89(25), 257401:1-4.
    [95] D. R. Smith, D. Schurig and J. B. Pendry. Negative refraction of modulated electromagnetic waves. App.Phys.Lett., 2002, Oct., 81(15): 2713–2715.
    [96] M. W. McCall, A. Lakhtakia and W. S. Weiglhofer. The negative index of refraction demystified. Eur. J. Phys., 2002, 23: 353–359.
    [97] A. K. Iyer and G. V. Eleftheriades. Negative refractive index metamaterials supporting 2-D waves. IEEE-MTT International Symp., 2002, June, 2: 412–415.
    [98] G. V. Eleftheriades, A. K. Iyer and P. C. Kremer. Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans.Microwave Theory Tech., 2002, Dec., 50(12): 2702–2712.
    [99] C. Caloz and T. Itoh. Application of the transmission line theory of left-handed(LH) materials to the realization of a microstrip LH transmission line. Proc. IEEE-AP-SUSNC/URSI National Radio Science Meeting, 2002, June, 2: 412-415.
    [100] C. Caloz and T. Itoh. Transmission line approach of left-handed (LH) structures and microstrip realization of a low-loss broadband LH filter. IEEE Trans. Antennas Propagat., 2004, May, 52(5): 1159–1166.
    [101] A. A. Oliner. A periodic-structure negative-refractive-index medium without resonant elements. IEEE-AP-S USNC/URSI National Radio Science Meeting, San Antonio, TX, 2002, June, 1: 300-303.
    [102] A. A. Oliner. A planar negative-refractive-index medium without resonant elements. IEEE-MTT International Symp., 2003, June, Philadelphia, PA, 191–194.
    [103] L. Ran, J. Huangfu, H. Chen, X. Zhang and K. Cheng. Experimental Study on Several Left-handed Metamaterials. PIER, 2005, 51: 249-279.
    [104] J. A. Kong, B. I. Wu and Y. Zhang. Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and negative permeability. Appl. Phys. Lett., 2002, 80(12): 2084-2086.
    [105] L. X. Ran., J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk and J. A. Kong. Beam shifting experiment for the characterization of left-handed properties. J. Appl. Phys., 2004, 95(5): 2238-2241.
    [106] S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin and P. Vincent. A metamaterial for directive emission. Phys. Rev. Lett., 2002,89(18), 213902: 1-4.
    [107] A. K. Iyer, P. C. Kremer and G. V. Eleftheriades. Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial. Optics Express, 2003, April, 11(7): 696-708.
    [108] A. Lai, C. Caloz and T. Itoh. Transmission line based metamaterials and their microwave applications. Microwave Mag., 2004, Sept., 5(3): 34-50.
    [109] A. Sanada, C. Caloz and T. Itoh. Planar distributed structures with negative refractive index. IEEE Trans. Microwave Theory Tech., 2004, April, 52(4): 1252-1263.
    [110] S. Lim, C. Caloz, T. Itoh. Metamaterial based electronically controlled transmission line structure as a novel leakywave antenna with tunable radiationangle and beam width. IEEE Transactions on Microwave Theory and Techniques, Jan. 2005, 53(1):161-173.
    [111] Y. Li, L. Ran, H. Chen, F. J. Huang, X. Zhang, K. Chen, T. M. Grzegorczyk and J. A. Kong. Experimental realization of a one dimensional LHM-RHM resonator, IEEE-MTT special issue on metamaterials. 2005, 53:1522-1526.
    [112] N. Engheta. An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability. IEEE Antenna and Wireless Propagation Letters, 2002, 1:10-13.
    [113] Z. M. Thomas, T. M. Grzegorczyk, B. I. Wu, X. D. Chen, and J. A. Kong. Design and measurement of a four-port device using metamaterials. Optics Express, 2005, 13: 4737-4744.
    [114] F. Falcone, F. Martin,J. Bonache, R. Marques, T. Lopetegi and M. Sorolla. Left handed coplanar waveguide band pass filters based on Bi-layer Split Ring Resonators. IEEE Antennas and Wireless Propagation Letters, 2004, 14(1): 10-12.
    [115] M. A. Antoniades and G. V. Eleftheriades. Compact linear lead/lag metamaterial phase shifters for broadband applications. IEEE Trans. Antennas Propagation Lett., 2003, 2: 103-106.
    [116] P. V. Parimi, W. T. Lu, P. Vodo, S. Sridhar. Photonic crystaIs: Imaging by flat lens using negative refraction. Nature, 2003,11: 404-426.
    [117] F. S. Robert. Observation of the Inverse Doppler Effect. Science, 2003, 302: 1489-1491.
    [1] Christopbe Caloz, Tatsuo Itoh. Electromagnetic Metamaterials. John Wiley & Sons, New York, 2005, Chapter 2.
    [2] J. B. Pendry. Microwave Experiments with Left-Handed Materials. Doctoral Dissertation, Department of Physics, UCSD, 2001.
    [3] V. G. Veselago. The electrodynamics of substances with simultaneously negative values ofεandμ. Sov Phys Usp, 1968, 10(4):509-514.
    [4] L. D. Landau, E. M. Lifshitz. Electrodynamics of continuous media. Oxford: Pergamon, 1984, 272-275.
    [5] J. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85:3966-3969.
    [6] M. Born, E. Wolf. Principles of optics. Seventh Edition, Cambridge University Press, 2002.
    [7] P. R. Berman. Goos-Hanchen shift in negatively refractive media. Physical Review E, 2002, 66: 067603.
    [8] I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, et al. Nonlinear surface waves in left-handed materials. Phys. Rev. E, 2004, 69: 016617(1-9).
    [9] A. Puri, J. L. Birman.Goos-Hanchenbeam shift at total internal reflection with application to spatially dispersive media. J. Opt. Soc. Am., 1986, 3(4):543-549.
    [10] R. E. Camley, D. L. Mills. Surface polaritons on uniaxial antiferromagnets. Phys.Rev. B, 1982, 26:1280-1287.
    [11] R. Ruppin. Surface polaritons of a left-handed materials lab. J. Phys: Condens. Matter, 2001, 13:1811-1819.
    [12] Y. I. Bespyatykh, A .S .Bugaev, I. E. Dikshtein. Surface polaritons in composite media with time dispersion of permittivity and permeability. Phys. Sol. State, 2001, 43:2043-2047.
    [13] J. Nkoma, R. Loudon, D. R. Tilley. Elementary properties of surface polaritons. J. Phys. C, 1974, 7:3547-3559.
    [14] A. D. Boardman. Electromagnetic Surface Modes. 1982, Willey, NewYork.
    [15] J. B. Pendry, S. A. Ramakrishna. Focusing light using negative refraction. J. Phys.: Condens. Matter, 2003, 15:6345.
    [16] P. Baccarelli, P. Burghignoli, G. Lovat, et al. Surface-wave suppression in a double-negative metamaterial grounded slab. IEEE Antennas Wireless Propag. Lett., 2003, 2(19): 269-272.
    [17] Collin R E. Field Theory of Guided Waves, 2nd [M]. Ed Piscataway, Nj: IEEE Press, 1991.
    [18] Y. Satomura, M. Matsuhara and N.Kumagai. Analysis of electromagnetic-wave modes in anisotropic slab waveguide. IEEE Trans. Microwave Theory Tech., 1974, Feb., 22(2), 86–92.
    [19] H. Kosaka, T. Kawashima, A. Tomita, et al. Superprism phenomenain photon crystals. Phys. Rev. B, 1998, 58(16):10096-10099.
    [1] R.W. Ziolkowski and E. Heyman. Wave propagation in media having negative permittivity and permeability. Phy. Rev. E, 2001, 64(5): 056625(1)-056625(4).
    [2] R. A. Shelby, D. R. Smith and S. Schultz. Experimental verification of a negative Index of refraction. Science, 2001, 292: 77-79.
    [3] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, C. M. Soukoulis.Subwavelength resolution in a two-dimensional photonic-crystal-superlens. Phys. Rev. Lett., 2003, 91: 207401-207404.
    [4] D. R. Fredkin, A. Ron. Left-handed (Negative Index) Composite Material. J. Appl. Phys., 2002, 81: 1753-1855.
    [5] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Tran. Microw. Theory Tech., 1999, 47(11): 2075-2081.
    [6] S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy and S. R. Brueck. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys. Rev. Lett., 2005, 94: 037402(1-4).
    [7] K. C. Huang, M. L. Povinelli and J. D. Joannopoulos. Improved stability of deuterated amorphous silicon thin film transistors. Appl. Phys. Lett., 2004, 85: 543-550.
    [8] R. Marque’s, F. Medina and R. Rafii-EI-Idrissi. Role of bianisotropy in negative permeability and lefthanded materials. Phys. Rev. B, 2002, 65:144440.
    [9] J. D. Maena, R. Marque’s, F. Medina and J. Martel. Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B, 2004, 69:014402.
    [10] D. R. Fredkin and A. Ron. Effectively left-handed negative index composite material, Appl. Phys. Lett., 2002, 81(10):1753-1755.
    [11] A. Alúand N. Engheta. Pairing an Epsilon-negative slab with a Mu-negative slab resonance, tunneling and transparency. IEEE Trans. Antennas. Propagation, 2003, 50: 2558-2562.
    [12] R.W. Zioklowski. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. B, 2004, Oct., 70: 0466608.
    [13] Y. S. Xu. Wave propagation in rectangular waveguide filled with single negative metamaterial slab. Electronics Letters. 2003, Dec., 39(25): 1-2.
    [14] P. Baccarelli, P. Burghignoli and G. Lovat, et al. Surface-wave suppression in a double-negative metamaterial grounded slab. IEEE Antennas Wireless Propag. Lett., 2003, 2(19): 269-272.
    [15] A. Alúand N. Engheta. Mono-modal waveguides filled with a pair of parallel Epsilon- negative (ENG) and Mu-negative (MNG) metamaterial layers. IEEE Trans. Microw. Theory Tech., 2003, 1: 313-316.
    [16] A. Alúand N. Engheta. Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double positive (DPS) layers. IEEE Trans. Microw. Theory Tech., 2004, 52(1):199-210.
    [17] A. Alúand N. Engheta. Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers. J. Appl. Phys., 2005, 97: 094310(1-12).
    [18] H. Cory, A. Barger. Surface-wave propagation along a metamaterial slab. Microwave Opt. Technol. Lett., 2003, 38(5): 392-395.
    [19] B. I. Wu, T. M. Grzegorczyk, Y. Zhang, et al. Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability. J. Appl. Phys., 2003, 93(11):9386-9388.
    [20] I. W. Shadrivov, A. A. Sukhorukov and Y. S. Kivshar. Guided modes in negative-refractive-index waveguides. Phys. Rev. E, 2003,67(5):057602-057602.
    [21] J. A. Kong. Electromagnetic wave interaction with structure negative isotropic media. Progress In Electromagnetics Reserch, 2002, PIER 35: 1-52.
    [22] R. E. Collin. Field Theory of Guided Waves, 2nd [M]. Ed Piscataway, Nj: IEEE Press, 1991.
    [23] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 1996, 76(25):4773-4776.
    [24] M. M. B. Suwailam, Z. Z. Chen. Surface waves on a grounded double-negative (DNG) slab waveguide. Microwave Opt. Technol. Lett., 2005, 44(6):494-498.
    [1] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett, 1996, 76(25): 4773-4776.
    [2] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Low frequency plasmons in thin wire structures. J Phys Condens Matter, 1998, 10: 4785- 4808.
    [3] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech, 1999, 47(11): 2075-2084.
    [4] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negative permeability and permittivity Phys Rev Lett, 2000, 84(18): 4184-4187.
    [5] A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 2001, 292(6): 77-79.
    [6] I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen and S. Ilvonen. BW media-media with negative parameters, capable of supporting backward waves. MicrowaveOpt. Technol. Lett., 2001, 31:129-133.
    [7] D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko and P. Rye. Partial focusing of radiation by a slab of indefinite media. Appl. Phys. Lett., 2004, 84:2244-2246.
    [8] Y. Xiang, X. Dai and S. Wen. Total reflection of electromagnetic waves propagating from an isotropic medium to an indefinite metamaterial. Optics Communications, 2007, 274: 248-253.
    [9] N. H. Shen, Q. Wang, J. Chen, et al. Total transmission of electromagnetic waves at interfaces associated with an indefinite medium. Journal of the Optical Society of America B, 2006, 23: 904-912.
    [10] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah and M. Tanielian. Experimental verification and simulation of negative index of refraction using Snell’s Law. Phys. Rev. Lett., 2003, 90: 107401.
    [11] D. R. Smith, P. Kolinko and D. Schurig. Negative refraction in indefinite media. Journal of the Optical Society of America B, 2004, 21: 1032-1043.
    [12] H. Luo, W. Hu, X.Yi, H. Liu and J. Zhu. Amphoteric refraction at the interface between isotropic and anisotropic media. Opt. Commun., 2005, 254: 353-360.
    [13] W. Yan, L. Shen, L. Ran and J. A. Kong. Surface modes at the interfaces between isotropic media and indefinite media. Journal of the Optical Society of America A, 2007, 24(2): 353-360.
    [14] D. B. Walker, E. N. Glytsis and T. K.Gaylord. Surface mode at isotropic-uniaxial and isotropic-biaxial interfaces. J. Opt. Soc. Am. A, 1998, 15: 248–260.
    [15] Y. Urzhumov and G. Shvets. Extreme anisotropy of wave propagation in two-dimensional photonic crystals. Phys. Rev. E, 2005, 72: 026608.
    [16] R. A. Depine and A. Lakhtakia. Diffraction by a grating made of a uniaxial dielectric magnetic medium exhibiting negative refraction. New J. Phys., 2005, 7: 158.
    [17] Lanndau and E. M. Lifshitz. Electrodynamics of continuous media. Pergamon, New York, 1960, Chap.11.
    [18] V. G. Veselago. The electrodynamics of substances with simultaneously negative values ofεandμ. Soviet Physics USPEKHI, 1968, 10: 509-514.
    [19] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85: 3966-3969.
    [20] J. A. Kong. Electromagnetic Wave Theory. New York: EMW, 2000.
    [21] D. K. Qing and G. Chen. Goos-H(a|¨)nchen shifts at the interfaces between left- and right-handed media. Opt. Lett., 2004, 29: 872-874.
    [22] C. F. Li. Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects. Phys. Rev. Lett., 2003, 91: 133903.
    [23] I. V. Shadrivov, A. A. Zharov and Y. S. Kivshar. Giant Goos-H(a|¨)nchen effect at the reflection from left-handed metamaterials. Appl. Phys. Lett., 2003, 83: 2713-2715.
    [24] A. Puri, J. L. Birman.Goos-Hanchenbeam shift at total internal reflection with application to spatially dispersive media. J. Opt. Soc. Am., 1986, 3(4): 543-549.
    [1] V. M. Agranovich, Y. R. Shen, R. H. Baughman and A. A. Zakhidov. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B., 2004, 69: 165112(1-7).
    [2] A. S. Desyatnikov, E. A. Ostrovskaya, Y. S. Kivshar and C. Denz. Composite band-gap solitons in nonlinear optically induced lattices. Phys. Rev. Lett., 2003, 91(15): 153902(1-4).
    [3] M. Matuszewski1, C. R. Rosberg, D. N. Neshev, et al. Crossover from self-defocusing to discrete trapping in nonlinear waveguide arrays. Optical Society of America, 2006, 14(1): 254-259.
    [4] R. A. Vicencio and M. I. Molina and Y. S. Kivshar. Controlled switching of discrete solitons in waveguide arrays. Opt. Lett., 2003, 28(20): 1942-1944.
    [5] I. V. Shadrivov, N. A. Zharova, A. A. Zharov and Y. S. Kivshar. Defect modes and transmission properties of left-handed bandgap structures. Phys. Rev. B., 2004, 70: 046615(1-6).
    [6] M. I. Molina, R. A. Vicencio and Y. S. Kivshar.Discrete solitons and nonlinear surface modes in semi-infinite waveguide arrays. Opt. Lett., 2006, 31(11): 1693-1695.
    [7] M. Scalora, G. D'Aguanno, M. Bloemer, et al. Dynamics of short pulses and phase matched second harmonic generation in negative index materials. Optical Society of America, 2006, 14(11): 4746-4756.
    [8] M. V. Gorkunov, S.A. Gredeskul, I. V. Shadrivov and Y. S. Kivshar. Effect of microscopic disorder on magnetic properties of metamaterials. Phys. Rev. E., 2006, 73: 056605(1-8).
    [9] M. V. Gorkunov, I. V. Shadrivov and Y. S. Kivshar. Enhanced parametric processes in binary metamaterials. Phys. Rev. Lett., 2006, 88: 071912(1-3).
    [10] I. Babushkin, A. Husakou, J. Herrmann and Yuri S. Kivshar. Frequency-selectiveself-trapping and supercontinuum generation in arrays of coupled nonlinear waveguides. Optical Society of America, 2007, 15(19): 11978-11983.
    [11] S. Longhi. Gap solitons in nonlinear self-focusing metamaterials. Quantum Electronics and Laser Science Conference, 2005, 1405-1407.
    [12] E. A. Ostrovskaya, T. J. Alexander and Y. S. Kivshar. Generation and detection of matter-wave gap vortices in optical lattices. Phys. Rev. A., 2006, 74: 023605(1-7).
    [13] A. Volyar, V. Shvedov, T. Fadeyeva, et al. Generation of single-charge optical vortices with an uniaxial crystal. Optical Society of America, 2006, 14(9): 3724-3729.
    [14] S. M. Saltiel and Y. S. Kivshar. Group-velocity-matched multistep cascading in nonlinear photonic crystals. Opt. Lett., 2006, 31(22): 3321-3323.
    [15] I. Shadrivova and A. A. Zharov. Interaction of vector solitons with a nonlinear interface. Optics Communications, 2003, 216: 47-54.
    [16] Y. S. Kivshar, S. Flach. Focus issue: Nonlinear Localized Modes: Physics and Applications Introduction: Nonlinear localized modes. Chaos, 2003, 13(2): 586-587.
    [17] A. E. Miroshnichenko, M. I. Molina and Y. S. Kivshar. Localized modes and bistable scattering in nonlinear network junctions. Phys. Rev. E., 2007, 75: 046602(1-5).
    [18] I. L. Garanovich and A. A. Sukhorukov. Nonlinear directional coupler for polychromatic light. Opt. Lett., 2007, March, 32(5): 475-477.
    [19] A. A. Sukhorukov and Y. S. Kivshar. Nonlinear guided waves and spatial solitons in a periodic layered medium. J. Opt. Soc. Am. B, 2002, 19(4): 772-781.
    [20] I. V. Shadrivov. Nonlinear guided waves and symmetry breaking in left-handed waveguides. Photonics and Nanostructures—Fundamentals and Applications, 2004, 2:175-180.
    [21] I.V. Shadrivov, A. A. Zharov, N. A. Zharova and Y. S. Kivshar. Nonlinear left-handed metamaterials. RADIO SCIENCE, 2005, 40: RS3S90(1-10).
    [22] A. A. Zharov, I. V. Shadrivov and Y. S. Kivshar. Nonlinear properties of left-handed metamaterials. Phys.Rev.Let., 2003, 91:037401(1-4).
    [23] M. Lapine, M. Gorkunov and K. H. Ringhofer. Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements. Phys. Rev. E., 2003, 67: 065601(1-4).
    [24] H. Usui1, H. Matsumoto and R. Gendrin. Numerical simulations of a three-wavecoupling occurring in the ionospheric plasma. Nonlinear Processes in Geophysics, 2002, 9: 1–10.
    [25] A. A. Zharov, N. A. Zharov, I. V. Shadrivov and Y. S. Kivshar. Subwavelength imaging with opaque nonlinear left-handed lenses. Appl. Phys. Lett., 2005, 87: 091104(1-4).
    [26] I. V. Shadrivov, A. A. Zharov and Y. S. Kivshar. Second-harmonic generation in nonlinear left-handed metamaterials. Optical Society of America, 2006, 23(3): 529-534.
    [27] J. R. Salgueiro, A. H. Carlsson, E. Ostrovskaya and Y. Kivshar. Second-harmonic generation in vortex-induced waveguides. OPTICS LETTERS, 2004, 29(6): 593-595.
    [28] M. Lapine and M. Gorkunov. Three-wave coupling of microwaves in metamaterial with nonlinear resonant conductive elements. Phys. Rev. E., 2004, 67: 066601(1-8).
    [29] M. W. Feise, I. V. Shadrivov and Y. S. Kivshar. Tunable transmission and bistability in left-handed band-gap structures. Phys. Rev. Lett., 2004, 85: 1451-1453.
    [30] I. V. Shadrivov and Y. S. Kivshar. Spatial solitons in nonlinear left-handed metamaterials. J. Opt. A: Pure Appl. Op., 2005, 7: 568-572.
    [31] J. B. Pendry, A. J. Holden, W J. Stewart, et al. Extremely low frequency plasmons in thin wire structures. Phys. Rev. Let., 1996, 76: 4773-4776.
    [32] M. Gorkunov, M. Lapine, E. Shamonina, and K.H. Ringhofer. Effective magnetic properties of a composite material with circular conductive elements. Eur. Phys. J. B, 2002, 28: 263-269.
    [33]黄克智,薛明德,陆明万,张量分析,清华大学出版社, 1986.
    [34] J. M. Manley, H. E. Rowe. General energy relations in nonlinear reactance. Proc. IRE, 1959, 47: 2115-2116.
    [35]费浩生,非线性光学,高等教育出版社, 1990: 88.
    [36] W. Ling, H. Wang. Nonlinear surface wave generation in a planar waveguide structure. J. Appl. Phys., 1984, 55 (11): 3956-3960.
    [37] J. R. Melcher. Electrohydrodynamic and magnetohydrodynamic nonlinear surface waves. Phys. Fluids, 1961, 4:1307-1343.
    [38] D. Mihalache, D. Mazilu, D. Delion. Propagation and stability of nonlinear surface waves. Phys. Rev. A, 1992, 46(7): 4449-4452.
    [39] G. Brodin, J. Lundberg. Nonlinear surface waves in a plasma with a diffuse boundary. Phys. Plasma, 1994, 1(1): 96-102.
    [40]王兴林,王奇,施解龙等,左手系材料界面上的非线性TE电磁波,光子学报, 2006, 1(35), 69-73.
    [41] V. E. Zakharov, A. B. Shabat. Exact theory of two-dimensional self focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Phys. JETP, 1972, 34: 62-69.
    [1] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev.Lett., 1996, 76: 4773-4776.
    [2] J. B. Pendry. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory and Technology, 1999, 47: 2075-2084.
    [3] R. A. Shelby, D. R. Smith and S. Schultz. Experimental Verification of a Negative Index of Refraction. Science, 2001, 292: 77-79.
    [4] R. A. Shelby, D. R. Smith, N. S. C. Nemat et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett., 2001, 78: 489-491.
    [5] D. R. Smith, W. Padilla, D. Vier, et al. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett., 2000, 84: 4184-4187.
    [6] K. Aydin, I. Bulu, K. Guven, et al. Investigation of magnetic resonances for different split-ring resonator parameters and designs. New Journal of Physics, 2005, 7: 168(1-15).
    [7] N. Katsarakis, T. Koschny, and M. Kafesaki. Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials. Phys. Rev. B, 2004, 70: 201101(1-4).
    [8] M. Kafesaki, T. Koschny, R. S. Penciu, et al. Left-handed metamaterials: detailed numerical studies of the transmission properties. J. Opt. A: Pure Appl. Opt., 2005, 7:S12–S22.
    [9] I. V. Shadrivova, A. N. Reznik, Y. S. Kivshar. Magnetoinductive waves in arrays of split-ring resonators. Physica B, 2007, 394: 180-183.
    [10] I. V. Shadrivov, D. A. Powell, S. K. Morrison and Y. S. Kivshar. Scattering of electromagnetic waves in metamaterial superlattices. Appl. Phys. Lett., 2007, 90, 201919(1-3).
    [11] B. D. F. Casse, H. O. Moser, L. K. Jian, et al. Fabrication of 2D and 3D Electromagnetic Metamaterials for the Terahertz Range. Journal of Physics:Conference Series, 2006, 34: 885–890.
    [12]刘亚红,罗荣春,赵晓鹏,微波左手材料及其应用前景,功能材料, 2006, 37(3), 339-344.
    [13]艾芬,白杨,徐芳等,基于铁氧体基板的开口谐振环的可调微波左手特性研究,物理学报, 2008, 57(7), 4189-4193.
    [14]罗春荣,康雷,赵乾等,非均匀缺陷环对微波左手材料的影响,物理学报, 2005, 54(4), 1607-1612.
    [15]康雷,赵乾,赵晓鹏,负磁导率材料的微波反射行为,自然科学进展, 2005, 15(10), 1271-1275.
    [16] M. Kafesaki, T. Koschny, R. S. Penciu, et al. Left-handed metamaterials: detailed numerical studies of the transmission properties. 2005, J. Opt. A: Pure Appl. Opt., 7(2): S12-S22.
    [17] V. G. Veselago. The electrodynamics of substances with simultaneously negative values ofεandμ. Sov. Phys. Uspekhi, 1968, 10: 509-514.
    [18] T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis. Effective medium theory of left-handed materials. Phys. Rev. Lett., 2004, 93:107402(1-4).
    [19] C. Caloz, T. Itoh. Electromagnetic metamaterials: Transmission line theory and microwave applications. New York: Wiley, 2004, 4-9.
    [20] D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phy. Rev. B, 2002, 65: 195104(1-5).
    [21] R. W. Ziolkowski. Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propagat., 2003, 51(7): 1516-1529.
    [22] X. Chen, T. M. Grzegorczyk, B. I. Wu, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E., 2004, 70: 016608(1)-016608 (7).
    [23] D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E, 2005, 71: 036617(1)-036617(11).
    [24]张富利,赵晓鹏,谐振频率可调的环状开口谐振器结构及其效应,物理学报, 2007, 56(8), 4611-4617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700