用户名: 密码: 验证码:
共轭碳材料与锂的相互作用及氢吸附的从头算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,世界上大部分国家能源供应不足,所以与能源相关的电极材料、储氢材料等功能材料的研究一直受到人们的关注。在我们和前人的实验事实以及理论研究的基础上,本文使用量子化学计算方法对石墨片、富勒烯、碳纳米管等共轭碳材料与金属锂、氢原子、氢分子的相互作用进行了一系列的理论计算,为锂离子电池负极材料的修饰提供了理论支持并得到实验验证,还对碳材料储氢机理提出了改进建议,受到了有关单位的重视。现将主要内容和创新之处概括如下:
     1. 金属 Li, Ca, Al 和芳香烃 C6H6, C10H8,C13H9 体系的相互作用表现出许多不同之处。在 MP2/6-31G(d,p)水平下,通过观察 FMO 分布, 金属和最近 C 原子距离 dM-C, 结合能, 金属上分布的电荷,发现金属 Li, Ca, Al 和 C6H6, C10H8是弱相互作用, 类似物理吸附, 而和C13H9 是强相互作用, 类似化学吸附。相互作用的本质与金属价键轨道形状以及共轭体系 π电子分布有关。由于 Al 的纺锤形 3p 价轨道, Al 偏移到 C13H9的边缘 C 上和其电子云达到最大重叠,Li, Ca 的球形 2s, 4s 价轨道则和 C13H9的 LUMO+1 的中心 C 原子上的孤立电子云达到最大重叠。MP2 可以合理地解释弱相互作用,而 HF 和 B3LYP 由于不能给出好的能量和几何结构,都不适合描述金属和 C6H6,C10H8的弱相互作用。
     2. C60 掺杂到 PAS 中做锂离子电池负极材料可以提高电池的循环寿命,减小电池的不可逆容量损失,归功于 C60完美的球形结构,高度的对称性。当锂离子在正负极间嵌脱时,C60 和锂离子之间以微弱的作用相结合,且锂离子一般在 C60 的外部吸附和脱附。这种微弱的相互作用有利于锂离子的嵌入与脱嵌。与 PAS 相比,C60 和锂离子的结合能小, 形成复合物后能隙变化也较小, 可见锂离子与 C60分开或结合并未给 C60造成太大影响,其本质原因是球形结构让它保持着化学稳定性,所以C60承受锂离子多次嵌入与脱嵌的能力要比PAS更好。另外,C60与 SEI 膜的结合能虽然比 PAS 小约 3.1eV,但其 13.5eV 的结合能在温和的电池内部环境中已可以使 C60与 SEI 膜结合得很牢固,在多次充放电过程中不致引起 SEI膜的剥落。所以,理论上把 C60掺杂到 PAS 中是可以改善电池容量和延长电池循环寿命的。
     3.我们用密度泛函第一原理系统研究了锂原子吸附在(n, n)摇椅式 SWNTs(n=5-10)和(n,0)锯齿型 SWNTs(n=7-12)的相互作用。研究表明,这些锂原子与碳纳米管的六元环中心上方结合。锂和(n, 0) SWNTs 的结合能 Eb在 2.00 eV-2.66 eV 之间,高于锂和(n, n) SWNTs 的结合能(1.80 eV-1.95 eV)。(7, 0) SWNT 与锂的结合能最大,达到 2.66eV。Eb随着管径的增加而减小。分析碳管的前线分子轨道(FMO),发现主要是因为(n, 0) SWNTs 上的π键缺陷较多,使(n, 0) SWNTs 的反应性高于了(n, n) SWNTs。因此,小半径,大曲率的(n, 0) SWNTs很有希望成为储氢和吸附锂原子的材料。
     4. 我们使用 B3LYP 和 MP2 方法, 在经济基组水平下, 研究了 H2 和 Li 与三个芳香化合物 C6H6, C10H8, C13H9不同位置上的相互作用, 得出结论:Li 与芳香化合物的相互作用较弱, 而 H2和它们几乎没有什么作用。C13H9的中心 C 原子比六元环中心更有效。当芳香化
    
    合物掺杂了 Li 以后, H2与之结合能力有所改善, 提高了至少一个数量级。通过 Li, H2能稳定吸附在 C13H9上, 并且只有适度的结合能(2.5kcal·mol-1), 有利于 H2在材料上面的吸附与解吸循环。 5. 我们运用B3LYP/6-31G(d, p)方法,研究了一系列富勒烯C20, C24, C28, C30, C32, C36 和C60 的曲率对它们的 C 原子π键缺陷的影响。结果表明,对于同一富勒烯分子,它表面上的 C 原子和 H 的结合能的顺序基本上是 BEC555 > BEC556 > BEC566,C 原子的活性顺序是C555>C556>C566;对于一系列的富勒烯,从 C20 到 C60, 平均结合能在总体上是递减的。所以,富勒烯的 C 原子曲率越大,其活性越高,与 H 结合的能力越强。这样的 C 原子π键缺陷的修饰能力也越高。 论文的特点是能够结合一些实验结果,提出设想,展开理论计算研究。在理论计算的基础上,再进行一些实验验证。这对于一些实验事实的解释和材料功能化前景的预测具有指导意义。较好地做到了理论与实践的相互结合和互相促进。当第 4 部分的工作发表在 CPL(Chemical Physics Letters)期刊上后,曾经引起了国外的一个研究小组(High TechnologyMaterials Alert)的注意,来过信函(见附件)询问我们的工作进展,并提出合作,这说明我们的工作是很有意义的。
At present, resources are insufficient in most courtries, so that great attentions arealways focused on functional materials, such as electrode materials and hydrogen storagematerials. On the basis of our/previous experimental results and theoretical investigations, wecarried out series of theoretical calculations on the interactions of conjugated carbon materialswith lithium or/and hydrogen. The thesis provided theoretical supports for anode materialmodification of lithium ion battery and gave improved suggestions for the hydrogen storagemechamism of carbon materials. The contents and innovations are summaried as follow:
    1. The interactions of metal atoms(Li, Ca, Al)with aromatic hydrocarbon systems(C_6H_6,C_(10)H_8, C_(13)H_9)show a number of distinctive features. Li, Ca, and Al interact only weakly withbenzene and naphthalene, indicating physisorptions, whereas these metal atoms form a strongcovalent M-C bond with perinaphthene, showing chemisorptions, as revealed in calculations ofthe FMO distribution, M?C distance, binding energies, and charge on metal atoms using MP2with a 6-31G(d, p) basis set. The nature of the interactions relates to the valence orbital type ofmetal and the electron distribution of the conjugated systems of the aromatic hydrocarbons. Dueto the spindly-shaped 3p valence orbital, an Al atom favors the adsorption at the edge of theC_(13)H_9, whereas for a Li and a Ca atom, their ball-shaped 2s/4s valence orbitals overlap with theLUMO+1 of C_(13)H_9, which has a distinctive electron cloud on the central C atom. MP2 hasfurther been shown to reasonably account for weak interactions, whereas HF and B3LYP areboth unsuitable to describe the weak interaction of metal with benzene and naphthalene due totheir poor energetic and geometric results.
    2. As for the reason why C60 doping into PAS anode material could improve the performanceof lithium ion battery, we could make a summary by one sentence that the improvement is ownto the perfect spherical structure and high symmetry of C_(60). During the charge or dischargeprocess, Li+ is inclined to form exohedral complexes above the hexagon center of PAS, and thehexagon and pentagon center of C-(60). The interaction between lithium and the anode materials(PAS doped with C_(60)) is weak ionic. The order of BE(C_(60)Li+(H)) < BE(C_(60)Li+(P))     
    protect the anode material from eroding in comparison with the physical constants of C60. Theclosely equal Eg of the composites C60SEI and PASSEI further ensure that they could safeguardthe security of inside anode material together.3. In this work, a systematic study of lithium adsorbed on the surface of (n, n) armchair (n=5-10)and (n, 0) zigzag (n=7-12) SWNTs has been performed by means of first-principle densityfunctional theory. The exterior surface of SWNTs, especially small radius (large curvature) (n, 0)zigzag SWNTs, presents strong attraction to lithium. The existence of a “π-bond defect” on thehexagon center, entitles (n, 0) SWNTs effective reactivity in comparison with (n, n) SWNTs.Lithium can be absorbed on the surface of (7, 0) SWNT with the largest bind energy of 2.66eV.Hence (n, 0) SWNTs with the large curvature (small radius) are promising to be the candidatematerial for storage hydrogen and adsorbing the lithium atom.4. Simulations of H2 and Li interacting at different sites on three aromatic compounds C6H6,C10H8 and C13H9 usi
引文
[1]Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
    [2]Iijima S, Ichihashi T. Single shell carbon nanotubes of 1nm diameter[J]. Nature, 1993, 363: 603-605.
    [3]Ebbesen T W, Ajayan P M. Large scale synthesis of carbon nanotubes[J]. 1992, Nature, 358: 220-222.
    [4]Iijima S, Ichihashi T. Single shell carbon nanotubes of 1nm diameter[J]. Nature, 1993, 363: 603-605.
    [5]Bethune D S, Kiang C H, Devries M S, et al. Cobalt catalyzed growth of carbon nanotubes with singleatomic layer walls[J]. Nature, 1993, 363: 605-607.
    [6]Journet C, Maser Wk, Bernier P, et al. Large scale production of single walled carbon nanotubes by theelectric arc technique[J]. Nature, 1997, 388: 756-758.
    [7]Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition[J]. J CrystGrowth, 1976, 32: 335-349.
    [8]Cheng H M, Li F, Su G, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by thecatalytic pyrolysis of hydrocarbons[J]. Appl Phys Lett, 1998, 72: 3282-3284.
    [9]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes Science[J]. 1996, 273:483-487.
    [10]朱宏伟, 吴德海, 徐才录, 碳纳米管[M], 机械工业出版社, 2003 年, 第一版, 266.
    [11]Kroto H W, Heath J R, O’Brian S C, et al. C60: bukminsterfullerene[J]. Nature, 1985, 318(6042): 162-163.
    [12]Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430):603-605.
    [13]Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J].Nature, 1997, 386: 377-379.
    [14]Kuznetsova A, Mawhinney D B, Naumenko V, et al. Enhancement of adsorption inside of single-wallednanotubes: opening the entry ports[J]. Chem Phys Lett, 2000, 321(3-4): 292-296.
    [15]Brown C M, Yildirim T, Neumann D A, et al. Quantum rotation of hydrogen in single-wall carbonnanotubes[J]. Chem Phys Lett, 2000, 329(3-4): 311-316.
    [16]Hirscher M, Becher M, Haluska M, et al. Hydrogen storage in sonicated carbon materials[J]. Appl. Phys. A,2001, 72(2): 129-132.
    [17]Ye Y, Ahn C C, Witham C, et al. Hydrogen adsorption and cohesive energy of single-walled carbonnanotubes[J]. Appl Phys Lett, 1999, 74(16): 2307-2309.
    [18]Kelly K F, Chiang I W, Mickelson E T, et al. Insight into the mechanism of sidewall functionalization ofsingle-walled nanotubes: an STM study[J]. Chem Phys Lett, 1999, 313(3-4): 445-450.
    [19]Chen P, Wu X, Lin J, et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure andmoderate temperatures[J]. Science, 1999, 285(5424): 91-93.
    
    [20]Yang R T. Hydrogen storage by alkali-doped carbon nanotubes-revisited[J]. Carbon, 2000, 38(4): 623-626.
    [21]Zhu H W, Chen A, Mao Z Q, et al. The effect of surface treatments on hydrogen storage of carbonnanotubes[J]. J Mater Sci Lett, 2000, 19(14): 1237-1239.
    [22]Cao A, Zhu H W, Zhang X F, et al. Hydrogen storage of dense-aligned carbon nanotubes[J]. Chem PhysLett, 2001, 342(5-6): 510-514.
    [23]Fan Y Y, Liao B, Liu M, et al. Hydrogen uptake in vapor-grown carbon nanofibers[J]. Carbon, 1999, 37:1649-1652.
    [24]Park C, Anderson P E, Chambers A, et al. Further studies of the interaction of hydrogen with graphitenanofibers[J]. J Phys Chem B, 1999, 103: 10572-10582.
    [25]Darkrim F, Levesque D. Monte Carlo simulations of hydrogen adsorption in single-walled carbonnanotubes[J]. J Chem Phys, 1998, 109(12): 4981–4984.
    [26]Wang Q, Johnson J K. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubesand idealized carbon slit pores[J]. J Chem Phys, 1999, 110(1): 577–586.
    [27]Simonyan V V, Diep P, Johnson J K. Molecular simulation of hydrogen adsorption in chargedsingle-walled carbon nanotubes[J]. J Chem Phys, 1999, 111(21): 9778–9783.
    [28]Williams K A, Eklund P C. Monte Carlo simulations of H2 physisorption in finite-diameter carbonnanotube ropes[J]. Chem Phys Lett, 2000, 320 (3-4): 352-358.
    [29]Jeloaica L, Sidis V. DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphitesurface[J]. Chem Phys Lett, 1999, 300(1-2): 157-162.
    [30]Lee S M, Lee Y H. Hydrogen storage in single-walled carbon nanotubes[J]. Appl Phys Lett, 2000, 76(20):2877–2879.
    [31]Cheng H, Pez G P, Cooper A C. Mechanism of hydrogen sorption in single-walled carbon nanotubes[J]. JAm Chem Soc, 2001, 123(24): 5845-5846.
    [32]Ma Y C, Xia Y Y, Zhao M W, et al. Effective hydrogen storage in single-wall carbon nanotubes[J]. PhysRev B, 2001, 63 (11): 115422.
    [33]Dubot P, Cenedese P. Modeling of molecular hydrogen and lithium adsorption on single-wall carbonnanotubes[J]. Phys Rev B, 2001, 63(24): 241402.
    [34]Seifert G, Kohler T, Frauenheim T. Molecular wires, solenoids, and capacitors by sidewallfunctionalization of carbon nanotubes[J]. Appl Phys. Lett, 2000, 77(9): 1313–1315.
    [35]Bauschlicher Jr C W. Hydrogen and fluorine binding to the sidewalls of a (10,0) carbon nanotube[J]. ChemPhys Lett, 2000, 322(3-4): 237–241.
    [36]Bauschlicher Jr C W. High coverages of hydrogen on a (10,0) carbon nanotube[J]. Nano Lett, 2001, 1(5):223–226.
    [37]Froudakis G E. Hydrogen interaction with single-walled carbon nanotubes: A combinedquantum-mechanics/molecular-mechanics study[J]. Nano Lett, 2001, 1(4): 179–182.
    [38]Dapprich S, Komaromi I, Byun K S, et al. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives[J]. J Mol Struct, 1999,
    461:1–21.
    
    [39]Tada K, Furuya S, Watanabe K. Ab initio study of hydrogen adsorption to single-walled carbonnanotubes[J]. Phys Rev B, 2001, 63: 155405.
    [40]Shiraishi M, Takenobu T, Yamada A, et al. Hydrogen storage in single-walled carbon nanotube bundlesand peapods[J]. Chem Phys Lett, 2002, 358: 213-218.
    [41]Schimmel H G, Nijkamp G, Kearley G J, et al. Hydrogen adsorption in carbon nanostructures compared[J].Mat Sci Eng B-Solid, 2004, 108: 124-129.
    [42]Froudakis G E. Why Alkali-Metal-Doped Carbon Nanotubes Possess High Hydrogen Uptake[J]. Nano Lett,2001, 1(10): 531-533.
    [43]Jin C -W, Ichimura K, Imaeda K, et al. Interaction of fullerenes and carbon nanotubes with diatomicmolecules[J]. Synth Met, 2001, 121: 1221-1222.
    [44]Chan S P, Chen G, Gong X G, et al. Oxidation of carbon nanotubes by singlet O2[J]. Phys Rev Lett, 2003,90 (8): Art. No. 086403.
    [45]Bauschlicher Jr C W, Ricca A. Binding of NH3 to graphite and to a (9,0) carbon nanotube[J]. Phys Rev B,2004, 70(11): 115409.
    [46]Kroto H W, Heath J R, O’Brien S C, et al. C60-bukminsterfullerene[J]. Nature, 1985, 318 (6042): 162-163.
    [47]Kratschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60: a new form of carbon[J]. Nature, 1990, 347(6291): 354-358.
    [48]Kubozono Y, Fujiki S, Hiraoka K, et al. Raman study of Cs3C60 under ambient pressure[J]. Chem PhysLett, 1998, 298(4-6): 335-340.
    [49]Hrusak J, Bohme D K, Weiske T, et al. Ab initio MO calculation on the energy barrier for the penetrationof a benzene-ring by a helium atom-model studies for the formation of endohedral He@C60+-complexes byhigh-energy bimolecular reactions[J]. Chem Phys Lett, 1992, 193 (1-3): 97-100.
    [50]Bug A L R, Wilson A, Voth G A. Nonlinear vibrational dynamics of a neon atom in fullerene(C60)[J]. JPhys Chem, 1992, 96 (20): 7864-7869.
    [51]Christian J F, Wan Z M, Anderson S L. Ne++C60 collisions: the dynamics of charge and energy-transfer,fragmentation, and endohedral complex formation[J]. J Chem Phys, 1993, 99 (5): 3468-3479.
    [52]Caraiman D, Koyanagi G K, Scott L T, et al. Fullerometallic Ion Chemistry: Reactions of C60Fe+ andC20H10Fe+ in the Gas Phase[J]. J Am Chem Soc, 2001, 123(35): 8573-8582.
    [53]Hu Y H, Ruckenstein E. Endohedral complexes of C-58 cage with H-2 and CO[J]. Chem Phys Lett, 2004,390 (4-6): 472-474.
    [54]Holleman I, vonHelden G, Olthof E H T, et al. Rovibrational motion of CO in solid C60[J]. Phys Rev Lett,1997, 79 (6): 1138-1141.
    [55]Heath J R, O’Brien S C, Zhang Q, et al. Lanthanum complexes of spheroidal carbon shells[J]. J Am ChemSoc, 1985, 107 (25): 7779-7780.
    
    [56]Cioslowski J. Endohedral chemistry: electronic structures of molecules trapped inside the C60 cage[J]. JAm Chem Soc, 1991, 113 (11): 4139-4141.
    [57]郝春雁,刘子阳,郭兴华,等. 笼内金属富勒烯研究进展[J]. 化学通报,1997(6): 9-14.
    [58]马晨生,李慎敏,杨忠志. C60 的单原子碱金属化合物几何结构规律的量子化学研究[J]. 化学学报,1994,52: 847-852.
    [59]曹阳,冯建文,滕有西,等. C60 掺杂物超导性 EHMO 晶体轨道研究[J]. 化学学报, 1997, 55: 105-109.
    [60]Suzuki S, Kushida, M, Amamiya S, et al. Density functional study on geometry and electronic structure ofEu@C60[J]. Chem Phys Lett, 2000, 327(5-6): 291-298.
    [61]葛茂发,封继康,崔勐,等. N@C60 的几何结构和振动光谱的理论研究[J]. 高等学校化学学报,1999,20(3): 458-460。
    [62]Lu J, Zhang X W, Zhao X G. Electronic structures of endohedral N@C60, O@C60 and F@C60[J]. ChemPhys Lett, 1999, 312(2-4): 85-90.
    [63]许宗荣,高艳玲. C60 笼内内陷粒子的运动[J]. 化学学报,1996,54: 427-430.
    [64]Hu Y H, Ruckenstein E. Endohedral complexes of C58 cage with H2 and CO[J]. Chem Phys Lett, 2004,390: 472–474.
    [65]严继民,朱传宝. C60 笼中一些小分子的笼中态[J]. 中国科学(B),2000,30(2): 97-102.
    [66]朱传宝,严继民. (Alkali@C60)中碱金属与 C60 笼的相互作用研究[J]. 科学通报,1995,40(14):1276-1278.
    [67]Yan J M, Zhu C B. Investigation of interaction in C60 embedded complexes (X@C60)[J]. J Mol Struct(THEOCHEM), 1995, 358: 167-172.
    [68]Yan J M, Zhu C B. Investigation of interaction in C60 embedded complexes (X@C60) at a series of radialpositions by Buckingham potential function[J]. J Comput Chem 1996, 17: 1624-1632.
    [69]朱传宝,严继民. 内嵌复合物 X@C60 中相互作用的变化规律与键本质[J]. 物理化学学报,1996,12(9):796-803.
    [70]Xu Z J, Zhu C B, Yan J M. Energy relationship and polarization of C60 cage in the endohedral complexes(X@C60)[J]. Chinese Journal of Chemistry, 1998, 16(3): 196-208.
    [71]Ostling D, Rosén A. Electronic structure and optical properties of bare and Li, Na, K and Ca coated C60molecule[J]. Chem Phys Lett, 1997, 281(4-6): 352-359.
    [72]田维全, 封继康, 葛茂发, 等. C60O3 的结构和电子光谱的理论研究[J]. 高等学校化学学报,1998,19(3):446-450.
    [73]Shang Z F, Pan Y M, Cai Z S, et al. An AM1 study of the reaction of ozone with C60[J]. J Phys Chem A,2000, 104 (9): 1915-1919.
    [74]Batirev I G, Lee K H, Lee W R, et al. Full-potential linear muffin-tin orbital calculation of atomic forcesand optimization of atomic structure of fullerene epoxide derivatives C60O and C60O2[J]. Chem Phys Lett,1996, 262 (3-4): 247-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700