用户名: 密码: 验证码:
储存环全局数据关联分析的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
束流测量系统是加速器调试、运行和研究中最重要的工具,它主要由测量束团不同参数的多个独立子系统联合构成。传统束测数据分析过程是将每个探头作为独立设备分别处理,以完成不同时刻、位置的不同束流参数进行多次测量。得到的原始信号不会得到有效的利用而仅仅提取出其中的部分信息以进行简单的加减法,获得单个测量值。但是单个探头数据质量由其自身的性能决定,受限与设备研制水平和探头加工状况,并且单个探头测量结果无法进行置信校验,难以确认探头中的信号是由于故障产生的,还是受到噪声干扰,或者甚至是真实的需要关注的束流行为。
     本文的物理基础是将整个束测系统作为一个多探头的超级设备,各类传统意义上的探头获得的原始信号对应同一次测量值,通过相关分析给出最终的测量结果,相当于将加速器特征函数(β函数、η函数、传输矩阵等)作为目标函数,对所有探头采集的原始数据进行拟合,可以有效地提高原始信息的利用率、提高输出信息的精度、可靠性及可用性。
     研究过程中我们以带电粒子横向运动方程、束团电荷量指数衰变规律、束团分布与束团寿命的依赖关系等作为约束条件,以MIA分析方法为主,对加速器全局束测数据的不同相关分析方法进行了理论及实验研究。以上海光源为应用对象,建立了全局束测数据仓库,对供光运行期间的束流数据进行了累积,在此基础上对束流位置、电荷量、截面尺寸等多种参数的关联分析方法进行了离线的实验研究,为在线运行作准备,并将关联分析方法的应用拓展到了逐束团和逐圈数据的分析领域。
     在上海光源上完成的束流实验结果表明,基于BPM逐圈数据的在线MIA分析方法可实时测定加速器β函数及色散函数,可用于在线诊断BPM探头故障;基于BPM和信号及DCCT信号的相关函数分析方法,可以明显地提高BPM和信号测量束流流强的精度;基于束团横向尺寸和束团托歇克寿命的关联分析,验证了托歇克因子作为束流运行稳定性指标的可行性,基于此在国际上首次提出采用托歇克因子作为加速器运行稳定性的在线监测指标;基于逐束团逐圈位置数据的MIA分析,可有效地提高数据信噪比,使示波器IOC在束流不稳定性分析中的应用成为可能,在此基础上对注入过程中的束团瞬态行为进行了分析,首次完成了注入磁铁漏场的原位分析重建。
     全局束测数据关联分析方法的应用可以在不升级硬件系统的基础上,有效地拓展传统束测系统的应用范围,提高数据测量精度,进一步提升加速器束流测量系统的性能。
Beam diagnostics system is one of the most important components of a particle acceleratorduring the commissioning, the operation and the machine study. It consists of severalsub-systems which measure various parameters of the bunches, including the beam currentmeasurement, the beam position measurement and the bunch size measurement systems.
     Traditionally,eachinstrumentistreatedindividuallysothatdiferentbeamparametersat diferent moments and on diferent locations could be measured continuously. Onlyparts of the raw signals would be used to obtain the resultant measurement by applyingsimple arithmetic operations. The downside is obvious: the precision of the measurementis determined by the probe and its corresponding electronics, which are limited by theelectronics development and the manufacturing of the probe. Even probes of the same typemight have diferent mismatching tolerances and the confdential intervals could hardlybe obtained based on the results of the measurements. Hence, one could not easily tellthe vibration in the signal is due to the malfunction, the disturbance of other local noisesources or the actual beam activities.
     This article focuses on the physics that the whole beam diagnostics system could beregarded as a super device with enormous probes. The signals from various traditionalprobes are diferent aspects of a single measurement procedure. The correlation analysis ofthe overall signals fts the characteristic function such as the function and the dispersionfunction to the data, which would efectively increase the usage of the original informationand promote the accuracy, reliability and feasibility of the output results.
     The transverse motion of the charged particles, the exponential damping of the bunchcharge and the relationship between the bunch distribution and its lifetime are combinedas the constraint conditions during the theoretical and experimental correlation analysis.Meanwhile, theModel-IndependentAnalysis(MIA)methodwouldbeusedaswellasotheranalysismethodsonthestorageringoftheShanghaiSynchrotronRadiationFacility(SSRF.)A global warehouse keeps the beam diagnostics data and other essential informationaccumulating, and bunch parameters—such as positions, charges and sizes—would bestudied ofine before everything goes real time.
     The experiments in SSRF show that the applications of the beam diagnostics systemcould be widen by using the correlation analysis without upgrading the hardware. MIAcould simultaneously measure thefunction and the dispersion function and locate the BPM malfunctions. The correlation between the sum signals of the BPMs and the DCsignal of the DCCT could signifcantly improve the resolution of the sum signals inDC measurements. The analysis of the transverse beam sizes and the beam lifetimeconfrmstherelationbetweentheTouschekfactorandthebeamstability. Andthemagneticfeld of the injector could be reconstructed by analyzing the transient motions in thebunch-by-bunch data.
引文
[1] J. Irwin et al., Model-independent beam dynamics analysis, Physical Review Let-ters82(8):1684–1687(1999)(DOI:10.1103/PhysRevLett.82.1684)
    [2] C. xi Wang, PhD dissertation, Stanford University, Stanford, CA94309, US,(1999).
    [3] C. xi Wang, V. Sajaev, and C.-Y. Yao, Phase advance and beta function measure-mentsusingmodel-independentanalysis, PhysicalReviewSpecialTopics—Accel-erators and Beams6:104001(2003)(DOI:10.1103/PhysRevSTAB.6.104001)
    [4] C. xi Wang and R. Calaga, Transverse coupling measurement using SVD modesfrom beam histories In [74], pp.1470–1472.
    [5] C. xi Wang, Untangling mixed modes in model-independent analysis of beam dy-namics in circular accelerators, Physical Review Special Topics—Acceleratorsand Beams7:114001(2004a)(DOI:10.1103/PhysRevSTAB.7.114001)
    [6] C. xi Wang, Techniques to extract physical modes in model-independent analysisof rings In [74], pp.1473–1475.
    [7] X. Huang, S. Y. Lee, E. Prebys, and R. Tomlin, Application of independent compo-nent analysis to Fermilab booster, Physical Review Special Topics—Acceleratorsand Beams8:064001(2005b)(DOI:10.1103/PhysRevSTAB.8.064001)
    [8] J. Irwin et al., Model-independent analysis with BPM correlation matrices In [75],pp.1644–1646.
    [9] J. Irwin et al., Transverse wakefeld efect measurement via model-independentanalysis In [76], pp.478–480.
    [10] C. xi Wang, J. Irwin, and Y. T. Yan, Computation of nonlinear one-turn maps frommeasurement with model-independent analysis In [77], pp.363–365.(DOI:10.1109/PAC.1999.795706)
    [11] C. xi Wang and Y. T. Yan, Beamline model verifaction using model-independentanalysis In [78], pp.151–154.
    [12] Y. Yan, Storage ring optics measurement, model, and correction, ICFA Beam Dy-namics Newsletter42:71–87(2007)
    [13] Y. Cai, J. Irwin, M. Sullivan, and Y. T. Yan, Application of model-independentanalysis to PEP-II rings In [79], pp.3555–3557.(DOI:10.1109/PAC.2001.988176)
    [14] Y. Yan, Y. Cai, J. Irwin, and M. Sullivan, Linear optics verifcation for PEP-IIusing model-independent analysis In [80].(DOI:10.2172/800009)
    [15] Y. T. Yan and Y. Cai, Precision PEP-II optics measurement with an SVD-enhancedleast-square ftting, Nuclear Instruments and Methods in Physics Research SectionA: Accelerators, Spectrometers, Detectors and Associated Equipment558(1):336–339(2006)(DOI:10.1016/j.nima.2005.11.071)
    [16] Y. T. Yan and Y. Cai, Precision measurement of coupling ellipses parameters in astorage ring In [81], pp.3459–3461.(DOI:10.1109/PAC.2005.1591504)
    [17] Y. Yan et al., Precision measurement and improvement of e+, e-storage rings In[82], pp.2065-2067.
    [18] Y. Yan et al., PEP-II beta beat fxes with MIA In [83].
    [19] J. Seeman et al., Progress of the PEP-II B-factory In [84], pp.2297–2299.(DOI:10.1109/PAC.2003.1289097)
    [20] J. Seeman et al., Results and plans of the PEP-II B-factory In [74], pp.875–877.
    [21] Y. T. Yan et al., Virtual accelerator for accelerator optics improvement In [81],pp.3426–3428.(DOI:10.1109/PAC.2005.1591493)
    [22] Y. Yan, Y. Cai, W. S. Colocho, and F.-J. Decker, Validation of PEP-II resonantlyexcited turn-by-turn BPM data In [85], pp.3645–3647.(DOI:10.1109/PAC.2007.4440520)
    [23] C. xi Wang, M. Borland, V. Sajaev, and K.-J. Kim, BPM system evaluation usingmodel-independentanalysisIn [79,] pp.1354–1356.(DOI:10.1109/PAC.2001.986678)
    [24] C. xi Wang, Measurement and application of betatron modes with MIA In [84],pp.3407–3409.(DOI:10.1109/PAC.2003.1289930)
    [25] C. xi Wang, Spatial-temporal modes observed in the APS storage ring using MIAIn [84], pp.3410–3412.(DOI:10.1109/PAC.2003.1289931)
    [26] B. Deriy et al., Pulsed magnet power supplies for improved beam trajectory sta-bility at the APS In [82], pp.2697–2699.
    [27] A. Wolski, J. Nelson, M. Ross, and M. Woodley, Initial results from model inde-pendent analysis of the KEK ATF In [86], pp.1205–1207.
    [28] P. Castro, C. Lackas, M. Seidel, and M. Wendt, Orbit analysis at the TTF linacusing model independent methods In [86], pp.503–505.
    [29] S.Molloyetal.,Highprecisionsuperconductingcavitydiagnosticswithhigheror-dermodemeasurements,PhysicalReviewSpecialTopics—AcceleratorsandBeams9:112802(2006)(DOI:10.1103/PhysRevSTAB.9.112802)
    [30] J. Wenninger, B. Goddard, V. Kain, and J. Uythoven, Beam stability of the LHCbeam transfer line TI8In [81], pp.1523–1525.(DOI:10.1109/PAC.2005.1590821)
    [31] M. Aiba et al., First β-beating measurement and optics analysis for the CERNLargeHadronCollider, PhysicalReviewSpecialTopics—AcceleratorsandBeams12:081002(2009)(DOI:10.1103/PhysRevSTAB.12.081002)
    [32] M. Billing, M. Forster, and H. Williams, Model independent analysis with coupledbeam motion In [87], pp.3759–3761.
    [33] J.Safranek,Experimentaldeterminationofstorageringopticsusingorbitresponsemeasurements, Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,DetectorsandAssociatedEquipment388(1-2:)27–36(1997)(DOI:10.1016/S0168-9002(97)00309-4)
    [34] J. Chen and Z. Zhao, Preliminary application of turn-by-turn data analysis to theSSRF storage ring, Chinese Physics C33(7):590–593(2009)
    [35] X.Huang,S.Lee,E.Prebys,andR.Tomlin,Applicationofindependentcomponentanalysis for beam diagnosis In [81], pp.489–491.(DOI:10.1109/PAC.2005.1590477)
    [36] A. Petrenko, V. Lebedev, and A. Valishev, Independent component analysis ofTevatron turn-by-turn BPM measurements In [88], pp.2602–2604.
    [37] L. Emery, Application of model-independent analysis using the SDDS toolkit In
    [84], pp.3464–3466.(DOI:10.1109/PAC.2003.1289949)
    [38] B. Sayyar-Rodsari et al., Efcient modeling of nonlinear beam optics using para-metricmodelindependentanalysisIn [81,] pp.1–3.(DOI:10.1109/PAC.2005.1590610)
    [39] K. Pearson, On lines and planes of closest ft to systems of points in space, Philo-sophical Magazine2(11):559–572(1901)(DOI:10.1080/14786440109462720)
    [40] H. Hotelling, Analysis of a complex of statistical variables into principal compo-nents, Journal of Educational Psychology24(6):417–441(1933a)(DOI:10.1037/h0071325)
    [41] H. Hotelling, Analysis of a complex of statistical variables into principal compo-nents, Journal of Educational Psychology24(7):498–520(1933b)(DOI:10.1037/h0070888)
    [42] H. Hotelling, Relations between two sets of variates, Biometrika28(3-4):321–377(1936)(DOI:10.1093/biomet/28.3-4.321)
    [43] H. Wiedemann, Particle Accelerator Physics.(Springer-Verlag, Berlin Heidelberg,2007),3rd ed. ISBN:978-3-540-49045-6.
    [44] T. Suzuki, Defnitions and Properties of Impedances and Wake Functions (1999),p.219–220.[89]
    [45] R.E.Shafer,BeampositionmonitoringIn [90,]pp.601–636.(DOI:10.1063/1.41980)
    [46] R. E. Shafer, Characteristics of directional coupler beam position monitors, IEEETransactions on Nuclear Science32(5):1933–1937(1985)(DOI:10.1109/TNS.1985.4333772)
    [47] R. Avery, A. Faltens, and E. C. Hartwig, Non-intercepting monitor of beam cur-rent and position, IEEE Transactions on Nuclear Science18(3):920–922(1971)(DOI:10.1109/TNS.1971.4326231)
    [48] S. Khan, Simulation of the Touschek efect for BESSY II a Monte Carlo approachIn [91], pp.1192–1194.
    [49] M. Boscolo et al., Touschek background and lifetime studies for the SuperB factoryIn [87], pp.3844–3846.
    [50] H. Kang, J. Huang, and S. Nam, Measurement of Touschek lifetime in PLS storagering In [92], pp.314–316.
    [51] V. Leonov and V. Ushkov, Measurement of Siberia-1beam lifetime by the decayrate plot method In [93], pp.272–274.
    [52] C. Steier and L. Yang, Touschek lifetime measurements at small horizontal emit-tance in the ALS In [87], pp.3269–3271.
    [53] V. Blinov et al., Measurement of the energy dependence of Touschek electroncounting rate In [94], pp.426–428.
    [54] B. Nash et al., Touschek lifetime and momentum acceptance measurements forESRF In [95], pp.2921–2923.
    [55] Z. Zhao and H. Xu, SSRF: a3.5GeV synchrotron light source for China In [74],pp.2368–2370.
    [56] Y. Leng et al., Beam position monitor system for SSRF storage ring, Nuclear Tech-niques33(6):401–404(2010)
    [57] Z. Chen et al., Performance evaluation of BPM system in SSRF using PCA method(unpublished). accepted at Jan.7,2014.
    [58] Y. Leng, Y. Chen, K. Ye, and W. Zhou, SSRF beam diagnostics system commis-sioning In [96], pp.24–26.
    [59] Y. Leng, Y. Yan, W. Zhou, and R. Yuan, Precise beam current measurement forstorage ring using beam position monitor, High Power Laser and Particle Beams22(12):2973–2978(2010)
    [60] Y.Lengetal., DcctsystemdesignforSSRFstoragering, NuclearTechniques30(6:)477–480(2007)
    [61] D. Thompson and W. Blokland, A shared memory interface between labview andEPICS In [97], pp.275–277.
    [62] J. Chen, K. Ye, and Y. Leng, Development of Shanghai Synchrotron Radiation Fa-cility synchrotron radiation interferometer, High Power Laser and Particle Beams23(1):179–184(2011)(DOI:10.3788/HPLPB20112301.0179)
    [63] G.Huangetal.,X-raypinholecamerasystemdesignforSSRFstoragering,NuclearTechniques33(11):806–809(2010)
    [64] Z. Chen, J. Chen, G. Huang, and Y. Leng, Point spread function study of X-raypinhole camera in SSRF In [98], pp.592–594.
    [65] Y. Leng et al., Monitoring the charge bunch-by-bunch for the SSRF storage ring:Development and application, Nuclear Science and Techniques21(4):193–196(2010)
    [66] Y. Leng, Y. Yan, Z. Chen, and R. Yuan, Beam diagnostics global data warehouseimplementation and application at SSRF In [95], pp.1287–1289.
    [67] S.-Y. Lee, Accelerator Physics.(World Scientifc Publishing Co. Pte. Ltd,5TohTuck Link, Singapore596224,2004),2nd ed. ISBN:81-256-182-X.
    [68] Z. Chen et al., Study of algorithms of phase advance measurement between BPMsanditsapplicationinSSRF,NuclearScienceandTechniques24(1:)010102(2013)
    [69] Z. Chen et al., Beam position monitor troubleshooting by using principal com-ponent analysis in Shanghai Synchrotron Radiation Facility, Nuclear Science andTechniques25(2):020102(2014)(DOI:10.13538/j.1001-8042/nst.25.020102)
    [70] K. B. Unser, The parametric current transformer, a beam current monitor devel-oped for LEP In [99], pp.266–275.(DOI:10.1063/1.42124)
    [71] D.Martinetal.,EvaluationofBergozInstrumentationNPCTIn [87,]pp.4021–4023.
    [72] Z.Chen, Y.Leng, andY.Yan, BPMselectionforbeamcurrentmonitoringinSSRFIn [100], pp.341–343.
    [73] Z. Chen, Y. Leng, Y. Xiong, and W. Zhou, Modeling and performance evaluationof DCCTs in SSRF In [100], pp.16–19.
    [74] J. Chrin et al., eds., Proceedings of the2004European Particle Accelerator Con-ference (2004), Lucerne, Switzerland.
    [75] S. Myers et al., eds., Proceedings of EPAC1998(1998), Stockholm, Sweden.
    [76] C. E. Eyberger, R. C. Pardo, and M. M. White, eds,. Proceedings of the XIX LinearAccelerator Conference (1998), Chicago, Illinois, USA.
    [77] A. Luccio and W. MacKay, eds., Proceedings of the1999Particle AcceleratorConference (1999), New York, USA.
    [78] J. Laclare et al., eds., Proceedings of the2000European Particle AcceleratorConference (2000), Vienna, Austria.
    [79] P. Lucas and S. Webber, eds., Proceedings of the2001Particle Accelerator Con-ference (2001), Chicago, Illinois, USA.
    [80] Proceedings of the23rd Advanced ICFA Beam Dynamics Workshop on High Lu-minosityArena+et Colliders (2001), Ithaca, NY, USA.
    [81] M.al., eds., Proceedings of the2005Particle Accelerator Conference(2005), Knoxville, Tennessee, USA.
    [82] C. Biscari et al., eds., Proceedings of the2006European Particle AcceleratorConference (2006), Edinburgh, Scotland.
    [83] Proceedings of the30th ICFA Advanced Beam Dynamics Workshop on High Lu-minosity+Colliders (+Factories2003)(2003), Stanford, California, USA.
    [84] J.Chew,P.Lucas,andS.Webber,eds,. Proceedingsofthe2003ParticleAcceleratorConference (2003), Portland, Oregon U.S.A..
    [85] I. Andrian et al., eds., Proceedings of the2007Particle Accelerator Conference(2007), Albuquerque, New Mexico, USA.
    [86] T. Garvey et al., eds., Proceedings of the2002European Particle AcceleratorConference (2002), Paris, France.
    [87] M. Comyn, ed., Proceedings of the23rd Particle Accelerator Conference (2009),Vancouver, British Columbia, Canada.
    [88] I. Andrian, O. Brüning, C. Petit-Jean-Genaz, and P. Pierini, eds., Proceedings ofthe2008European Particle Accelerator Conference (2008), Genoa, Italy.
    [89] A. W. Chao and M. Tigner, editors, Handbook of Accelerator Physics and Engi-neering (World Scientifc Publishing Co. Pte. Ltd.,5Toh Tuck Link, Singapore596224,1999). ISBN:9810235005.
    [90] AIP Conference Proceedings, The Physics of Particle Accelerators Vol. I (basedon the US Particle Accelerator School (USPAS) Seminars and Courses)(1992),Upton, NY, USA.
    [91] C. Petit-Jean-Genaz and V. Suller, eds., Proceedings of the Fourth EuropeanParticle Accelerator Conference (1994), London, England.
    [92] Proceedings of the Second Asian Particle Accelerator Conference (2001), Beijing,China.
    [93] Proceedings of RuPAC XIX (2004), Dubna, Russia.
    [94] T. Satogata and K. Brown, eds., Proceedings of the2011Particle AcceleratorConference (2011), New York, USA.
    [95] C. Petit-Jean-Genaz et al., eds., Proceedings of the2nd International ParticleAccelerator Conference (2011), San Sebastián, Spain.
    [96] J. Chrin, M. Marx, V. R. Schaa, and V. Schlott, eds., Proceedings of the9thEuropean Workshop on Beam Diagnostics and Instrumentation for Particle Accel-erators (2009), Basel, Switzerland.
    [97] J. Choi, ed., Proceedings of ICALEPCS2003(2012), Gyeongju, Korea.
    [98] Z. Dai, C. Petit-Jean-Genaz, V. R. Schaa, and C. Zhang, eds., Proceedings of the4th International Particle Accelerator Conference (2013), Shanghai, China.
    [99] W. Barry and P. Kloeppel, eds., AIP Conference Proceedings, Accelerator Instru-mentation (1992), Newport News, Virginia, USA.
    [100] T. Mitsuhashi and A. Shirakawa, eds., Proceedings of the1st International BeamInstrumentation Conference (2012), Tsukuba, Japan.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700