用户名: 密码: 验证码:
木材干燥的多场耦合建模仿真与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材生产过程中木材干燥是能耗最大的工序。随着木材干燥技术的提高以及木材干燥设备系统集成度的增加,木材干燥过程中不同性质或状态的材料相互影响以及不同物理域的耦合作用,干燥系统越来越复杂,迫切需要引入木材干燥过程与设备的先进分析方法、设计模型和设计思想。
     本文针对木材干燥系统的多场耦合现象与设计优化问题,提出了实际工作状态下木材干燥系统的多场耦合建模与分析方法;以提高木材干燥性能为目的,进行了多系统整体优化与导流装置设计研究,并进行了试验验证。
     基于Reynolds时均方程建立了干燥窑的空气流动模型,构建干燥窑内空气流动与换热的基本控制方程。建立了木材干燥过程的水分迁移模型和热传导方程,完成了对木材干燥过程的机理性描述。
     提出了木材干燥窑的热力耦合模型和流-固耦合模型,利用数值方法对木材干燥的多场耦合方程进行了求解,得到了干燥窑内流体和温度的宏观分布。为更进一步研究木材干燥过程的微观特性,建立了木材微观结构的元胞自动机模型,采用元胞自动机的自组织局部规则模拟了干燥过程中木材的水分迁移微观机理,为实现多场环境木材干燥系统的性能表征、复杂动态性能的仿真及设计优化等工程目标提供了可能。
     考虑到木材干燥过程中存在多种不确定性,基于随机摄动技术定量计算了木材的材料随机性、尺寸随机性和导流板对干燥过程的影响,以概率思想表达了木材实际干燥过程所带来的随机差异对其干燥过程和性能的影响,获得了对木材干燥过程最为关键的参数组合。
     为优化木材干燥系统的整体性能,将多场一体化优化方法引入木材干燥系统的宏观参数优化中。基于随机摄动分析获得的信息,建立了木材干燥系统的优化模型,设计了木材干燥系统的多学科优化算法。优化结果表明,通过优化得到了较为合理的干燥参数组合,优化了木材干燥系统的性能。
     为更进一步提高干燥窑内气体流动均匀性和增强干燥效果,进行了导流板结构的拓扑优化。建立了导流板拓扑优化模型,对模型进行了求解。导流板结构拓扑优化的结果表明,优化以后的导流板输出风速有了较大提高,材堆的风速均匀性也得到了改善。
     设计了导流装置模拟试验机进行木材干燥的试验研究。试验测试结果表明,导流装置大幅改善了干燥窑内的介质循环风速均匀性,为干燥性能的提高提供了有效途径。
Wood drying is the largest energy consumption process in the production of wood products. With the improvement of wood drying technology and significant increasing of wood drying equipment, the interaction of materials with different quality or state and coupling of different physical domains increases in wood drying process, which shows a more and more complex trend. It is necessary to introduce advanced analytical methods, design models and design ideas for equipment and process of woods drying.
     This paper focuses on the multi-field coupling and design optimization of wood drying system, and presents the modeling and analysis method for wood drying system under working state. To improve the performance of wood drying, an overall Multi-disciplinary Design Optimization and design of guiding device is proposed, and a test experiment is performed.
     Considering the physical model of the drying kiln, the air flow model in the drying kiln is established based on the Reynolds equations. The basic equations for air flow and heat transfer of the drying kiln is built. The moisture movement and heat conduction equation of the wood drying process is presented, and the mechanistic description of the wood drying process is proposed.
     The thermal-mechanical and fluid-structure coupling models of the drying kiln are proposed. The multi-field models are solved by numerical methods, and macro distribution of flow and temperature are obtained. To further study microscopic properties of wood drying process, a cellular automaton model of the wood micro-structure is presented. The micro moist Lire moving mechanism of wood drying is simulated by the self-organizing local rules of cellular automaton, which provides supports for the expression of multi-physics environment, complex dynamic simulation and design optimization of wood drying system.
     Considering the uncertainty in wood drying process, the influence of randomness of wood material and size, and guiding plate on the drying process is quantitatively calculated using stochastic perturbation technique. The random differences to drying process are described based on the probability theory. The most critical parameters of the wood drying process are obtained.
     To optimize the overall performance of the wood drying system, the Multi-disciplinary Design Optimization method is introduced into the parameters optimization of the wood drying system. Using the results of perturbation analysis, an optimization model for wood drying is established. The multi-disciplinary design optimization algorithm is designed. The multidisciplinary design optimization results show that reasonable drying parameters are obtained through optimization and the optimal performance of the system of wood drying is achieved.
     To further improve the uniformity of air flow in the drying kiln and enhance drying effect, the structural topology optimization guiding plate is conducted. The topology optimization model of the guiding plate is established. The results of topology optimization of the guiding plate show that the output air speed of the guiding plate is increased, and the uniformity of the air speed is improved.
     A simulation tester with guiding device is designed to conduct experimental study of wood drying. Experimental results show that the guiding device significantly improved the uniformity of speed of media circulation, which provides an effective way for the improvement of drying performance.
引文
[1]杨红强,聂影.中国木材供需矛盾与原木进口结构分析.世界农业,2008,(7):53-56
    [2]张璧光,谢拥群.木材干燥的国内外现状与发展趋势.干燥技术与设备,2006,4(1):7-14
    [3]高建民.木材干燥学.北京:科学出版社,2008:11-17 102-11O
    [4]张清波.关于今后我国木材干燥技术发展问题的几点思考.中国林业产业,2004,(9):36-37
    [5]顾炼百,庄寿增.我国木材干燥工来现状与科技需求.木材工业,2009,23(3):24-27
    [6]张壁光.太阳能-热泵联合干燥木材的实验研究.太阳能学报,2007,28(8):870-873
    [7]顾炼百.我国木材干燥设备与工艺发展现状及与国际先进水平的差距.木材加工机械,2009,20(z1):22-28
    [8]顾炼百.木材干燥理论在木材加工技术中的应用分析.南京林业大学学报(自然科学版),2008,(5):27-31
    [9]顾炼百,杜国兴.中国木材干燥工业的现状与展望.南京林业大学,2001,25(6):1-3
    [10]朱莉,袁文爽,尹文芳.云遗传算法在木材干燥过程建模中的应用.机电产品开发与创新,2009,22(6):99-101
    [11]李贤军,张擘光,李文军,周永东.木材微波真空干燥过程的数学模拟.北京林业大学学报,2008,30(2):124-128
    [12]刘德胜,张佳薇GA~BP网络在木材干燥过程建模中的应用.微计算机信息,2007
    [13]P.Wiberg, T.J. Moren. Moisture flux determination in wood during drying above fibre saturation Point using CT seanning and digital image Processing. Holz als Roh and Werkstoff,1999,57(2):137-14
    [14]H. Zhao, I.W. Turner. The use of a coupled computational model for studying the microwave heating of wood. Applied Mathematical Modeling,2000,24(3):183-197
    [15]N.R. Aluru, J. White. An efficient numerical technique for electromechanical simulation of complicated microelectromechanical structures, Sensors and Actuators A,2003,105:1-11
    [16]Balderas L J A, Tomas S A, Vargas H. Photoacoustic thermal characterization of wood. Forest Products Journal.1996,46(4):84-89
    [17]Antti A L, Perre P.A. Microwave applicator for on line wood drying:Temperature and moisture distribution in wood. Wood Science and Technology,1999,33:123-138
    [18]A. Tasora, M. Anitescu, A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics, Computer Methods in Applied Mechanics and Engineering,2011,200(5-8):439-453
    [19]刘德胜,张佳薇.基于多模型数据融合算法的木材干燥过程建模.传感器与微系统,2007,(7):82-84
    [20]李贤军.木材微波真空干燥特性的研究.北京林业大学博士学位论文.2005:44-50
    [21]刘玉容,闰振,伊松林.改善木材干燥室内空气流动特性的初步研究.干燥技术与设备,2006,4:65-68
    [22王喜明,王军,刘晓丽.木材皱缩评价指标的研究.林业科学,2000,36(3):129-132
    [23]张冬妍.木材干燥神经网络与智能控制系统.东北林业大学博士论文.2005:43-58
    [24]王安麟.复杂系统的分析与建模.上海:上海交通大学出版社,2004:32-4467-78
    [25]王安麟,姜涛,刘广军.现代设计方法.武汉:华中科技大学出版社,2010:10-1733-45 89-110
    [26]T. I. Zohdi, Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids, Computer Methods in Applied Mechanics and Engineering, 2004,193(6-8):679-699
    [27]李磊,陈广元,李明君.多级弧形板导流装置及其对木材干燥室介质循环均匀性的改善.东北林业大学学报.2010,05:128-130
    [28]Perre P, Remond R. A dual~scale computational model of kiln wood drying including single board and stack level simulation. Drying Technology,2006,24 (9):1069-1074
    [29]Pang S. Mathematical modeling of kiln drying of softwood timber, model development, validation and practical application. Drying Technology,2007,25 (3):421-431
    [30]Milota M. HAP and VOC emissions from white firlumber dried at high and conventional temperatures. Forest Products Journal,2003,53 (3):60-64
    [31]范宇,张冬妍,孙丽萍,徐宇.基于SVM的木材干燥过程含水率软测量研究.森林工 程,2008,(4):27-29
    [32]韩宇林,韩宁.新型木材干燥检测控制系统设计.林业机械与木工设备,2007,(3):33-35
    [33]DeVoe DL. Thermal issues in MEMS and microscale systems. IEEE Transactions on Components and Packaging Technologies,2003,25:576-583
    [34]薛巨峰.木材干燥含水率测试及水分迁移特征的研究.东北林业大学硕士学位论文.2006:31-37
    [35]汪佑宏,顾炼百,刘启明,杜国兴.马尾松锯材在热压干燥过程中的传质数学模型.南京林业大学学报(自然科学版),2008,(2):71-75
    [36]汪佑宏,顾炼百,王专贵,柯曙华,刘杏娥.马尾松锯材在热压干燥过程中的传热规律.南京林业大学学报(自然科学版),2005,(4):33-36
    [37]涂登云,顾炼百,杜国兴,刘彬.干燥过程中马尾松板材干燥应变的研究.南京林业大学学报(自然科学版),2004,(4):23-28
    [38]苗平.马尾松木材高温干燥的水分造迁移和热量传递.南京林业大学博十学位论文2000:47-65
    [39]Yang YJ, Shen KY. Nonlinear heat-transfer macromodeling for MEMS thermal devices. Journal of Micromechanics and Microengineering,2005,15:408-418
    [40]李梁.张璧光,伊松林.材性法制定木材千燥基准的探索.干燥技术与设备,2008,(3):115-119
    [41]李梁,张璧光,伊松林.材性法制定术材干燥基准初探.木材工业,2005,20(5):42-44
    [42]李梁.材性法制定木材干燥基准.北京林业大学硕士学位论文.2007:17-23
    [43]李梁,张璧光,伊松林.木材干燥基准的研究现状及展望.干燥技术与设备,2007,(1):22-26
    [44]Jonathan Gaudreault, Jean-Marc Frayret, Alain Rousseau, Sophie D'Amours, Combined planning and scheduling in a divergent production system with co-production:A case study in the lumber industry, Computers & Operations Research,2011,38(9):1238-1250
    [45]Alexandrov N. Editorial Multidisciplinary design optimization. Optimization and Engineering,2005,6:5-7
    [46]沈文钧,李宁.几何非线性平板的热力、动力耦合振动.振动工程学报,1990,3(1):1-9
    [47]王安麟,杨蓉,刘广军,姜涛.微结构热力耦合解析的元胞自动机方法.中国工程机械学报,2008,6(3):253-258
    [48]杨蓉.微结构多物理场耦合效应的自组织解析方法.同济大学硕士学位论文,2009
    [49]张振涛.两级压缩高温热泵干燥木材的研究.南京林业大学博士学位论文,2008
    [50]王安麟,姜涛,刘广军.现代设计方法.华中科技大学出版社,2010
    [51]王安麟,姜涛.基于进化元胞自动机的结构拓扑优化,机械工程学报,2005,41(2):1-5
    [52]祝玉学,赵学龙.物理系统的元胞自动机模拟.北京:清华大学出版社,2003:68-7990-93
    [53]魏俊华.城市交通信号自组织控制方法的研究,上海交通大学博士学位论文,2005:56-58
    [54]S. Wolfram. Theory and applications of Cellular Automata, World Scientific, Singapore, 1996:29-33
    [55]David Alonso. Ricard V. Sole, The DivGame simulator:a stochastic cellular automata model of rainforest dynamics, Ecological Modelling,2000,133(1-2):131-141
    [56]D. D'Ambrosio, Gregorio S. Di, S. Gabriele, et al. A Cellular Automata model for soil erosion by water, Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,2001,26(1):33-39
    [57]Karafyllidis Ioannis, Thanailakis Adonios. A model for predicting forest fire spreading using cellular automata, Ecological Modelling,1997,99(1):87-97
    [58]Gregorio S. Di, R. Serra, M. Villani. Applying Cellular Automata to complex environmental problems:The simulation of the bioremediation of contaminated soils, Theoretical Computer Science,1999,217(1):131-156
    [59]赵敏,崔维成.多学科设计优化研究应用现状综述.中国造船,2007,48(3):63-72
    [60]王奕首,史彦军,滕弘飞.多学科设计优化研究进展.计算机集成制造系统,2005,11(6):751-756
    [61]俞必强.多学科设计优化及在MEMS设计中应用的研究.北京科技大学博士学位论 文,2006
    [62]郭忠全.多学科设计优化方法在卫星总体设计中的应用研究.国防科学技术大学硕士学位论文,2005
    [63]Chen T, Yang C. Multidisciplinary design optimization of mechanisms. Advances in Engineering Software,2005,36:301-311
    [64]Venter G, Sobieszczanski~Sobieski J. Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. Structural and Multidisciplinary Optimization, 2004,26:121-131
    [65]Hans-Georg Beyer, Bernhard Sendhoff, Robust optimization - A comprehensive survey, Computer Methods in Applied Mechanics and Engineering,2007,196(33-34):3190-3218
    [66]Natalia Alexandrov. Editorial — Multidisciplinary design optimization. Optimization and Engineering,2005,6:5-7
    [67]Ting-Yu Chen, Chen-Ming Yang. Multidisciplinary design optimization of mechanisms. Advances in Engineering Software,2005,36:301-311
    [68]G. Venter, J. Sobieszczanski-Sobieski. Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. Structural and Multidisciplinary Optimization,2004,26:121-131
    [69]S.M. Batill, M. Stelmack, X.Q. Yu. Multidisciplinary design optimization of an electric-powered unmanned air vehicle. Aircraft Design,1999,2:1-18
    [70]A. Chattopadhyay, T.R. McCarthy, N. Pagaldipti. Multilevel decomposition procedure for efficient design optimization of helicopter rotor blades. AIAA Journal,1995,35:223-230
    [71]余雄庆,姚卫星,薛飞,穆雪峰,刘克龙,黄爱凤.关于多学科设计优化计算框架的探讨.机械科学与技术,2004,23(3):286-289
    [72]苑伟政,李伟剑.基于遗传算法的微机械陀螺的多学科设计优化.机械强度,2004,26(2):170-174
    [73]王安麟,刘广军,姜涛.广义机械优化设计.华中科技大学出版社,2008
    [74]冯培恩,邱清盈,潘双夏,钱仲焱, 武建伟.机械广义优化设计的理论框架.中国机械工程,2000,11(1-2):126-129
    [75]冯培恩,邱清盈,潘双夏,董黎刚,李善春.机械产品的广义优化设计进程研究. 中国科学(E辑),1999,29(4):338-346
    [76]Jiang T, Liu G, Wang A, Jiao J, Jang J. Robust design of a tuning fork vibratory microgyroscope considering microfabrication errors. The 3rd International Conference on Nano/Micro Engineered and Molecular Systems, China,2008:257-260
    [77]姜涛,王安麟,刘广军,张颖,焦继伟.音叉振动式微机械陀螺输出电容的统计特性分析.机械工程学报,2007,43(8):114-118
    [78]姜涛,王安麟,刘广军,张颖,焦继伟.基于摄动法的微机械陀螺随机性能的统计分析.上海交通大学学报,2006,40(11):1918-1923
    [79]王安麟,善盈盈,刘广军,姜涛.基于灵敏度解析的微机械陀螺结构优化方法.浙江工业大学学报,2008,36(6):673-677
    [80]Jr. Spillman, B. William. Evolutionary computational techniques for complex adaptive structures, Proceedings of SPIE,2001,4512:163-171
    [81]Pei-Chann Chang, Wei-Hsiu Huang, Ching-Jung Ting, Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems, Expert Systems with Applications,2010,37(3):1863-1878
    [82]Vedat Togan, Ayse T. Daloglu, An improved genetic algorithm with initial population strategy and self-adaptive member grouping, Computers & Structures,2008,86(11-12): 1204-1218
    [83]Yongming Li, Xiaoping Zeng, Liang Han, Pin Wang, Two coding based adaptive parallel co-genetic algorithm with double agents structure, Engineering Applications of Artificial Intelligence,2010,23(4):526-542
    [84]Gautam Garai, B.B. Chaudhuri, A distributed hierarchical genetic algorithm for efficient optimization and pattern matching, Pattern Recognition,2007,40(1):212-228
    [85]唐文艳,顾元宪.遗传算法在结构优化中的研究进展,力学进展,2002,32(1):26-40
    [86]张思才,张方晓.自适应遗传算法在桁架结构优化设计中的应用,湘潭大学自然科学学报,2002,24(4):37-41
    [87]朱峰.遗传算法在离散变量结构优化中的应用及其改进方案综述,世界地震工程,2002,18(4):131-135
    [88]罗志凡,荣见华,杜海珍.基于遗传算法和梯度算法的一种结构优化混合方法,计算机工程与应用,2003,(8):71-73
    [89]Atsushi Kawamoto, Martin P. Bendsoe, Ole Sigmund. Articulated mechanism by an enumeration approach,15th Nordic Seminar on Computational Mechanics, Denmark,2002: 59-62,
    [90]M. P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering, Volume 71,197-224,1988
    [91]李昊,胡云昌,曹宏铎.桁架结构布局优化现状与主要问题,青岛大学学报(工程技术版),2002,17(3):49-52
    [92]M.P. Bendsoe. Optimal shape design as a material distribution problem, Structural and Multidisciplinary Optimization,1989,1(1):193-202
    [93]B. Hassani, E. Hinton. A review of homogenization and topology optimization Ⅰ~ homogenization theory for media with periodic structure, Computers and Structures.1998, 69(6):707-718
    [94]B. Hassani, E. Hinton. A review of homogenization and topology opimization Ⅱ~ analytical and numerical solution of homogenization equations, Computers and Structures, 1998,69(6):719-738
    [95]B. Hassani, E. Hinton. A review of homogenization and topology optimization Ⅲ~ topology optimization using optimality criteria, Computers and Structures,1998,69(6): 739-756
    [96]L. Ambrosio, G. Buttazzo, An optimal design problem with perimeter penalization, Calculus of Variations and Partial Differential Equations,1993,1(1):55-69
    [97]C.S. Jog, R.B. Haber. Stability of finite element models for distributed-parameter optimization and topology design, Computer Methods in Applied Mechanics and Engineering,1996,130 (3-4):203-226
    [98]J. Petersson, O. Sigmund. Slope constrained topology optimization, International Journal For Numerical Methods In Engineering,1998,41 (8):1417-1434
    [99]M. Zhou, Y. K. Shyy, H. L. Thomas. Checkerboard and minimum member size control in topology optimization, Structural and Multidisciplinary Optimization,2001,21(2): 152-158
    [100]Gang-Won Jang, Sangkeun Lee, Yoon-Young Kim, Dongwoo Sheen. Topology optimization using non-conforming finite elements:three-dimensional case, International Journal for Numerical Methods in Engineering,2005,63(6):859-875
    [101]M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Computer Methods in Applied Mechanics and Engineering,2003,192(1-2):227-246
    [102]M.Y. Wang, X. Wang, D. Guo. Structural shape and topology optimization in a level set based implicit moving boundary framework, Structural and Multidisciplinary Optimization, 2004,27(1-2):1-19
    [103]J.A. Sethian, A. Wiegmann. Structural boundary design via level set and immersed interface methods, Journal of Computational Physics,2000,163(2):489-528
    [104]樊学军.均匀化理论及其在生物力学中的应用,力学进展,1996,26(2):187-197
    [105]C.C. Swan, I. Kosaka. Homogenization-based analysis and design of composites, Computers and Structures,1997,64(1-4):603-621
    [106]李昊,胡云昌,曹宏铎.桁架结构布局优化现状与主要问题,青岛大学学报(工程技术版),2002,17(3):49-52
    [107]夏利娟,吴嘉蒙,金咸定.工程结构的拓扑优化设计研究,船帕力学,2002,6(6):107-113
    [108]M.P. Bendsoe, O. Sigmund, Material interpolations in topology optimization, Archive of Applied Mechanics,1999,69(9-10):635-654
    [109]M.P. Bendsoe, O. Sigmund. Material Interpolations in Topology Optimization. Archive of Applied Mechanics,1999,69:725-741
    [110]袁振,吴长春,庄守兵.基于杂交元和变密度法的连续体结构拓扑优化设计,中国科学技术大学学报,2001,31(6):695-699
    [111]Y.M. Xie, G.P. Steven. Simple evolutionary procedure for structural optimization, Computers and Structures,1993,49(5):885-896
    [112]O.M. Querin, G.P. Steven, Y.M. Xie. Evolutionary structural optimization (ESO) using a bi-directional algorithm, Engineering Computation,1998,15(8):1031-1048
    [113]O.M. Querin, G.P. Steven, Y.M. Xie. Evolutionary structural optimization using an additive algorithm, Finite Elements in Analysis and Design,2000,34(3-4):291-308
    [114]孟兆新,赖明珠,陈晖.模糊优化方法在机构设计中的应用.中国机械工程.2006.11:25-27.
    [115]左孔天,陈立平,王书亭,等.用拓扑优化方法进行微型柔性机构的设计研究,中国机械工程,2004,15(21):1886-1890
    [116]李兆坤.柔顺机构几何非线性及可靠性拓扑优化设计研究.华南理工大学博士学位论文,2008
    [117]Zhaokun Li, Xianmin Zhang. Multiobjective topology optimization of compliant microgripper with geometrically nonlinearity. ASME Proceedings of MNC2007: MicroNanoChina07,2007:101-107
    [118]Meng Zhaoxin, Cao Jun; Li Zhiwei, Zhao Jianxin. Topology optimization design of integral structure of woodworking machine tool. Applied Mechanics and Materials.2010.10:1591-1594
    [119]左孔天.连续体结构拓扑优化理论与应用研究.华中科技大学博士学位论文,2004
    [120]Diaz A.R., Bendsoe M.P. Shape Optimization of Structures for Multiple Loading Conditions Using the Homogenization Method[J]. Structural Optimization,1992, 4(1):17-22
    [121]K. Svanberg. The method of moving asymptotes-A new method for structural optimization. International journal for numerical methods in engineering,1987,24: 359-373
    [122]Denglin Zhu, Anlin Wang, Tao Jiang. Topology design to improve HDD suspension dynamic characteristics. Structural and Multidisciplinary Optimization,2006,31:497-503
    [123]王安麟,姜涛.基于进化元胞自动机的结拓扑优化,机械工程学报,2005,41(2):1-5
    [124]T.Y. Tunde-Akintunde. Mathematical modeling of sun and solar drying of chilli pepper, Renewable Energy,2011,36(8):2139-2145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700