用户名: 密码: 验证码:
木材干燥质量对胶接界面的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代木材加工工业生产中,由于对胶粘剂的依赖性在不断增强,所以胶接质量越来越成为影响木制品质量的一个重要因素。对于胶接质量的研究,很多学者做了大量工作。但是,对于木材干燥质量对胶接质量影响的研究却是空白。
     不同干燥基准和不同热湿处理条件下,木材会有不同干燥质量。木材干燥质量指标主要包括以下内容:1)最终含水率;2)锯材厚度上的含水率偏差;3)残余应力指标;4)可见干燥缺陷等。因为不同干燥质量对木材表面的性质如润湿性、表面张力、表面自由能、活性基团的数量与性质等,都会产生一定影响。因而会直接影响胶接界面的性质。
     本论文主要探索了在不同的干燥质量条件下,木材干燥质量和表面性质的变化,从微观的角度分析这些变化对胶接界面产生的影响,从宏观的角度建立胶接界面的情况与胶接力学强度的关系。从而说明干燥质量对胶接力学强度的影响,结合数学分析方法进而提出改善胶接界面性能的理论依据,以此来优化木材的干燥工艺和干燥过程的控制,使干燥质量能够满足胶接设计的要求。
     本论文的主要研究结论如下:
     1、木材的含水率
     厚度上含水率偏差:厚度上含水率偏差,随着存储时间的延长,呈现出波动变化的趋势。对于最终含水率较高(含水率高于当地平衡含水率时)的木材,其含水率偏差较大,随着存储时间的延长,呈现下降的趋势。在这个过程中,芯层含水率下降的速度为3.1%/天比表层含水率下降的平均速度1.47%/天快1.63%/天,这样就会使芯层表层含水率迅速接近而使含水率偏差迅速减小;最终含水率较低的木材,其含水率偏差较小。随着存储时间的延长,呈现上升的趋势。在这个过程中,芯层的含水率上升的速度为0.85%/天,比表层含水率上升的平均速度0.60%/天快0.25%/天,这样就会使芯层表层含水率拉开距离使含水率偏差逐渐加大;前者厚度上含水率偏差在3-4天内降到最小值;后者在3-4天上升到最大值;5-6天后,两者厚度上的含水率偏差都趋于稳定。
     木材表层含水率:高含水率的木材,木材表层的含水率,随着存储时间的延长,呈现下降的趋势。低含水率的木材,木材表层含水率,随着存储时间的延长,呈现上升的趋势。最后都趋向于存储环境下的平衡含水率。到了5天后趋向稳定。
     当木材含水率远远低于使用环境下的平衡含水率时,木材的吸湿性明显降低,随着存储时间的延长,不能吸湿到应有的与平衡含水率接近的程度。厚度上含水率偏差波动大约在1%左右的范围内;木材表层的含水率,随着存储时间的延长,总体呈现上升的趋势。
     2、木材干燥后应力
     在干燥结束后,随着存储时间的延续,木材应力总的变化趋势是在增大。通常来说呈现波动变化的趋势:1-2天应力在逐渐增大,第3天有所下降,4-5天继续增大,6天以后趋于平稳。这与木材的含水率的变化有着密切的关系。含水率变化,应力也相应变化;含水率稳定时,应力也趋向稳定。
     3、胶接强度(常态压缩剪切强度)
     木材的剪切强度与木材胶接时含水率关系极密切,与木材胶接时的应力也有一定的关系。应力增加时剪切强度下降。应力基本一致时,厚度上含水率偏差成为影响剪切强度的主要因素。当木材厚度上含水率偏差增加时,剪切强度减小。在含水率相同的条件下,厚度上的偏差越小,剪切强度越大;厚度上含水率偏差变化的速率对剪切强度的影响是:在速率方向相同的条件下,剪切强度有着相同的变化规律,并且,速率大的其剪切强度变化滞后于速率小的剪切强度的变化。含水率、含水率偏差和应力在剪切强度上起了主要作用。
     4、木材表面润湿性
     木材干燥后,其接触角随着存储时间的延长都会增大。接触角的余弦值会随着储存时间的延长而减小-木材的表面润湿性降低。木材表面润湿性受木材表层含水率变化的影响较大:表层的含水率变化剧烈。润湿性下降得就快;表层的含水率变化的平缓,润湿性下降的就缓慢。高含水率木材表面润湿性好于低含水率木材。在含水率相同条件下:采用较高温度干燥的木材,木材表面润湿性低于采用相对低温干燥的木材。
     5、木材表面自由能
     木材表面自由能随着存储时间的延长呈现降低趋势。这与木材含水率变化有关有关:高含水率木材的表面自由能要高于低含水率木材的表面自由能。
     6、木材表面活性基团
     木材表面活性基团,随着储存时间的延长有如下的变化:Cls的百分含量呈现出波动变化的规律,通常来说是先减小然后再增加然后再减小;氧的含量变化呈现一定的规律性,氧的含量从35%逐渐降低到27%,而后又增加到30%。最后趋于稳定。Nls的百分含量比较少,呈现逐增加的渐波动变化。
     7、胶接界面
     Cls,Ols和Nls原子百分含量变化比较明显,与木材的界面相比较:Cls的量相对减少了;Nls的含量显著增加了;Ols的含量减少了。说明胶粘剂与木材发生了反应。
Due to the increasing dependency extent of the modern wood industry on the wood adhesives, the bonding quality has become one of the most important factors showing great influence on the final quality of wood products. Although numerous researchers have paid more attention to the bonding properties of wood products, the study associated with the interrelationship between timber drying quality and bonding quality still remains a research vacancy now.
     As results of the different drying schedules and also different conditioning parameters, the final dried timbers will show particular drying quality. The wood drying quality characters include the following ones,1. The final MC; 2. The MC gradients along the wood thickness direction; 3. The drying stress; 4. The visual drying defects. Different drying quality will have characteristic influences over the actual properties of material surface, namely, wet ability, surface tension, surface energy, the numbers and properties of activated atoms. These physical and chemical changes will, in turn, have the direct influences on the properties of bonding interface.
     Based on the specified wood drying quality, this paper mainly aimed to investigate the influences of the timber drying quality and the surface changes of wood materials on bonding interface in the microscopic level, trying to establish the inter-relationship between the bonding interface properties and the bonding mechanical strength in the macroscopic level. According to the theoretical analysis and research results of the experimental practices, the influence of drying quality on the bonding mechanical properties will be well documented. The theoretical backgrounds for the improvement of bonding interface qualities were put forward by making use of the mathematical analysis method. In consequence of these works, the drying technology and drying process control strategy can be optimized accordingly, so that the resulting drying quality can be applicable to the bonding design process.
     The main research results are as follows:
     1. Moisture content (MC) of wood
     The MC tolerance on the wood thickness:it shows the undulation change with the storage time. For the higher MC wood (the MC is higher than that of the local Equilibrium Moisture Content), the MC tolerance is higher too, with the storage time pass on, it shows to become lower trend. In this progress, the core MC degressive speed is 3.1 percent per day, it is faster than that of the surface one 1.47 percent per day. This will bring about the core MC and the surface MC come together faster and let the MC tolerance become minished quickly. For the lower MC wood, the MC tolerance is lower too, with the storage time pass on; it shows to become higher trend. In this progress, the core MC increased speed is 0.85 percent per day, it is faster than that of the surface one 0.60 percent per day. This will bring about the core MC and the surface MC bigger distance and let the MC tolerance become big quickly. The MC tolerance decreased to the lowest volume in 3 to 4 days for the higher MC lumber; on the contrary, the MC tolerance increased to the highest volume in 3 to 4 days for the lower MC lumber. Both of them, the MC tolerance become to the stable in 5 to 6 days.
     For the MC on the wood surface, the higher MC become to lower with the storage time pass on; on the contrary, for the lower MC on wood surface, it will become higher. After 5 days, both of them will be stable. The research showed the best MC of wood bonding is 9-10%.
     2 Wood drying stress
     The trend of the wood stress will become higher after completed drying, this is fluctuated change:it has the close relationship to the changing of the MC.MC changes and the stress changes accordingly. The MC is stable and the stress is stable too. When the wood drying schedule's highest temperature is 90℃,the MC tolerance is around 1%, the drying stress is in the smallest condition. It will be increased when the wood dried at higher temperature as well as the big MC tolerance.
     3 Bonding strength (compressive and shear)
     The wood bonding strength has the close relationship to the MC as well as the wood drying stress. If the stress higher, the bonding strength will be lower. The MC tolerance will become main factor to the bonding strength when the stress is similare.The bonding strength will be the highest when the N1s content around 3% and O1s 23-24% on the bonding interface. The wood drying schedule temperature is 90℃accordingly.
     4 Wet ability on the wood surface
     The cosine contact angle will become lower and lower with the wood storage time pass on, in another words, the wood surface wet ability is decreased. The wet ability will be affected by the wood surface MC changing, the more MC changes on the wood surface, the more decreased to the wet ability, on the contrary, the small MC changes on the wood surface, the even changes to the wet ability. The higher MC wood wet ability is better than that of the lower MC one.Undered the same MC condition, The wood, which dried in the higher temperature,the wet ability will be lower than that of the one which dried in the lower temperature. The wet ability will be in the best when the MC is 8-10% and the dried temperature is around 90℃. When the MC is less than 7%, no mater how lower temperature used to dry the wood, the wet ability could not has a higher volume.
     5 Wood surface free energy
     The wood surface free energy will become lower and lower with the storage time pass on. It has the close relationship with the MC changing:the higher MC wood surface free energy is better than that of the lower one. The wood surface free energy will be in the highest volume under the 8-9% MC as well as the dried temperature is 90℃. There is lower free energy volume if the wood MC is less than 6%.
     6 Wood surface active functional group
     With the storage time pass on, the wood surface active functional group will be changed as below:C1s changed in fluctuate way, normally it is decreased at first then increased; O1s content volume is changed from 35% to 27% then increased to 30%.The Nls content is small on the wood surface. The wood drying temperature will give a great effect to the C1s volume on the wood surface:C1s volume will be less when the dried final temperature is lower than that of it dried under the higher final temperature. O1s on the wood surface will be in highest volume when the MC is around 10%, the dried final temperature is 90℃. When the MC is less than 6%, there is no big change of the O1s on the wood surface with the different dried temperature.
     7 Bonding interface active functional group
     Compared with the wood surface,C1s, O1s and N1s atom volume are changed obviously on the bonding interface, C1s is decreased; Nls is increased more; O1s is decreased. This indicated that there are some chemical changes between the wood and the adhesive surface. C1s volume is in the best condition under the 9-10% MC and the dried final temperature is 90℃. The dried temperature give less affect to O1s volume on the bonding interface, the wood surface MC gives a big effect to O1s.
引文
[1]周崟.中国落叶松属木材.北京:中国林业出版社,2001
    [2]Morton K.W. and Mayers D.F. Numerical solution of partial differential equations. Cambridge university press, Cambridge, England,2005
    [3]Skaar, C. Wood water relations. Springer-Verlag, Berlin,1988
    [4]Bao Fucheng, Lu Jianxiong, Avramidis S. On the permeability of main wood species in China. Holzforschung.1999,53(4):350~354
    [5]#12
    [6]陆文达.落叶松资源及其利用.哈尔滨:东北林业大学出版社,1993
    [7]#12
    [8]苗平.马尾松木材高温干燥的水分迁移与热量传递.南京林业大学博士学位论文,2000
    [9]Siau, J.F. Transport processes in wood. Springer-Verlag, Berlin,1984
    [10]Bramhall G. Sorption diffusion in wood. Wood Science and Technology,1994,28(1): 86~88
    [11]Bramhall G. Diffusion and the drying of wood. Wood Science and Technology,1995, 29(3):209~215
    [12]Hunter A.J. On movement of water through wood-The diffusion coefficient. Wood Science and Technology,1993,27(6):401~408
    [13]Meijer de M. Unsteady state diffusion of methanol in Douglas fir heartwood at high temperature. Holzforschung,1996,50(2):135~143
    [14]Hartley I.D. and Schneider M.H. Water vapor diffusion and adsorption characteristics of sugar maple(Acer saccharum, Marsh.)wood polymer composites. Wood Science and Technology,1993,27(6):421~427
    [15]Avramidis, St. and Siau, J.F. An investigation of the external and internal resistance to moisture diffusion in wood. Wood Science and Technology,1987,21(3):249~256
    [16]Liu, J.Y. A new method for separating diffusion coefficient and surface emission coefficient. Wood and Fiber Science,1989,21(2):133~141
    [17]Hunter A.J. The evaporation of water from wood at high temperature. Wood Science and Technology,1997,31(6):73~76
    [18]Choong, E.T. and Skaar,C. Diffusivity and surface emissivity in wood drying. Wood and Fiber Science,1972,4(2):80~86
    [19]Simpson, W.T. and Liu, J.Y. Dependence of water vapor diffusion coefficient of aspen (Populus spec.)on moisture content. Wood Science and Technology,1991,26(1):9-21
    [20]Simpson, W.T. Determination and use of moisture diffusion coefficients to characterize drying of northern red oak(Quercus rubra).Wood Science and Technology,1993,27(6): 409~420
    [21]Cai, L.P. Determination of diffusion coefficients for sub-alpine fir. Wood Science and Technology,2005,39(2):153~162
    [22]Siau, J.F. Chemical potential as a driving force for non-isothermal moisture movement in wood. Wood and Fiber Science,1983,17(2):101~105
    [23]Skaar, C. and Siau, J.F. Thermal Diffusion of Bound Water in wood, Wood Science and Technology,1981,15(2):105~112
    [24]Skaar, C. and Babiak, M. A model for bound water transport in wood. Wood Science and Technology,1982,16(2):123~138
    [25]Stanish, M.A. The role of bound water chemical potential and gas phase diffusion in moisture transport through wood. Wood Science and Technology,1986,20(1):53~79
    [26]Nelson, R.M. Diffusion of bound water in wood I:The driving force. Wood Science and Technology,1986,20(2):125~135
    [27]战剑锋等.白桦木材干燥过程横纹流变特性的初步研究.林业科技,2002,40(5):175-179
    [28]战剑锋,顾继友,艾沐野.白桦干燥过程的横纹干燥应力.东北林业大学学报,2005,33(4):25-28
    [29]战剑锋,顾继友,艾沐野.白桦木材干燥过程横纹流变特性的初步研究.林业科学,2004,40(5):174-179
    [30]战剑锋,顾继友,蔡英春等.木材流变学特性对板材常规干燥开裂、变形的影响.林业机械与木工设备,2007,35(10):33-36
    [31]战剑锋,顾继友,蔡英春等.木材流变学特性对板材常规干燥开裂、变形的影响.林业机械与木工设备,2007,35(10):33-36
    [32]刁秀明等.杯弯法测试木材干燥应力的研究.林产工业,1995,22(4):16-18
    [33]杨庆贤.木材干燥过程中热质迁移交互作用的研究.福建林学院学报,1999,19(2):101-104
    [34]Cloutier A. Fortin Y. Moisture content-water potential relationship of wood from saturated to dry conditions. Wood Science and Technology,1991,25(4):263~280
    [35]Hunt D.G. Creep trajectories for beech during moisture changes under load. Journal of master science,1984,19:1456~1467
    [36]Salin J.G Numerical prediction of checking during timber drying and a new mechano-sorptive creep model. Holz als Roh und Werkstoff,1992,50(5):195~200
    [37]Rice R.W. and Youngs R.L. The mechanism and development of creep during drying of red oak. Holz als Roh und Werkstoff.1990,48(2):73~79
    [38]李大纲.国内外木材干燥应力研究现状及发展趋势.建筑人造板,2001(2):15-18
    [39]李大纲.杨木高温干燥过程的水分迁移及流变学特性的研究.南京林业大学博士学位论文,1998
    [40]Sahin A.Z., Dincer, I. Graphical determination of drying process and moisture transfer parameters for solid drying International journal of heat and mass transfer,2002,45(2): 3267~3273
    [41]Dedic A.D., Mujumdar A.S. and Voronjec D.K. A three dimensional model for heat and mass transfer in convective wood drying. Drying Technology.2003,21(1):1~15
    [42]李梁,李贤军,张壁光.非稳态法测定马尾松扩散系数.第十次全国木材干燥学术讨论会论文集,2005,107-112
    [43]McMillen J.M. Drying stresses in Red Oak, Forest Product Journal.1955,5(2):71~76
    [44]Svensson S. Strain and Shrinkage force in wood under kiln drying conditions.2: Measuring strains and shrinkage under controlled climate conditions. Holzforschung, 1996,50:463~469
    [45]李晓玲等.人工林杨木的高频真空干燥工艺.木材工业,2004(7),18(4):12-15
    [46]Ugolev B.N. Skuratof N.V. Stress-strain state of wood at kiln drying, Wood Science and Technology.1992,26(3):209~217
    [47]Wu Qinglin and Millota M.R. Rheological behavior of Douglas fir perpendicular to the grain at elevated temperature. Wood and Fiber Science,1995,27(3):285~295
    [48]Pang Shusheng. Modeling of stress development during drying and relief during streaming in Pinus radiata lumber. Drying technology,2000,18(8):1677~1696
    [49]程万里.木材过热蒸汽干燥过程中的收缩应力(Ⅰ).东北林业大学学报,2004,32(6):32-34
    [50]伊松林等.木材真空-浮压干燥过程中自由水迁移特性.北京林业大学学报,2003,25(4):60-63
    [51]刁秀明,何灵芝,白化奎.阔叶材干燥应力的研究-温度对干燥应力的影响,林业科技,1994,19(2):37-41
    [52]Mohssine Moutee, Fortin Yves, Fahard Mario. A global rheological model of wood cantilever as applied to wood drying. Wood Science and Technology 2007,41(3): 209~234
    [53]Oliver A.R. A model of the behavior of wood as it dries with reference to eucalyptus materials. Research report CM91-1 Civil and mechanical engineering department, Australia University Tasmania, Hobart,1991
    [54]滕通濂.短周期工业材干燥过程中木材内部水分迁移特点的研究.林产工业,1998,12(4):3-7
    [55]杨庆贤.木材干燥过程中热质迁移交互作用的研究.福建林学院学报,1999,19(2):101-104
    [56]Dincer, I. and Dost, S. An analytical model for moisture diffusion in solid objects during drying. Drying Technology,1995,13(1&2):425~435
    [57]刘应安.木材干燥应力数学模型.东北林业大学学报,1998,26(5)
    [58]朱政贤等.落叶松材高温干燥初步试验报告.东北林学院学报,1963,2?
    [59]林梦兰.落叶松门窗的生产试制.林产工业,1981,8(1)
    [60]孙品,朱政贤.兴安落叶松干燥方法的研究.东北林业大学学报,1988,16(5):42-47
    [61]李大纲.木材高温干燥过程中的弹性应变.木材工业,2000,14(2)
    [62]李大纲,顾炼百.杨木高温干燥过程中表层流变特性的研究.林业科学,1999,35(1):83-89
    [63]刘 晶.俄罗斯产木材干燥基准的探讨.林业科技,2003,28(2):44-46
    [64]Irudararaj J and Haghighi K. Nonlinear finite element analysis coupled heat and mass transfer problems with aapplication to timber drying. Drying technology,1990,8(4): 731~749
    [65]Bramhall G Mathematical model for lumber drying:1-principle involved. Wood science, 1979,12(1):15~21
    [66]李延军.马来甘巴豆木材干燥工艺的初步研究.浙江林业科技,2001(5),21(3):40-42
    [67]苗平等.泡桐木材的防变色和干燥.林产工业,1995,22(1):12-14
    [68]滕通濂.实木地板木材干燥技术.木材工业,2003(11),17(6):16-19
    [69]Grossman P.U.A. Requirement for a model that exhibit mechano-sorptive behavior. Wood Science and Technology,1976,10(3):163~168
    [70]Leicester R.H. A rheological model for mechano-sorptive deflection of beams. Wood Science and Technology,1971,5(3):211~220
    [71]Ranta-Maunus A. The visco-elasticity of wood at varying moisture content. Wood Science and Technology,1975,9(3):189~205
    [72]Wu Qinglin and Millota M.R. Mechano-sorptive deformation of Douglas fir specimens under tangential tensile stress during moisture adsorption. Wood and Fiber Science,1996, 28(1):128~132
    [73]周宝华.木材干燥过程中内应力的初步研究.南京林产工业学院学报,1982,6(2):76-90
    [74]李维桔.木材弹性及木材干燥应力,Ⅱ木材干燥应力,南京林产工业学院学报,1982,6(4):107-121
    [75]Ormarsson S, Dahlblom O, Petersson H A numerical study of the shape stability of sawn timber subjected to moisture variation. Part 2. Simulation of drying board. Wood Science and Technology 1999,33(5):407~423
    [76]刘银水.水压技术在木材干燥窑湿度调节中的应用.机床与液压,2005,8:67-69
    [77]刘 元.西南桦木材干燥特性与干燥方法及其工艺.中南林学院学报,2005(4),25(2):14-20
    [78]Martenson A. Mechano-sorptive effects in wood material. Wood Science and Technology, 1994,28(6):437~449
    [79]Martenson A. and Svensson S. Stress-strain relationship of drying wood. Part 1: Development of a constitutive model. Holzforschung,1997,51:472~478
    [80]Martenson A. and Svensson S. Stress-strain relationship of drying wood. Part 2: Verification of a one dimensional model and development of a two dimensional model. Holzforschung,1997,51:565~570
    [81]Chen G. The drying stress and check development on high temperature kiln seasoning of sapwood radiata boards I:Moisture movement and strain model, Holz als Roh und Werkstoff,1997,55(2):59~64
    [82]Chen G. The drying stress and check development on high temperature kiln seasoning of sapwood radiata boards II:Stress development, Holz als Roh und Werkstoff,1997, 55(3):169~173
    [83]Booker J.D. Acoustic emission related to instantaneous strain in Tasmanian eucalypt timber during seasoning. Wood Science and Technology,1994,28(4):249~259
    [84]Ito Y. Stress release method of kiln dried hardwood lumber:relief of the stress occurring in wood during drying. Proceeding of the 7th IUFRO international wood drying conference. Tsukuba, Japan,2001,110~113
    [85]Cheng W.L. Morooka T. and Norimoto M. The stress occurring in wood under high temperature steam. Proceeding of the 7th IUFRO international wood drying conference. Tsukuba, Japan,2001,256~261
    [86]Ormarsson S, Dahlblom O, Petersson H A numerical study of the shape stability of sawn timber subjected to moisture variation. Part 1:Theory, Wood Science and Technology 1998,32(5):325~334
    [87]赵西平.小径木白桦锯材干燥质量的影响因素分析.北京林业大学学报,2005(9),27:47-50
    [88]滕通濂.23种进口地板的干燥技术.人造板通讯,2002,8
    [89]Svensson S. Strain and Shrinkage force in wood under kiln drying conditions.1:Equipment and preliminary results. Holzforschung,1995,49:363~368
    [90]Moren T.J. Creep response to drying of timber boards of Scots pine. Forest Product Journal,1993,43(10):58~64
    [91]Hanhijarvi A. Deformation properties of Finish spruce and pine wood in directions in association in high temperature drying Ⅲ:Experimental results under drying conditions (mechano-sorptive creep), Holz als Roh und Werkstoff,2000,58(1-2):63~71
    [92]Haque MN, Langrish TAG, Keep LB, Keey RB Model fitting for visco-elastic creep of Pinus radiata during kiln drying. Wood Science and Technology 2000,34(5):447~457
    [93]Ranta-Maunus A.Impact of mechano-sorptive creep in the long-term strength of timber. Holz als Roh und Werkstoff,1990,48(2):67~71
    [94]Moren T.J. Check formation during law temperature drying on Scots pine:theoretical consideration and some experimental results. Proceeding of the 2th IUFRO international wood drying conference. Washington, USA,1989,97~100
    [95]陈定永.山毛榉干燥过程的控制与干燥质量的关系.木材工业,2000,27(5):23-25
    [96]郭明辉.小径木水曲柳锯材加工的尺寸误差对干燥质量的影响.东北林业大学学报,2004,32(1):22-24
    [97]Wu Qinglin Rheological behavior of Douglas fir as related to the process of drying. PhD thesis, Oregon state university, Corvalis, Oregon America,1993
    [98]龚任梅等.小径木材干燥方法及质量控制.林业科技,2003,28(3):33-337
    [99]龚仁梅,沈隽,何灵芝等.温度对人工林落叶松木材干缩及密度的影响.林产工业,2000,27(1):14-16
    [100]龚仁梅,沈隽,何灵芝等.温度对人工林落叶松木材物理力学性能的影响.林业科技,2000,25(5):38-40
    [101]龚仁梅,沈隽,何灵芝等.温度对人工林落叶松木材水分移动及微观结构的影响.东北林业大学学报,2001,29:31-33
    [102]Martenson A. Stress development in drying timber-a theoretical description. Proceeding of the 4th IUFRO international wood drying conference. Rotorua, New Zealand,1994, 173~180
    [103]王喜明.小径原条剥皮方式对木材干燥的影响.木材加工机械,1998,1:20-22
    [104]王喜明,于建芳,苏金梅等.木材干燥应力应变模型的研究1超微观模型的构筑.第九次全国木材干燥学术讨论会论文集,2003,136-147
    [105]Salin J.G. Calculation of moisture profiles and stress development during drying of round wood for log hourses. Proceeding of the 4th IUFRO international wood drying conference. Rotorua, New Zealand,1994,181~186
    [106]Nelson, R.M. Diffusion of bound water in wood II:A model for isothermal diffusion. Wood Science and Technology,1986,20(3):235~251
    [107]Nelson, R.M. Diffusion of bound water in wood III:A model for non-isothermal diffusion. Wood Science and Technology,1986,20(4):309~328
    [108]Pang Shusheng. Relationship between a diffusion model an a transport model for softwood drying. Wood and Fiber Science,1997,29(1):58~67
    [109]Dincer, I. Moisture loss from wood products during drying-Part I:Moisture diffusivities and moisture transfer coefficients. Energy Source,1998,20(1):67~75
    [110]McMillen J.M. Drying stresses in Red Oak, Effect of temperature, Forest Product Journal. 1955,5(4):230~241
    [111]杨文斌等.木材干燥过程的动态弹性模量.第九次全国木材干燥学术讨论会,2003,158-163
    [112]吕建雄,鲍甫成,姜笑梅等.汽蒸处理对木材渗透性的影响.林业科学,1994,30(4):352-357
    [113]Booker R.E. Evans J.M. The effect of drying schedule on the radial permeability of pinus radiate D.Don. Holz als Roh und Werkstoff.1994,52(3):150~156
    [114]Carrington A.M., Keey R.B. and Walker J.C.F. Free shrinkage of Pinus radiate at an elevated temperature. New Zealand Journal of Forestry Science.1995,25(3):348~357
    [115]Choong E.T. Diffusion coefficients of softwoods by steady state and theoretical methods. Forest product journal,1965,15(1):21~27
    [116]谢力生.声发射法在木材干燥中的应用.林产工业,2001,28(3):39-42
    [117]顾继友,程瑞香.落叶松、桦木和柞木集成材胶接性能的研究.木材加工机械,2003,2:1-4
    [118]Milota M.R. and Tschernitz J.L. Correlation of Loblolly pine drying rates at high-temperatures. Wood and fiber science,1990,22(3):298~313
    [119]Petty J.A. Diffusion of non-swelling gases through dry conifer wood. Wood science and technology,1973,7(4):297~307
    [120]涂登云,顾炼百.干燥过程中马尾松板材干燥应变的研究.南京林业大学学报,2004,28(4):23-28
    [121]涂登云.马尾松板材干燥应力模型及应变连续测量的研究.南京林业大学博士学位论文,2005
    [122]苗平,顾炼百.马尾松木材在高温干燥中的水分扩散性.林业科学,2002,38(2):103-107
    [123]Rosen H.N. Empirical model for characterizing wood drying curves. Wood science,1980, 12(4):201~206
    [124]陈太安,顾炼百.赤桉材干燥终了调湿处理中的流变行为.林业科学,2007,43(3):84-89
    [125]刘志明.麦秆表面特性及麦秆刨花板胶接机理的研究.东北林业大学博士论文,2002
    [126]张勤丽,乌竹香,张彬渊等译.农林水产省林业试验场编.木材工业手册.北京:中国林业出版社,1991
    [127]In Scheikl and Manfred Dunky.Measurement of dynamic and static contact angles on wood for the determination of its surface tension and the penetuation of liquids into the wood surface.Holzforschung,1998,52(1):89~94
    [128]J.E.Marian.Surface texrure of wood as related to glue-joint strength.For.Prod. J.,1958,8(12):345~351
    [129]钱俊等.电场对杨木胶合效应之初探.浙江林学院学报,1999,16(2):109-113
    [130]陆文达,葛明裕.汽蒸处理对落叶松木材物理性质的影响.东北林业大学学报,1989,17(2):41-46
    [131]Fuller A.J. Lumber drying stress development and prong test implications. Ph. D thesis of North Carolina state university,1993
    [132]Behnek C.and Militzer K.E. A simulation model for timber drying checked by measurements at technical kilns. Drying technology,1994,12(8):1841~1862
    [133]曹金珍,赵广杰,鹿振友.木材的机械吸湿蠕变.北京林业大学学报,1998,20(5):94-100
    [134]陈太安.赤桉干燥预热处理与干燥流变学特性的研究.南京林业大学博士学位论文,2004
    [135]Hanhijarvi i A. Deformation properties of Finish spruce and pine wood in directions in association in high temperature drying Ⅱ:Experimental results under constant conditions (visco-elastic creep), Holz als Roh und Werkstoff,1999,57(5):365~372
    [136]方晓敏.谈提高复合材料胶接质量的稳定性.玻璃钢/复合材料,1998(5):24-26
    [137]秦韦等.RTM成型复合材料的界面改性.高分子材料科学与工程,2003,19(6):206-208
    [138]于运花.PVP塑性界面层对CF/VE复合材料性能的影响.高分子材料科学与工程,2003,19(5):208-211
    [139]Hanhijarvi A. Deformation properties of Finish spruce and pine wood in directions in association in high temperature drying Ⅰ:Experimental technique for conditions simulating the drying process and results on shrinkage, hygrothermal deformation, modulus of elasticity and strength, Holz als Roh und Werkstoff,1998,56(6):373~380
    [140]Hanhijarvi A. Deformation properties of Finish spruce and pine wood in directions in association in high temperature drying Ⅳ:Modeling, Holz als Roh und Werkstoff,2000b, 58(4):211~216
    [141]陈艳华等.纤维增强复合材料界面疲劳裂纹扩展的模拟研究.工程力学,2004,21(1):198-201
    [142]庞金兴.改性聚醋酸乙烯酯乳液速粘胶的研制.武汉工业大学学报,2000,4(2):28-32
    [143]Alexander Dillenz.Detection of glue deficiency in laminated wood with pulse thermography Henrik Berglind.The Japan Wood Research Society,2003,J Wood Sci (2003)49:216~220
    [144]刘晓辉等.影响胶接表面特性的诸因素分析.化学与粘合,1997,4:224-226
    [145]Zhan Jianfeng, Gu Jiyou and Cai Yingchun. Analysis of moisture diffusivity of larch timber during convective drying condition by using Crank's method and Dincer's method. Journal of Forestry Research,2007,18(3):199~203
    [146]Collignan A., Nadeau J.P. and Puiggali J.R. Description and ananlysis of timber drying kinetics. Drying technology,1993,11(3):487~506
    [147]吴晓青等.复合材料胶接方式的设计.纺织学报,24(4):372
    [148]Miao Ping and GU Lianbai Water transfer of Masson pine lumber during high temperature drying. Holz als Roh und Werkstoff,2003,61(5):349~354
    [149]Nelson, R.M. Heat of transfer and activation energy for bound water diffusion in wood. Wood Science and Technology,1991,25(3):193~202
    [150]Stamm, AJ. Bound water diffusion into wood in the fiber direction. Forest Product Journal,1959,9(1):27~32
    [151]殷勇.胶接接头力学研究回顾.化工机械,28(4):241-245
    [152]Rosen H.N. Recent advance in drying solid wood. In Mujumdar, A.S.(ed.):Advances in drying, Vol.4, Hemisphere publishing Co., Washington,1987
    [153]郑长良等.考虑胶层蠕变行为的胶接结构有限元分析.宇航学报,1996,10,17(4):62-66
    [154]Choong, E.T. and Skaar,C. Separating internal and external resistance to moisture removal in wood drying. Wood Science,1969,1:200~202
    [155]程瑞香.木材胶接时胶合强度的形成过程.木材加工机械,2004,6:32-34
    [156]程瑞香.木材与竹材粘接技术.北京:化学工业出版社,2006
    [157]黄元波.高含水率单板胶接工艺的研究.林产工业,2005,32(2):11-14
    [158]J. Eriksson·S. Ormarsson·H. Petersson.An experimental study of shape stability in glued boards.Holz Roh Werkst (2004) 62:225~232 (D OI 10.1007/s00107-004-0468-z)
    [159]王逢瑚.木质材料流变学第二版.哈尔滨:东北林业大学出版社,2005
    [160]顾继友.胶接理论与胶接基础.北京:科学出版社,2003
    [161]高建民,余雁,刘志军.木材干燥应力连续监测方法的研究.木材工业,2004,18(3):1-4
    [162]高建民.木材干燥基础.北京:科学出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700