用户名: 密码: 验证码:
重载低速传动未级小齿轮自调位装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在冶金、建材、化工等行业,由于工艺的需要,存在一些重型的回转设备,如烧结机、氧气转炉、回转窑等。重载低速传动系统在这些重型设备的运行中占据着重要的地位,国外从20世纪50年代开始研制应用柔性传动技术,发展很快。我国从70年代后期起逐步研制多柔传动装置,并引进了不少该类成套设备。本文致力于重载低速传动末级小齿轮自调位装置的研究,对多柔传动和自调位小齿轮传动的结构、理论及设计进行研究,为我国在该领域的发展和应用提供技术参考。
     本文通过对BF型、BFP型及BFT型多柔传动的机理及优缺点进行分析,结合BF型、BFP型的特点,重点介绍了创新设计的双轨道型、双点啮合单驱动BF型多柔传动装置及特点。由于BF型(含特殊BF型)、BFP型传动共有的弊端是其滚轮必须承受一定的轮压,以此保证大小齿轮的正常中心距并稳定运行,而该轮压必然导致轮与轨的磨损,在实际运行中不但滚轮更换较频繁,也降低了大齿轮的使用寿命。双轨道型多柔传动装置的成功研制,使其在单点啮合条件下滚轮与轨道间轮压在理论上可为零并具多项功能,较好地解决了这一问题。该新型传动在任一啮合点,即在单点啮合条件下的运转功能不是单一的,而是具有BOGILEX?传动全部运转功能,且按BF及BFP方式运转时轮压可很小。双点啮合单驱动BF型多柔传动装置,通过在悬挂小车内设置两个小齿轮共同来驱动一个大齿轮,使其承载能力提高一倍。
     对某企业Ф3200煅烧炉末级传动装置出现了末级小齿轮过度磨损,使得小齿轮使用寿命大大缩短这一情况,本文提出了采用末级传动改造为自调位小齿轮装置形式,以解决末级传动啮合不良的问题。由于自调位小齿轮传动装置的最大特点是利用鼓形齿来传递动力和自调位偏转,通过对其传动机理、结构及受力状况的分析,在消化DMGH传动的基础上,根据煅烧炉末级传动的要求,创新设计了三种自调位小齿轮结构型式方案,并给出了具体改造设计方案及鼓形齿轮的结构设计。为了对自调位小齿轮装置鼓形齿轮传动系统的动力学特性进行研究,研制了重载低速传动末级自调位小齿轮实验装置,并投入实验使用。
     针对现行的BFT型多柔传动理论计算公式存在的问题,本文通过建立新的坐标体系,对BFT型多柔传动末级不均载的三种情况进行力学分析,解决了各种不均载条件下的精确理论计算问题,得出了在全均载及其他不同程度均载条件下的精确理论计算公式,并根据这些公式可以方便工程计算。同时,提出了确定最佳结构参数的两种方法,并通过实例进行了验证。一种是试凑法,可以快速地找出比较合适的结构参数,也为其他型式的多柔传动设计提供了类似的解决方案。第二种优化设计法,通过优化设计实现了多柔传动装置的结构优化、参数优化。
     由于自调位小齿轮装置的应用在国外也是最近几年,其设计、制造方法属于专利范围,未见有公开资料。本文通过对自调位小齿轮装置的受力进行分析,给出了装置的核心零件鼓形齿的设计方法,并应用所给出的方法设计了自调位小齿轮实验装置。根据所设计的参数和结构,成功制造出了自调位小齿轮装置样机进行实验,为装置及系列装置的设计提供了依据。
     为了便于分析自调位小齿轮装置中鼓形齿齿向位移、棱边卡死现象及说明某一轮齿所处周向位置,本文参考鼓形齿联轴器的啮合分析,把鼓形齿内、外齿面的运动简化为展开的平面运动。先建立鼓形齿齿面方程,根据非共轭齿面的啮合条件,得到一系列非线性方程组,再运用MATALAB优化求解啮合点的数值解,最后得出内外齿啮合运动的规律。
     本文通过对鼓形齿与小齿轮上内齿轮的配合分析和自调位小齿轮装置机构偏载分析,引入柔性多体动力学理论,建立了自调位小齿轮系统柔性多体系统动力学模型。由于本传动的小齿轮自调位机构为一可自适应转动的柔性部件,首先建立该传动机构的多刚体动力学模型,并在该模型基础上进行了运动传递分析,然后在其基础上再引入柔性多体系统的动力学模型。最后在实验的基础上,对自调位小齿轮装置扭矩波动的振动性质进行了分析,给出了不同挠性转角情况下的扭矩与应力关系。
With the needs of technology, in metallurgy, building materials and chemical industries etc, there are some heavy-duty rotating equipment, such as sintering machine, oxygen converters and rotary device etc. Heavy-load low-speed driving system occupies an important position in the heavy–duty operation. From 1950s in the 20th century, foreign countries started to develop the application of flexible-transmission technology. In the late of 1970s, China gradually developed the multi-channel engaging device, and introduced a number of such complete sets of equipment. This paper dedicates to research on last-stage pinion device with self-aligning in heavy-load low-speed driving and study on its structure, theory and design of multi-channel engaging and self-aligning pinion in order to provide our country the technical references for the development and application in this field.
     Based on analysis of the mechanism, advantages and disadvantages of BF-type, BFP-type, and BFT-type, multi-channel engaging, combining the features of BF-type, and BFP-type,, the paper introduces the innovative design of the dual-track type, dual-point meshing with single-drive BF multi-channel engaging device and its features.Because the common malpractice of BF-type (including particular BF type), BFP-type transmission is that the rotating wheel must endure a certain degree of the wheel-pressure in order to maintain the distance between centers of big and small gears and operate stably, as a result that the wheel-pressure will inevitably cause the abrasion between the wheel and track, in actual operation, not only will the wheel has more frequent replacement, but also the gear will reduce its service life.The successful development of double-track flexible driving with multi-channel engaging makes it possible that the wheel-pressure can be zero in theory with lots of functions between the rotating-wheel and track in the condition of the single-point meshing. The operation function of this new transmission device is not single but contains all functions of BOGILEX transmission in any single meshing point, also when it operates in BF and BFP way, the wheel-pressure is likely to be lower. The dual-point meshing in single-drive BF flexible-transmission device will promote its bearing capacity by two small pinions which are setting in a small slung trolley to driving big one altogether.
     To aim at the last-stage pinion excessive wear, which causes the reduction of its service time in the last-stage transmission device inф3200 incinerator in an enterprise, the paper suggests a kind of device changing the last-stage transmission into the self-aligning engaging so as to solve bad meshing problem in the last-stage transmission.Due to the most prominent feature of self-aligning engaging device is to transfer engine power by drum-shape gear and self-aligning defluxion, This paper analyzes its transmission mechanism, structure and stress distribution based on the understanding of DMGH transmission theory; and according to the requirements of the last-stage transmission in incinerator, creatively designs 3 different types for self-aligning pinion structures, demonstrates the detail reforming proposals and drum-shape pinion structure design. Also, in order to make deeper research on dynamics of drum-shape gear transmission system of self-aligning pinion device, this paper presents the last-stage self-aligning pinion experimental device in heavy-load and low-speed transmission and puts it into experimental use.
     Directed towards the current exist problems for calculating formula in BFT flexible-driving theory, the paper establishes the new coordinate system; makes 3 different dynamic analysis of BFT flexible-driving in the last-stage uneven loading; solves the issue of the precise theoretical calculation in all kinds of uneven loading condition so that the precise theoretical calculating formula is obtained in the condition of the whole and uneven degree loading, and makes convenient project calculation with these formula.Meanwhile, the paper proposes 2 ways to determine the optimum structure parameters and verifies by examples that the one is Attempting Method, which can identify the more suitable parameters quickly and provide the similar solution to the other pattern flexible-driving design; the second is Optimizing Design Method, which can optimize structure and parameters for the flexible-driving device.
     Since the self-aligning pinion device has been applied in recent years in foreign countries and its design and manufacturing methods belong to the scope of patents, there is no any public information. The paper demonstrates the design method for the nucleus part, drum-shape gear based on the stress distribution analysis of the self-aligning pinion device and uses the method to design a self-aligning pinion experimental device according to the parameters and structures, successfully makes experiments with a prototype of self-aligning pinion to provide a basis for the device and series of devices.
     For the easy analyzing the tooth displacement and seamed-edge block phenomenon in drum-shape pinion in self-aligning pinion device and explaining a tooth circumferential position, the paper consults in the meshing analysis of the shift jointer of the drum-shape gear, simplifies the inner and outer movement of the drum-shape pinion to an unfolded planar motion; firstly, the paper sets equations for its tooth surface according to non-conjugating tooth meshing condition so as to obtain a series of nonlinear equations; then, uses MATALAB optimization to solve the numerical value of the meshing points coming to the conclusion for both inner and outer tooth meshing movement disciplines.
     Based on the co-analysis between the drum-shape pinion and inner gear on the pinion, and the bias loading analysis for the self-aligning pinion device structure, the paper introduces the flexible-multi-body dynamics theory, establishes a dynamics model for self-aligning pinion system, the flexible-multi body system. Since this self-aligning device in this transmission belongs to a self-adaptive rotating flexible component, we need to set up the multi-rigid dynamics model and to analyze its movement transmission based on this model, then, to introduce dynamics model of the flexible-multi-body system; at last, to identify the vibration characteristic of the torque fluctuations in self-aligning pinion device resulting in the relations between the torque and the stress in different slight deformed angles.
引文
[1]齿轮手册编委会.齿轮手册[M].北京:机械工业出版社,1990.
    [2]成大先.机械设计手册(第三卷)[M].第四版.北京:化学工业出版社,2001.
    [3]徐灏.机械设计手册(第三卷)[M].北京:机械工业出版社,2004.
    [4]西安重型机械研究所转炉组.大扭矩、低转速新型传动——多点啮合柔性传动[J].重型机械,1976(1):63-80.
    [5]西安重型机械研究所转炉组.多点啮合柔性传动静力学分析[J].重型机械,1978(3):1-16.
    [6]方正.冶金(矿山)机械传动的发展方向——多点啮合柔性传动[J].冶金设备1981(3):4-7.
    [7]王律躬,于开盛,孙清殿.新型转炉倾动机构——多点啮合柔性传动动力学的理论和实验结果分析[C].冶金设备1981(3):8-17.
    [8]郑自求等.BOGIFLEX?多点啮合柔性传动.南方冶金学院学报[J],1989(2):27-36.
    [9]德国弗兰德公司J.Thuilot.用于管磨机的直接啮合齿轮传动装置.世界水泥[J],1995(8).
    [10]容永泰.水泥回转窑传动的发展[J].水泥技术,1997(1):7-12.
    [11] Dr.S Morgenroth.Malaysian ball mill innovations[J].World Cement,MAY 1998:82-86.
    [12]郑自求等.DMGH传动装置.2004中国机械工程学会年会论文集[C].北京:机械工业出版社, 2004.10.
    [13]郑自求,贺元成等.多点啮合柔性传动的发展及应用[C].第二届全国传动基础件产品技术开发及应用交流研讨会论文集.2005.6.
    [14]米拉德.京.克鲁德,皮肖克,热拉德.用自调整浮动式小驱动齿轮带动一个大齿环的传动装置[P].法国在中国申请专利.发明专利申请公开说明书,CN1047911A,1990.12.19.
    [15]王春和.回转窑多柔传动系统的设计研究[J].有色设备,1988(2):1-7.
    [16]王春和等.一种柔性传动装置[P].中国专利,93212963,3,1994.02.09.
    [17]张生宁等.大型冷机悬挂式多点啮合传动装置[P].中国专利,93217269,5,1994.07.13.
    [18]金宏钧.柔性传动烧结机台车驱动装置及其特点[J].江西冶金,1991(3):58-60.
    [19]潘津生.柔性传动装置及其应用[J].矿山机械,1991(3):14-16.
    [20]李文伟.柔性传动圆筒混合机[J].烧结球团,1992(5):61-63.
    [21]宗复芄.回转窑及圆筒混合机柔性传动系统的开发与实践[J].有色设备,1994(1):1-6.
    [22]崔文好等.高炉卷扬机柔性传动的设计和理论分析[J].冶金设备,1995(1):1-5.
    [23]苗永温.多柔传动装置在刚性滑道烧结机上的应用[J].工程设计与研究,1996(3).
    [24]赵镜涵.柔性传动在株洲冶炼厂回转窑中的应用[J].有色设备,1997(1):25-27.
    [25]韩旭东.柔性传动用于回转窑传动系统的改造设计及力能参数计算[J].现代机械,1998(3):27-30.
    [26]张立华.柔性传动在回转圆筒类设备设计中的实践和应用[J].中国机械工程,1998(7):82-85.
    [27]刘金庭.柔性传动在回转筒形设备上的应用与发展[J].有色设备,1998(3):13-15.
    [28]张翔,刘美珑.同步均载的转炉倾动机[J].重型机械,2000(1):9-11.
    [29]张立华,王晶然.柔性传动圆筒混合机的开发与应用[J].钢铁,2000(3):60-63.
    [30]刘欣.柔性传动在烧结生产中的应用[J].矿山机械,2001(3):58-59.
    [31]焉永刚等.转炉倾动装置的改进[J].冶金设备,2003(6):43-44,9.
    [32]孙夏明,景作军.两种柔性传动的设计和使用[J].冶金设备,2003(2):14-17,3.
    [33]王克国.多点啮合柔性传动装置用于回转窑传动探析[J].轻金属,2003(1):52-55.
    [34]孙夏明等.柔性传动在回转窑上的使用与设计[J].中国制造业信息化,2006(5):38-42.
    [35] Juergen Thui lot.Diret meshing girth gear units for tube mills[J].World Cement,AGU 1995.
    [36] Dr S Morgenroth krupp polysius.Malaysian ball mill innovations[J].World Cement,MAY 1998.
    [37]杜强等.管磨机先进的传动方式—多点啮合[J].矿山机械,2000(10).
    [38]罗怀林等.重载低速齿轮传动自适应机构机理及创新探讨[J].现代制造工程, 2002(10):83-85.
    [39]贺元成等.一种重载低速传动末级小齿轮自调位装置的设计研究[C].2005中国机械工程学会年会论文集.北京:机械工业出版社, 2005.11.
    [40]贺元成等.小齿轮自调位装置用于煅烧炉传动的设计研究[J].四川理工学院学报(自然科学版),2006(1):1-3.
    [41] He Yuancheng ,et al.Study of last stage pinion device with self-aligning of heavy load and low speed drive[C].Proceedings of the International Conference on Mechanical Transmissions.Published by Science Press,2006, 1065-1068.
    [42]赵丽娟等.基于PRO/E与ADAMS协同仿真中的图形数据交换[J].机械与电子, 2006(12):87,97,08.
    [43]洪嘉振.计算多体动力学[M].北京:高等教育出版社, 1999.
    [44] Juergen Thuilot.Diret meshing gieth gear units for tube mills[J].World Cement,AGV 1995.
    [45] Drs morgenroth krupp polysius.Malayaian ball mill innovations[J].World Cement,MAY 1998.
    [46]陈宗源等.多啮全悬柔传动装置[P].中国专利.02239975.5,2003.05.21.
    [47]刘文植.全悬挂转炉倾动系统动态分析[J].振动与冲击,1987(2):24-33.
    [48]廖道训,梅华平.全悬挂多点啮合柔性传动的动力学模型[J].华中理工大学学报,1990(增刊):173-180.
    [49]廖道训,梅华平.全悬挂多点啮合柔性传动动态响应的数字仿真[J].华中理工大学学报,1990(增刊):181-186.
    [50]刘宏昭.全悬挂多柔传动机构动特性解析分析[J].重型机械,1998(2):29-32.
    [51]孙夏明,王春和.BF型回转窑传动装置的研制[J].冶金设备, 1994(3):10-13.
    [52]郑自求等.BF型多柔传动的理论计算公式[J] .四川轻化工学院学报,1997(4):32-38.
    [53]郑自求等.BF型多柔传动的静力学分析[J].重型机械,1998(2):33-36.
    [54]郑自求等.BF型多柔传动末级齿轮强度计算及优化设计[J].机械,1998(增刊):106-109,112.
    [55]郑自求等.BF型多柔传动应用于圆筒混合机的优化设计[J].冶金设备,1998 (4).
    [56]郑自求.BF型多柔传动结构参数的优化设计[J].机械设计与制造工程,1998(5):26-29.
    [57]刘金庭.BF型柔性传动在回转筒形设备上的应用[J].水泥工程,1999(1):25-26.
    [58]张立华.BF型柔性传动的应用及其最优化设计[J].中南工业大学学报,1999(6):630-633.
    [59]张立华.回转圆筒BF型柔性传动参数的优化设计[J].机械设计,2000(1):39-42.
    [60]郑自求.特殊BF型多柔传动的研制[J].重型机械,1999(1):13-14.
    [61]贺元成等.特殊BF型多点啮合柔性传动静力学分析及设计要求[J].机械,1999(增刊):166-168.
    [62]郑自求等.齿轮变速传动装置[P].中国专利,91214327,4,1992.02.05.
    [63]郑自求等.BFP型多柔传动的静力学分析及优化设计[J].重型机械,1998(5):39-43.
    [64]郑自求,贺元成等.BFP型多点啮合柔性传动的研制[J].机械设计,1999(6):22-24.
    [65]郑自求,赵虎,贺元成等.一种BFP型多柔传动装置[J].现代制造工程,2003(10):79-80.
    [66] Fu Chunhua,He Yuancheng.Study of BFP type flexible driving with multichannel engagingwith double-point gear-meshing and single driving[C]. Proceedings of the International Conference on Mechanical Transmissions,Published by Science Press,2006:302-304.
    [67]李先民.BFP改进型多柔传动装置齿轮啮合点位置的确定[J].现代制造工程,2006(8):69-70.
    [68]方正.BFT型多柔传动装置的理论分析[J].重型机械,1985(9):28-31.
    [69] Feng Yanbin,Zheng Ziqiu,He Yuancheng.Study of unbalanced load coefficient and statics analysis on BFT type flexible driving with multichannel engaging[C].Proceedings of the International Conference on Mechanical Transmissions, Published by Science Press,2006:1138~1142.
    [70]贺元成等.BFT型多柔传动的静力学分析[J].重型机械,2007(3):35-40.
    [71]冯彦宾.BFT型多柔传动装置的优化设计及小齿轮自调位装置的研制[D] .四川理工学院硕士学位论文,2007.
    [72]郑自求等.双轨道式多柔传动装置[P].中国专利.97210095,4,1998.06.27.
    [73]郑自求,贺元成等.双轨道型多柔传动的开发[J].冶金设备,1999(5):31-35.
    [74]贺元成,郑自求.双轨道型多柔传动的研究[C].第一届国际机械工程学术会议论文集,2000-11.
    [75]贺元成,郑自求.双轨道型多柔传动装置的研制[J].机械,2000(4):7-8.
    [76]杨长牛,贺元成等.双轨道型多柔传动装置的设计研究[J].四川轻化工学院学报,2001(3):60-62.
    [77]张玲玉等.双轨道型柔性传动的优化设计[J].现代制造工程,2002(10):87-88.
    [78] He Yuancheng ,et al.Study and development of double track type flexible driving with multi-channel engaging[C].Proceedings of the International Conference on Mechanical Transmissions, Published by Science Press,2006, 1058-1061.
    [79]郑自求等.浮动小齿轮单向驱动大齿轮的传动装置[P].中国专利,94227343. 5,1995.02.05.
    [80]郑自求等.双滚轮型多柔传动装置[C].2003年中国机械工程学会年会论文集,机械工业出版社,2003-10.
    [81]郑自求,贺元成等.双滚轮型多柔传动实验装置的设计研究[J].四川轻化工学院学报,2004(1):47-50.
    [82]贺元成等.顶托小车型柔性传动装置[P].中国专利,ZL 2007 2 0081481.9,2008.8.13.
    [83]贺元成等.柔性小齿轮自调位装置[P].中国专利,ZL 2007 1 0050246.X(公示中).
    [84]贺元成等.悬挂小车型柔性传动装置[P].中国专利,ZL 2007 2 0081478.7,2008.8.13.
    [85]贺元成等.双点啮合单驱动BF型多柔传动的探讨[J].工程设计学报,2005(增刊) :233-235.
    [86]郑自求等.双点啮合单驱动BF型多柔传动工业实验装置的研究[J].四川理工学院学报(自然科学版),2005(2):73-75.
    [87]罗怀林、贺元成等.末级小齿轮自调位装置[P] .中国专利, ZL 2007 2 0081480.4,2008.8.13.
    [88]贺元成等.小齿轮自调位装置[P].中国专利,ZL 2007 2 0081479.1,2008.8.13.
    [89]袁林,贺元成,郑自求.鼓形齿应用于小齿轮自调位装置的探讨[J].重型机械,2007(6):52-55.
    [90]袁林.小齿轮自调位装置的设计研究[D].四川理工学院硕士学位论文,2008.
    [91] Luo Huailin ,et al.Research of Mechanism of Self-adapting of Slow-footed Multiple-flexible Driving with Overloading and Creative Design[C], Proceedings of the 6th International Conference on Frontiers of Design and Manufacturing,Published by SciencePress USA Inc.,2004.
    [92]杨长牛,符纯华,贺元成.齿式联轴器最大偏角计算及在多柔传动装置上的应用探讨[J].机械传动,2006(2):70-72.
    [93]王久库,王宁.自调位齿轮在干燥窑回转设备传动系统中的应用,科技信息, 2007(34):40,25.
    [94]徐成贤等.近代优化方法[M] .北京:科学出版社,2002.
    [95]刘维信.机械最优化设计[M].第二版.北京:清华大学出版社,1994.
    [96]孙靖民.机械优化设计[M] .机械工业出版社,1996.
    [97]王春香等.MATLAB软件在机械优化设计中的应用[J].机械设计,2004(7). [98 ]王家文,李仰军.M ATLAB7.0图形图像处理[M].北京:国防工业出版社,2006.
    [99]彭书志,宋立维.齿轮联轴器齿形优化的理论分析[J].光学精密工程,1999(1):76-78.
    [100]曹玉莲等.重型刮板输送机用鼓形齿联轴器主要参数的探讨与分析[J] .山西煤炭,1997(4):20-25.
    [101]王新林等.鼓形齿联轴器设计计算简明使用方法[J] .重型机械,2005(3):52-55,58.
    [102]邵冶群、朱旬.齿面硬度对煤机低速重载齿轮磨损性能的影响[J].机械传动,2002(2).
    [103]陆佑方.柔性多体系统动力学[M] .北京:高等教育出版社,
    [104]易传云等.鼓行齿联轴器[M] .北京:华中理工大学出版社,1999.
    [105]周金宇等.轧机鼓形齿联轴器齿面啮合及载荷分配研究.重型机械,2007(2):15-18.
    [106]易传云等.非共轭齿面鼓形齿联轴器运动分析[J] .华中理工大学学报,1994( 7):111-116.
    [107]陈乐生等.多刚体动力学基础[M] .哈尔滨:哈尔滨工程大学出版社,1995.
    [108]李润方、王建军.齿轮系统动力学[M] .北京:科学出版社,1997.
    [109] Kahrman A and SinghR.,Non-Linear Dynamics of a Geared Rotor-Bearing System with Multiple Clearances[C],Journal of Sound and Vibration,1991(3).
    [110] LitvinFL,ZhangY,WangJC..Design and geometry of face-gear drive. Transaction,ASME,Journal of Mechanical Design,1992,114:642-647.
    [111] Litvin FL,Gear geometry and applied theory,PTR Prentice Hall Prentice Hall Pretice-Hall.Ine.1994.
    [112] YuPingCheng TeikC.Lim,Dynamics of Hypoid Gear Transmission With Nonlinear Time-Varing Mesh Characteristics,ASME Journal of Mechanical designvol.125(2),2003.
    [113]齐朝晖.多体系统动力学[M] .科学出版社,2008.
    [115]汤秀琴.柔性传动系统动力学数学模型的转化[J].机械传动,1998(3),5-9.
    [116]苏志霄.多点啮合柔性支承传动系统的动力学行为、结构参数识别及疲劳特性研究[D].西安理工大学博士学位论文,1999.
    [117]季泉生,张少军.90 m 2烧结机半悬挂多柔传动扭振新微分算子法研究[J].冶金设备,2002(1):15-18,57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700