用户名: 密码: 验证码:
北京地区地面沉降监测及风险评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地面沉降是一种不可补偿的永久性环境和资源损失,是我国乃至世界范围内较为普遍的地质灾害。北京地区地面沉降已有半个世纪的历史,目前仍然处于持续发展状态,严重影响了首都社会经济的可持续发展。
     针对地面沉降监测方法方面,传统的地表监测手段(水准测量、分层标、GPS等)取得了一些成功的应用。但是这些方法还存在一定的不足,在传统D-InSAR技术基础上发展起来的永久散射体干涉测量技术(Persistent Scatterers for SAR Interferometry, PSInSAR)能够有效降低时间、空间去相干影响以及减弱大气延迟引起的误差组分,有助于提高形变的时、空分辨率及数据处理的精度,是全面获取地面沉降监测信息的有力手段。因此,本论文以北京市典型地面沉降区为研究区,采用永久散射体技术- StamPS算法(Hooper,2004),利用覆盖北京地区的16幅ASAR图像进行永久散射体干涉处理,通过在时间序列PS点上求解出干涉相位中各组份的分量,最终获得北京地区地面沉降监测信息。初步揭示了研究区地面沉降的空间分布特征。
     在利用InSAR技术获取地面沉降全面监测信息的基础上,综合考虑地面沉降灾害对社会、经济可持续发展带来的严重影响,选取北京市重点区县(密云-怀柔-顺义地区)建立基于层次分析法与模糊综合评价方法(AHP-Fuzzy)相结合的地面沉降风险评价模型,并结合GIS空间分析的方法,对地面沉降的风险范围、风险程度等进行综合分析,结果表明北京地区的地面沉降防治刻不容缓,研究结果对北京地区地面沉降灾害的防治与减缓有一定的理论和实际意义。
Land Subsidence, a kind of main urban geological disasters which has occurred in our country and all over the world, is a loss of environment and resources which is unable to be compensated. The land subsidence in Beijing area that occurred about fifty years is developing continuously and deeply affects the sustainable development of social economy.
     The lack of observational data has made it difficult in the past to accurately define the extent of the deforming areas, the magnitude of the surface displacements, and the seasonal land-surface motion with higher temporal resolution and spatial resolution. Persistent scatterers (PS) interferometry, which is an extension of conventional differential synthetic aperture radar interferometry (D-InSAR), it can reduce the temporal and spatial decorrelation and weaken the error that occurred by atmospheric delay,enhance temporal and spatial resolution, therefore,the Persistent scatterer (PS) technology is a useful method for monitor the land subsidence . In this paper, I have used ASAR data to derive detailed maps of the time-varying surface displacement fields over the Beijing city from 2003 to 2006 with PS-InSAR techniques.
     Based on the land subsidence retrieved by PS-InSAR techniques using ASAR data, I establish a hazard assessment model of land subsidence in Beijing using the AHP—Fuzzy method. The AHP-Fuzzy model index system is composed of 3 first-grade factors and 9 second-grade factors, and the evaluation method is based on Remote Sensing and GIS technology. PS-InSAR techniques were used to retrieve the parameters of land subsidence by using ASAR data. The parameters are as the factors in the AHP—Fuzzy evaluation model. The AHP—Fuzzy assessment model was analyzed by using a GIS-based modeling approach. Finally, a case study was carried out in Miyun-Huairou-Shunyi area of Beijing. The more detailed results include: firstly, the risk index value of each study area was extracted by means of the AHP—Fuzzy method. Second, the risk degree of land subsidence was analyzed using the dimensional analytical method based on GIS technology. Third, combining with the present situation of groundwater overexploitation and the thickness of compressive layer, the hazard level of land subsidence can be divided into three grades: the less risk area, the middle risk area, the higher risk area. It indicates that the risk of land subsidence in Beijing is indispensable. This result is reasonable and useful for land subsidence disaster prevention and reduction.
引文
1.薛禹群,张云等.中国地面沉降及其需要解决的几个问题[J].第四纪研究, 2003, 23(6).
    2.龚世良.上海地面沉降影响因素综合分析与地面沉降系统调控对策研究[D]. 2008.
    3.刘毅.地面沉降研究的新进展与面临的新问题[J].地学前缘, 2001, 8(2):273-278.
    4.郑铣鑫等.地面沉降研究现状与展望[C]. 2002全国地面沉降学术研讨会论文集.上海:中国地质调查局地面沉降研究中心, 2002:448-457.
    5.曾正强等.上海地面沉降灾害经济损失评估[C]. 2002全国地面沉降学术研讨会论文集.上海:中国地质调查局地面沉降研究中心, 2002:145-154.
    6.严礼川.我国城市地面沉降概括[J].上海地质, 1992, (1):40-48.
    7.国土资源部.中国地质环境公报[R].国土资源部, 2006.
    8. http://old.cgs.gov.cn/NEWS/Geology%20News/2005/20050826/Original%20Files/023.jpg
    9. Büurgmann, Roland, Hilley et al., Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis [J]. Geology, Mar 2006, 34(3): 221-224.
    10. Ferretti, A., Savio, G., Barzaghi, R, Borghi, A, Musazzi, S., Novali, F., Prati, C., Rocca, F., Submillimeter Accuracy of InSAR Time Series [M]: Experimental Validation, GeoRS(45), No. 5, May 2007, pp. 1142~1153.
    11. Ferretti, C. Prati and F. Rocca, Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci [J]. Remote Sensing, 38(5): 2202~2212, 2000.
    12. Crosetto M etal, Validation of Persistent Scatterers Interferometry over a Mining Test Site Results of the PSIC4 project [C], Proc. ENVISAT Symposium 2007, Montreux, Switzerland, 2007.
    13. Lyons,Sandwell. Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent Scatterers and stacking [J]. J. geophys. Res, 2003
    14. B.M.Kampes. Displacement Parameter Estimation Using Permanent Scatterer Interferometry. PhD thesis, Delft University of Technology, 2005.
    15. Daniele Perissin,D. Perissin, F. Rocca. High accuracy urban DEM using Permanent Scatterers [J]. IEEE TGARS, 2006, 44(11): 3338-3347
    16. Daniele Perissin, Claudio Prati, Fabio Rocca, Deren Li, Mingsheng Liao. Multi-Track PS Analysis in Shanghai[C], Proc., ENVISAT Symposium 2007, Montreux, Switzerland, 2007
    17. Mark Warren, Andrew Sowter, Richard Bingley. PSInSAR without a DEM A 3-Pass Approach [C]. Proc. ENVISAT Symposium 2007, Montreux, Switzerland, 2007
    18. Hooper, A., H. Zebker, P. Segall, and B. Kampes.A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 31 (23), 5, 2004.
    19. Hooper. A combined multiple acquisition InSAR method incorporating both persistent scatterer and small baseline approaches [J].Geophys. Res. Lett., in prep,2007
    20. Galloway DL, Bürgmann R, Fielding E, Amelung, F, Laczniak RL. Mapping recoverable aquifer-system deformation and land subsidence in Santa Clara Valley, California, USA, using space-borne synthetic aperture radar [C]. Proceedings of the 6th International Symposium on Land Subsidence, vol 2, Ravenna, Italy, 24–29 Sept 2000, National Research Council of Italy (CNR), pp 229–236.
    21. Bawden GW, Thatcher W, Stein RS, Hudnut K.Tectonic contraction across Los Angeles after removal of groundwater pumping effects [J]. Nature 2001, 412:812
    22. Buckley SM, Rosen PA, Hensley S, Tapley BD. Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers [J].Geophys Res 108(B11):2542. DOI 10.1029/2002JB001848.
    23. Mahdi Motagh, Yahya Djamour, Thomas R Walter, Hans-Ulrich Wetzel, Jochen Zschau. Monitoring of Land Subsidence in Mashhad Valley, Northeast Iran, Using Interferometric Synthetic Aperture Radar (InSAR), Precise Leveling and Continuous GPS [C].ISAT Symposium 2007, Montreux, Switzerland, 2007.
    24. Jan Anderssohn,et al. Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, northeast Iran:results from InSAR and levelling[J].Geophysical Journal International, 2008.
    25. Hoffmann, Zebker, H.A., Galloway, D.L., and Amelung, Falk. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry [J]. Water Resources Research, 2001, 37(6): 1551-1566.
    26. Hoffmann, Joern.The application of satellite radar interferometry to the study of land subsidence over developed aquifer systems [D]. Stanford University, 2003, 6
    27. M.Watson, Karen, Yehuda Bock. And David T. Sandwell. Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles Basin [J]. Journal of Geophysical Research, 107(0):10.1029/2001 JB000470. 2002
    28. Schmidt DA, Bürgmann R. Time dependent land uplift and subsidence in the Santa Clara Valley, California, from a large InSAR dataset [J]. J Geophys Res 108(B9):2416. DOI 10.1029/2002JB002267.
    29. C.P. Chang, T.Y. Chang. Land-surface deformation corresponding to seasonal ground-water fluctuation, determining by SAR interferometry in the SW Taiwan[J]. Mathematics and Computers in Simulation 67 (2004) 351–359.
    30. Halford KJ, Laczniak RJ, Galloway DL . Hydraulic characterization of overpressured tuffs in central Yucca Flat, Nevada Test Site, Nye County, Nevada [R].USGS Sci Invest Rep 2005-5211.
    31. Burbey T J. Stress-strain analyses for aquifer-system characterization [J]. Ground Water, 2001, 39(1): 128-136.
    32. Tingting Yan,Thomas J. Burbey .The Value of Subsidence Data in Ground Water Model Calibration [J] GROUND WATER ,2008.46(4): 538–550.
    33. S. Stramondo .Subsidence induced by urbanisation in the city of Rome detected by advanced InSAR technique and geotechnical investigations [J]. Remote Sensing of Environment 112 (2008) 3160–3172.
    34. Hanson, E.J. and S.B. Berkheimer. Effect of soil calcium applications on blueberry yield and quality [J].Small Fruits Rev 2004, 3:133-141.
    35. Roland Bürgmann, George Hilley, Alessandro Ferretti, Fabrizio Novali, and Gareth Funning. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis [J], Geology March 2006; v. 34; no. 3; p. 221–224
    36.李德仁,廖明生,王艳.永久散射体雷达干涉测量技术[J].武汉大学学报, 2004, 29(8): 664~668.
    37.李志伟.Modeling Atmospheric Effects on Repeat-pass InSAR Measurements [D]. The Hong Kong Polytechnic University, 2004
    38.何庆成,方志雷,李志明,刘文波. InSAR技术及其在沧州地面沉降监测中的应用[J].地学前缘(中国地质大学(北京);北京大学),2006,13(1):179~184
    39.陈强.基于永久散射体雷达差分干涉探测区域地表形变的研究[D].西南交通大学,2006年,12月
    40. Qiming Zeng, Ying Li, Xiaofan Li .Correction of tropospheric water vapour effect on ASAR interferogram using synchronous MERIS data. IGARSS 2007. IEEE International.
    41.汤益先,张红,王超.基于永久散射体雷达干涉测量的苏州地区沉降研究[J].自然科学进展2006, 16(8): 1015~1020.
    42.吴涛,张红,王超,汤益先,吴宏安.多基线距D-InSAR技术反演城市地表缓慢形变[J].科学通报, 2008 (15): 1849~1857.
    43. Mingsheng Liao, Liming Jiang, Hui Lin and Bo Huang.Urban Change Detection Based on Coherence and Intensity Characteristics of SAR Imagery [J]. Photogrammetric Engineering and Remote Sensing, Vol.74, No. 8, 2008.
    44. Youquan Zhang, Huili Gong, InSAR analysis of land subsidence caused by groundwater exploitation in Changping, Beijing, china, International Geoscience & Remote Sensing Symposium, 2008.
    45. Youquan Zhang, Huili Gong, InSAR analysis of land subsidence caused by groundwater exploitation in Changping, Beijing, china, Interoscience & Remote Sensing Symposium, 2008.
    46. Youquan Zhang, Huili Gong, Xiaojuan Li, Seasonal Displacements in Upper-middle Alluvial Fan of Chaobai River, Beijing, China, Observed by The Permanent Scatterers Technique, Joint Urban Remote Sensing Event, 2009.
    47.胡蓓蓓等,天津市区及近郊区地面沉降灾害风险评估与区划[J].中国人口·资源与环境2008,18(4):29~34
    48.张梁、张建军,地质灾害风险区划理论与方法,地质灾害与环境保护,2000,Vo l. 11(4):323~328
    49.马寅生等.地质灾害风险评价的理论与方法,地质力学学报,2004年,V o l.10(1):7~12
    50.龚士良.上海地面沉降层次分析法研究[J].系统工程,1996,14(3):30~34.
    51.罗元华,张梁,张业成.地质灾害风险评估方法[M].北京:地质出版社,1998.
    52.王国良.地面沉降危险性分级标准初探[J].上海地质, 2006,(4):39~ 43.
    53.刘会平,王艳丽.广州市地面沉降危险性评价[J].海洋地质动态,2006,22(1):1~4.
    54. Ki-Dong Kim, Saro Lee, Hyun-Joo Oh et al. Assessment of Ground Subsidence Hazard near an Abandoned Underground Coal Mine Using GIS [J]. Environmental Geology, 2006, (50):1183~1191.
    55.魏风华.河北省唐山市地质灾害风险区划研究[D].北京:中国地质大学,2006.
    56.于军,武健强.苏锡常地区地面沉降风险评价管理模型研究初探[J].江苏地质, 32 (2) , 113~117, 2008
    57.黄秀铭、汪良谋等,北京地区新构造运动特征[J].地震地质, 13(1):43~51,1991
    58.焦青,邱泽华,《北京平原地区主要活动断裂带研究进展》[C],地壳构造与地壳应力论文集(18):72~84 2006.
    59.焦青,邱泽华,范国胜,北京地区八宝山-黄庄-高丽营断裂的活动与地震[J].大地测量与地球动力学, 25(4):50~54,2005
    60.谢振华等.首都地下水资源和环境调查评价[R].北京市地质调查研究院,2003.
    61.廖明生,林珲.雷达干涉测量—原理与信号处理基础[M].测绘出版社,2003.
    62.白俊.干涉雷达中的永久散射体和交叉干涉技术的研究与应用[D].中国科学院自动化研究所,2005,6
    63.于勇.基于网络规划的干涉雷达相位解缠算法研究[D].中国科学院遥感应用技术研究所,2002
    64. Ana Bertran Ortiz. ScanSar-to-Strimap interferometric observations of Hawaii [D]. Stanford University, 2007, 9
    65. Ferretti, C.Prati, F.Rocca. Permanent Scatters in SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, Vol.39, No.1, January 2001
    66. Andrew John Hooper. Persistent Scatterer RADAR Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation[C]. Stanford University, 2006 Radar Conference, 2006, 53~61
    67. Andrew Hooper,2007. Andrew Hooper, Rikke Pedersen. Deformation Due to Magma Movement and Ice Unloading at Katla Volcano, Iceland, Detected by Persistent Scatterer InSAR[C], Proc. ENVISAT Symposium 2007, Montreux, Switzerland, 2007
    68.黄庆妮,唐伶俐,戴昌达.环境卫星(ENVISAT-1)ASAR数据特性及应用潜力分析[J].遥感信息,2004,(3):56~59.
    69. Saaty, T. L. The Analytic Hierarchy Process [J]. New York: McGraw-Hill. (1980)
    70.周托,钱林峰,地质灾害危险性的灰色模糊综合评判模型,西部探矿工程,2005年
    71.刘普宴,吴孟达.模糊理论及其应用.长沙:国防科技大学出版社,1998年
    72.李彤.地面沉降灰色预测模型研究及风险评价[D].南开大学(2006)
    73.赵焕臣,许树柏.层次分析法—一种简易的新决策方法[M].北京:科学出版社,1986年
    74.熊德国,鲜学福.模糊综合评价方法的改进[J].重庆大学学报,2003年,vol.26(6):93~ 95
    75.北京地质灾害[M],2008,中国大地出版社,北京。
    76. P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms.2002.
    77. Schmidt DA, Bürgmann R(2003). Time dependent land uplift and subsidence in the Santa Clara Valley, California, from a large InSAR dataset [J]. J Geophys Res108 (B9): 2416.
    78. Hooper, A., A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophys. Res. Letters, 2008.
    79.方仲景,程绍平,冉永康,等.1993.延怀盆地构造及其晚第四纪断裂活动的某些特征[ J].地球物理学进展, 8(4): 265~266.
    80.刘光勋.东昆仑活动断裂带及其强震活动中国地震[J], 1996,中国地震,Vol.12(2):119~126
    81.上海市地质调查研究院,上海市城市规划设计研究院.《上海市城市地面沉降对规划制定与实施管理的影响研究》[R] 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700