用户名: 密码: 验证码:
紫花苜蓿与蒺藜苜蓿盐胁迫应激调控蛋白和miRNA的鉴定分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫是全世界普遍存在的一种非生物胁迫,也是导致作物减产的主要环境因素之一。在盐渍化土壤中植物生长和生理功能受盐胁迫环境因素的影响。目前为止,已在植物中发现多个参与盐胁迫逆境调控的基因,这些基因对增强植物的耐盐性具有重要意义。紫花苜蓿是一种重要的豆科牧草植物,蒺藜苜蓿是一种重要的豆科模式植物,为了研究紫花苜蓿“中苜一号”(Medicago sativa cv. Zhongmu-1)和蒺藜苜蓿“Jamalong A-17”(Medicago truncatula)在盐胁迫下应激反应机理,本研究使用差异蛋白质双向电泳技术对300mM NaCl胁迫处理0h和10h后的中苜一号和Jamalong A-17根中的蛋白进行差异蛋白质组学分析。从中苜一号根蛋白双向电泳凝胶中鉴定出超过1000个非冗余蛋白点,经分析后发现其中40个蛋白点在盐胁迫后表达丰度下降,53个蛋白点在盐胁迫后表达丰度升高;在JamalongA-17根中发现8个蛋白点在盐胁迫后表达丰度下降,22个蛋白点在盐胁迫后表达丰度升高。使用质谱分析技术对这些差异蛋白点进行鉴定,最终从中苜一号和Jamalong A-17根蛋白中分别成功鉴定出60和26个蛋白点。蛋白功能分析结果表明从中苜一号和Jamalong A-17根中鉴定出的许多差异蛋白参与植物逆境应激调控过程,这些蛋白的功能主要包括离子转运、酶催化、DNA和RNA绑定等。
     植物具备在转录水平和转录后水平进行逆境应激调控的机制。21-24nt的小分子RNA特别是miRNA是近年来发现的一种重要的转录后调控分子。为研究小RNA在苜蓿盐胁迫下的调控作用,本研究构建了紫花苜蓿“中苜一号”和蒺藜苜蓿“Jamalong A-17”根在盐胁迫0h和10h后的小RNA文库,并使用高通量测序技术对这些小RNA进行测序分析。从紫花苜蓿文库中测序获得659个已知miRNA,在蒺藜苜蓿文库中测序获得677个已知miRNA,这些miRNA属于250个已知miRNA家族。另外还在紫花苜蓿和蒺藜苜蓿文库中分别预测出189和218个新miRNA。对这些文库中miRNA的读数进行分析,结果表明中苜一号和JamalongA-17根中多数miRNA在盐胁迫前后表达量没有显著变化,但也有许多miRNA的表达量在盐胁迫前后差异显著。分析表明这些差异表达miRNA的靶标基因功能分布较广,其中许多靶标基因可能参与盐胁迫应激调控作用,这为植物特别是苜蓿的转录后水平耐盐调控机理提供了新的证据和研究方向。
     为进一步研究苜蓿的耐盐机理,本研究从紫花苜蓿中一个盐诱导基因的EST序列基础上克隆得到一个与酵母PMP3(plasma membrane protein3)和拟南芥AtRCI2A同源的基因MsRCI2A。在蒺藜苜蓿基因组数据库中进行序列比对分析得到五个与MsRCI2A同源的基因(MtRCI2A-E),这些基因都编码疏水性较强的小分子蛋白,都含有两个跨膜区域。亚细胞定位分析结果表明MsRCI2A和MtRCI2A-E编码蛋白基本都定位于细胞膜上。转录表达水平分析结果表明MsRCI2A和MtRCI2A-D在盐胁迫下表达量明显升高,MtRCI2E的表达量无明显变化。MsRCI2A和MtRCI2A-C能使酵母PMP3基因缺失突变体的功能得到恢复。转基因研究结果表明在拟南芥中过量表达MsRCI2A后能够使其耐盐性得到明显增强。
     目前已在植物中发现多种参与逆境应激反应的甘氨酸富集蛋白(glycine richprotein,GRP),但其中许多甘氨酸富集蛋白的具体作用机理还未知。本研究从紫花苜蓿中分离克隆到一个受盐诱导的甘氨酸富集蛋白(MsGRP),对其编码蛋白序列分析结果表明MsGRP中不含有RRM结构域(常见的甘氨酸富集型RNA绑定蛋白所特有的结构域)。亚细胞定位分析表明MsGRP定位于细胞膜附近。转录表达分析结果显示MsGRP受盐、ABA和模拟干旱胁迫诱导。转基因研究结果表明过量表达MsGRP基因的拟南芥在种子萌发期和幼苗期都表现出比野生型拟南芥对盐和ABA更敏感。这些结果表明MsGRP可能通过ABA信号途径参与苜蓿的盐胁迫应激调控,且可能在盐胁迫等非生物胁迫下起到负调控作用。
Salt stress is one of the most significant abiotic stresses to cause crop failureworldwide. So far, many salt stress induced genes and improving salt tolerance geneshave been characterized in many plants. In saline lands, plant root growth and functionare determined by the action of environmental salt stress through specific genes thatadapt root development to the restrictive condition. Medicago sativa and Medicagotruncatula are two important legumes for one is a primary forage, the other is a modellegume. To understand better NaCl stress responses in Medicago. sativa (Zhongmu-1)and Medicago. truncatula (Jamalong A-17) roots, a comparative proteomic analysis ofroots that had been exposed to300mM NaCl for0h and10h was conducted. Changesin the abundance of protein species within roots were examined using two-dimensionalelectrophoresis. Among the>1000protein spots reproducibly detected on M. sativaroots gel, the abundance of40protein spots decreased and53increased, at10h timepoints, in response to NaCl treatment. Among the>1000protein spots reproduciblydetected on M. truncatula roots gel, the abundance of8protein spots decreased and22increased, at10h time points, in response to NaCl treatment. Through tandem massspectrometry, identity was assigned to60and26of the differentially abundant spots inM. sativa (Zhongmu-1) and M. truncatula (Jamalong A-17) roots. The proteinsidentified included many previously characterized stress-responsive proteins and someprocesses including iron transport, catalysis, DNA or RNA binding and so on.
     In plant, many functions are regulated in transcriptional and posttranscriptionallevels. Small21-to24-nucleotide RNAs, notably the microRNA (miRNA), areemerging as a posttranscriptional regulation mechanism. Four small RNA librariesconstructed from roots of Zhongmu-1(M. sativa, salt tolerance) and Jamalong A-17(M.truncatula, salt sensitive). High-throughput sequencing was used to sequence the smallRNAs in these libraries.659and677conserved miRNA belong to250miRNA familieswere identified in Zhongmu-1and Jamalong A-17, as well as189and218novelcandidate miRNAs in were identified in Zhongmu-1and Jamalong A-17. Statisticalanalysis on sequencing reads abundance revealed specific miRNA showing contrastingexpression patterns in Zhongmu-1and Jamalong A-17roots.The differentiallyexpressed conserved and novel miRNAs may target a large variety of mRNAs, some of which may play key roles in salt stress regulation. The spatial salt stress regulation ofmiRNAs may determine specialization of regulatory RNA networks in plant.
     In this study one new salt induced M. sativa (alfalfa) gene (MsRCI2A) was clonedand characterized based on its EST, which shows high homology to yeast PMP3gene(plasma membrane protein3) and Arabidopsis AtRCI2A. Sequence comparisons revealthat five genes (MtRCI2A-E) show high homology to MsRCI2A in M. truncatulagenome. MsRCI2A and MtRCI2A-E all encode small, highly hydrophobic proteinscontaining two putative transmembrane domains, and mostly localize in the plasmamembrane. Transcription analysis result suggests that MsRCI2A and MtRCI2A-D genesare highly induced by salt stress. Expression of MsRCI2A and MtRCI2A-C in yeastmutants lacking the PMP3gene can functionally complement the membranehyperpolarization and salt sensitivity phenotypes resulting from PMP3deletion. Toinvestigate whether the overexpression of RCI2-ralated gene causes an enhancedsalt-tolerant phenotype, MsRCI2A is overexpressed in Arabidopsis thaliana. The resultreveals that the salt tolerance of MsRCI2A-overexpressing transgenic plants is improvedcomparing to the wild type under high salinity treatment.
     Many glycine-rich proteins have been implicated in plant responses toenvironmental stresses, but the function and importance of some GRPs in stressresponses are largely unknown. In this study a novel salt induced glycine-rich proteingene (MsGRP) was isolated from alfalfa. Compared with some glycine-rich RNAbinding proteins, MsGRP contains no RRM motif and localizes in the cell membrane orcell wall according to the subcellular localization result. MsGRP mRNA is induced bysalt, ABA and drought stresses in alfalfa seedlings, and its overexpression driven by aconstitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants conferssalinity and ABA sensitivity, as compared with WT plants. MsGRP retards seedgermination and seedling growth of transgenic Arabidopsis plants under salt and ABAtreatments, implying that MsGRP may affect germination and growth through an ABAdependent regulation pathway. These results provide indirect evidence indicating thatMsGRP plays important roles in seed germination and seedling growth of alfalfa undersome abiotic stress conditions.
引文
[1]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(05):837-845.
    [2] Rengasamy P. Transient salinity and subsoil constraints to dryland farming in Australiansodic soils: an overview [J]. Aust J Exp Agr,2002,42(3):351-361.
    [3] Flowers T, Yeo A. Breeding for salinity resistance in crop plants: where next?[J]. Funct PlantBiol,1995,22(6):875-884.
    [4] Zhu J K. Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol,2002,53:247-273.
    [5] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants[J]. Crop Sci,2005,45(2):437-448.
    [6] Munns R, Husain S, Rivelli A R, et al. Avenues for increasing salt tolerance of crops, and therole of physiologically based selection traits [J]. Plant Soil,2002,247(1):93-105.
    [7] Ghassemi F, Jakeman A J, Nix H A. Salinisation of land and water resources: human causes,extent, management and case studies [M]. CAB international,1995.
    [8] Glenn E P, Brown J J, Blumwald E. Salt tolerance and crop potential of halophytes [J]. CritRev Plant Sci,1999,18(2):227-255.
    [9] Niu X M, Bressan R A, Hasegawa P M, et al. Ion Homeostasis in Nacl Stress Environments[J]. Plant Physiol,1995,109(3):735-742.
    [10] Yeo A. Molecular biology of salt tolerance in the context of whole-plant physiology [J]. JExp Bot,1998,49(323):915-929.
    [11] Zhu J K. Regulation of ion homeostasis under salt stress [J]. Curr Opin Plant Biol,2003,6(5):441-445.
    [12] Liu W H, Fairbairn D J, Reid R J, et al. Characterization of two HKT1homologues fromEucalyptus camaldulensis that display intrinsic osmosensing capability [J]. Plant Physiol,2001,127(1):283-294.
    [13] Sanders D, Brownlee C, Harper J F. Communicating with calcium [J]. Plant Cell,1999,11(4):691-706.
    [14] Kreps J A, Wu Y J, Chang H S, et al. Transcriptome changes for Arabidopsis in response tosalt, osmotic, and cold stress [J]. Plant Physiol,2002,130(4):2129-2141.
    [15] Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of7000Arabidopsisgenes under drought, cold and high-salinity stresses using a full-length cDNA microarray [J].Plant J,2002,31(3):279-292.
    [16] Urao T, Yakubov B, Satoh R, et al. A transmembrane hybrid-type histidine kinase inarabidopsis functions as an osmosensor [J]. Plant Cell,1999,11(9):1743-1754.
    [17] Jia W S, Wang Y Q, Zhang S Q, et al. Salt-stress-induced ABA accumulation is moresensitively triggered in roots than in shoots [J]. J Exp Bot,2002,53(378):2201-2206.
    [18] Xiong L M, Zhu J K. Regulation of abscisic acid biosynthesis [J]. Plant Physiol,2003,133(1):29-36.
    [19] Hernandez J A, Ferrer M A, Jimenez A, et al. Antioxidant systems and O-2(.-)/H2O2production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions inminor veins [J]. Plant Physiol,2001,127(3):817-31.
    [20] Munns R. Physiological processes limiting plant growth in saline soils: some dogmas andhypotheses [J]. Plant Cell Environ,2006,16(1):15-24.
    [21] Bergey D R, Howe G A, Ryan C A. Polypeptide signaling for plant defensive genes exhibitsanalogies to defense signaling in animals [J]. P Natl Acad Sci USA,1996,93(22):12053-12058.
    [22] Gorham J, Bridges J, Dubcovsky J, et al. Genetic analysis and physiology of a trait forenhanced K+/Na+discrimination in wheat [J]. New Phytol,1997,137(1):109-116.
    [23] Rubio F, Gassmann W, Schroeder J I. Sodium-Driven Potassium Uptake by the PlantPotassium Transporter Hkt1and Mutations Conferring Salt Tolerance [J]. Science,1995,270(5242):1660-1663.
    [24] Uozumi N, Kim E J, Rubio F, et al. The Arabidopsis HKT1gene homolog mediates inwardNa+currents in Xenopus laevis oocytes and Na+uptake in Saccharomyces cerevisiae [J].Plant Physiol,2000,122(4):1249-1259.
    [25] Garcia A, Rizzo C A, UdDin J, et al. Sodium and potassium transport to the xylem areinherited independently in rice, and the mechanism of sodium: Potassium selectivity differsbetween rice and wheat [J]. Plant Cell Environ,1997,20(9):1167-1174.
    [26] Yadav R, Flowers T J, Yeo A R. The involvement of the transpirational bypass flow insodium uptake by high-and low-sodium-transporting lines of rice developed throughintravarietal selection [J]. Plant Cell Environ,1996,19(3):329-336.
    [27] Yeo A R, Flowers S A, Rao G, et al. Silicon reduces sodium uptake in rice (Oryza sativa L.)in saline conditions and this is accounted for by a reduction in the transpirational bypass flow[J]. Plant Cell Environ,1999,22(5):559-565.
    [28] Rus A, Yokoi S, Sharkhuu A, et al. AtHKT1is a salt tolerance determinant that controls Na+entry into plant roots [J]. P Natl Acad Sci USA,2001,98(24):14150-14155.
    [29] Laurie S, Feeney K A, Maathuis F J M, et al. A role for HKT1in sodium uptake by wheatroots [J]. Plant J,2002,32(2):139-149.
    [30] Su H, Golldack D, Zhao C S, et al. The expression of HAK-type K+transporters is regulatedin response to salinity stress in common ice plant [J]. Plant Physiol,2002,129(4):1482-1493.
    [31] Rus A M, Estan M T, Gisbert C, et al. Expressing the yeast HAL1gene in tomato increasesfruit yield and enhances K+/Na+selectivity under salt stress [J]. Plant Cell Environ,2001,24(8):875-880.
    [32] Shi H Z, Ishitani M, Kim C S, et al. The Arabidopsis thaliana salt tolerance gene SOS1encodes a putative Na+/H+antiporter [J]. P Natl Acad Sci USA,2000,97(12):6896-6901.
    [33] Shi H Z, Quintero F J, Pardo J M, et al. The putative plasma membrane Na+/H+antiporterSOS1controls long-distance Na+transport in plants [J]. Plant Cell,2002,14(2):465-477.
    [34] Qiu Q S, Guo Y, Dietrich M A, et al. Regulation of SOS1, a plasma membrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2and SOS3[J]. P Natl Acad Sci USA,2002,99(12):8436-8441.
    [35] Shi H Z, Lee B H, Wu S J, et al. Overexpression of a plasma membrane Na+/H+antiportergene improves salt tolerance in Arabidopsis thaliana [J]. Nat Biotechnol,2003,21(1):81-85.
    [36] Ishitani M, Liu J P, Halfter U, et al. SOS3function in plant salt tolerance requiresN-myristoylation and calcium binding [J]. Plant Cell,2000,12(9):1667-1677.
    [37] Liu J P, Zhu J K. A calcium sensor homolog required for plant salt tolerance [J]. Science,1998,280(5371):1943-1945.
    [38] Guo Y, Halfter U, Ishitani M, et al. Molecular characterization of functional domains in theprotein kinase SOS2that is required for plant salt tolerance [J]. Plant Cell,2001,13(6):1383-1399.
    [39] Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2protein kinase physically interactswith and is activated by the calcium-binding protein SOS3[J]. P Natl Acad Sci USA,2000,97(7):3735-3740.
    [40] Quintero F J, Ohta M, Shi H Z, et al. Reconstitution in yeast of the Arabidopsis SOSsignaling pathway for Na+homeostasis [J]. P Natl Acad Sci USA,2002,99(13):9061-9066.
    [41] Guo Y, Qiu Q S, Quintero F J, et al. Transgenic evaluation of activated mutant alleles ofSOS2reveals a critical requirement for its kinase activity and C-terminal regulatory domainfor salt tolerance in Arabidopsis thaliana [J]. Plant Cell,2004,16(2):435-449.
    [42] Ohta M, Guo Y, Halfter U, et al. A novel domain in the protein kinase SOS2mediatesinteraction with the protein phosphatase2C AB12[J]. P Natl Acad Sci USA,2003,100(20):11771-11776.
    [43] Gaxiola R A, Li J S, Undurraga S, et al. Drought-and salt-tolerant plants result fromoverexpression of the AVP1H+-pump [J]. P Natl Acad Sci USA,2001,98(20):11444-11449.
    [44] Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+exchanger gene in Oryza sativa [J]. Bba-Gene Struct Expr,1999,1446(1-2):149-155.
    [45] Shi H Z, Zhu J K. Regulation of expression of the vacuolar Na+/H+antiporter gene AtNHX1by salt stress and abscisic acid [J]. Plant Mol Biol,2002,50(3):543-550.
    [46] Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of avacuolar Na+/H+antiport in Arabidopsis [J]. Science,1999,285(5431):1256-1258.
    [47] Zhang H X, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliagebut not in fruit [J]. Nat Biotechnol,2001,19(8):765-768.
    [48] Zhang H X, Hodson J N, Williams J P, et al. Engineering salt-tolerant Brassica plants:Characterization of yield and seed oil quality in transgenic plants with increased vacuolarsodium accumulation [J]. P Natl Acad Sci USA,2001,98(22):12832-12836.
    [49] Bohnert H J, Jensen R G. Strategies for engineering water-stress tolerance in plants [J].Trends Biotechnol,1996,14(3):89-97.
    [50] Chen T H H, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineeringof betaines and other compatible solutes [J]. Curr Opin Plant Biol,2002,5(3):250-257.
    [51] Tarczynski M C, Jensen R G, Bohnert H J. Stress protection of transgenic tobacco byproduction of the osmolyte mannitol [J]. Science,1993,259(5094):508.
    [52] Oono Y, Seki M, Nanjo T, et al. Monitoring expression profiles of Arabidopsis geneexpression during rehydration process after dehydration using ca.7000full-length cDNAmicroarray [J]. Plant J,2003,34(6):868-887.
    [53] Satoh R, Nakashima K, Seki M, et al. ACTCAT, a novel cis-acting element for proline-andhypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase inArabidopsis [J]. Plant Physiol,2002,130(2):709-719.
    [54] Karakas B, OziasAkins P, Stushnoff C, et al. Salinity and drought tolerance ofmannitol-accumulating transgenic tobacco [J]. Plant Cell Environ,1997,20(5):609-16.
    [55] Thomas J C, Sepahi M, Arendall B, et al. Enhancement of Seed-Germination in High Salinityby Engineering Mannitol Expression in Arabidopsis-Thaliana [J]. Plant Cell Environ,1995,18(7):801-806.
    [56] Abebe T, Guenzi A C, Martin B, et al. Tolerance of mannitol-accumulating transgenic wheatto water stress and salinity [J]. Plant Physiol,2003,131(4):1748-1755.
    [57] Sheveleva E, Chmara W, Bohnert H J, et al. Increased salt and drought tolerance byD-ononitol production in transgenic Nicotiana tabacum L.[J]. Plant Physiol,1997,115(3):1211-1219.
    [58] Gao M, Tao R, Miura K, et al. Transformation of Japanese persimmon (Diospyros kakiThunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase[J]. Plant Sci,2001,160(5):837-845.
    [59] Hayashi H, Alia, Mustardy L, et al. Transformation of Arabidopsis thaliana with the codAgene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt andcold stress [J]. Plant J,1997,12(1):133-142.
    [60] Mohanty A, Kathuria H, Ferjani A, et al. Transgenics of an elite indica rice variety PusaBasmati1harbouring the codA gene are highly tolerant to salt stress [J]. Theor Appl Genet,2002,106(1):51-57.
    [61] Prasad K V S K, Sharmila P, Kumar P A, et al. Transformation of Brassica juncea (L.) Czernwith bacterial codA gene enhances its tolerance to salt stress [J]. Mol Breeding,2000,6(5):489-499.
    [62] Holmstrom K O, Somersalo S, Mandal A, et al. Improved tolerance to salinity and lowtemperature in transgenic tobacco producing glycine betaine [J]. J Exp Bot,2000,51(343):177-185.
    [63] Guo B H, Zhang Y M, Li H J, et al. Transformation of wheat with a gene encoding for thebetaine aldehyde dehydrogenase (BADH)[J]. Acta Bot Sin,2000,42(3):279-283.
    [64] Kishor P B K, Hong Z L, Miao G H, et al. Overexpression of Delta-Pyrroline-5-CarboxylateSynthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants [J].Plant Physiol,1995,108(4):1387-1394.
    [65] Zhu B C, Su J, Chan M C, et al. Overexpression of a Delta(1)-pyrroline-5-carboxylatesynthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice [J]. PlantSci,1998,139(1):41-48.
    [66] Hong Z L, Lakkineni K, Zhang Z M, et al. Removal of feedback inhibition ofDelta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation andprotection of plants from osmotic stress [J]. Plant Physiol,2000,122(4):1129-1136.
    [67] Nanjo T, Kobayashi M, Yoshiba Y, et al. Antisense suppression of proline degradationimproves tolerance to freezing and salinity in Arabidopsis thaliana [J]. Febs Lett,1999,461(3):205-210.
    [68] Garg A K, Kim J K, Owens T G, et al. Trehalose accumulation in rice plants confers hightolerance levels to different abiotic stresses [J]. P Natl Acad Sci USA,2002,99(25):15898-15903.
    [69] Jang I C, Oh S J, Seo J S, et al. Expression of a bifunctional fusion of the Escherichia coligenes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase intransgenic rice plants increases trehalose accumulation and abiotic stress tolerance withoutstunting growth [J]. Plant Physiol,2003,131(2):516-524.
    [70] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and lowtemperature: differences and cross-talk between two stress signaling pathways [J]. Curr OpinPlant Biol,2000,3(3):217-223.
    [71] Xu D P, Duan X L, Wang B Y, et al. Expression of a late embryogenesis abundant proteingene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiol,1996,110(1):249-257.
    [72] Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulatorymechanisms [J]. Annu Rev Plant Phys,1999,50:571-599.
    [73] Xiong L M, Ishitani M, Lee H, et al. The Arabidopsis LOS5/ABA3locus encodes amolybdenum cofactor sulfurase and modulates cold stress-and osmotic stress-responsivegene expression [J]. Plant Cell,2001,13(9):2063-2083.
    [74] Xiong L M, Lee H J, Ishitani M, et al. Regulation of osmotic stress-responsive geneexpression by the LOS6/ABA1locus in Arabidopsis [J]. J Biol Chem,2002,277(10):8588-8596.
    [75] Leung J, Giraudat J. Abscisic acid signal transduction [J]. Annu Rev Plant Phys,1998,49:199-222.
    [76] Schroeder J I, Allen G J, Hugouvieux V, et al. Guard cell signal transduction [J]. Annu RevPlant Phys,2001,52:627-658.
    [77] Wu Y, Kuzma J, Marechal E, et al. Abscisic acid signaling through cyclic ADP-Ribose inplants [J]. Science,1997,278(5346):2126-2130.
    [78] Xiong L M, Lee B H, Ishitani M, et al. FIERY1encoding an inositol polyphosphate1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis [J].Gene Dev,2001,15(15):1971-1984.
    [79] Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants [J]. Science,1996,274(5294):1900-1902.
    [80] Saijo Y, Hata S, Kyozuka J, et al. Over-expression of a single Ca2+-dependent protein kinaseconfers both cold and salt/drought tolerance on rice plants [J]. Plant J,2000,23(3):319-327.
    [81] Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factorsinvolved in an abscisic acid-dependent signal transduction pathway under drought andhigh-salinity conditions [J]. P Natl Acad Sci USA,2000,97(21):11632-11637.
    [82] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function astranscriptional activators in abscisic acid signaling [J]. Plant Cell,2003,15(1):63-78.
    [83] Kang J Y, Choi H I, Im M Y, et al. Arabidopsis basic leucine zipper proteins that mediatestress-responsive abscisic acid signaling [J]. Plant Cell,2002,14(2):343-357.
    [84] Haake V, Cook D, Riechmann J L, et al. Transcription factor CBF4is a regulator of droughtadaptation in Arabidopsis [J]. Plant Physiol,2002,130(2):639-648.
    [85] Jaglo K R, Kleff S, Amundsen K L, et al. Components of the ArabidopsisC-repeat/dehydration-responsive element binding factor cold-response pathway areconserved in Brassica napus and other plant species [J]. Plant Physiol,2001,127(3):910-917.
    [86] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1overexpression inducesCOR genes and enhances freezing tolerance [J]. Science,1998,280(5360):104-106.
    [87] Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance bygene transfer of a single stress-inducible transcription factor [J]. Nat Biotechnol,1999,17(3):287-291.
    [88] Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transcriptome andfreezing tolerance in Arabidopsis [J]. Gene Dev,2003,17(8):1043-1054.
    [89] Hsieh T H, Lee J T, Charng Y Y, et al. Tomato plants ectopically expressing ArabidopsisCBF1show enhanced resistance to water deficit stress [J]. Plant Physiol,2002,130(2):618-626.
    [90] Hsieh T H, Lee J T, Yang P T, et al. Heterology expression of the ArabidopsisC-repeat/dehydration response element binding factor1gene confers elevated tolerance tochilling and oxidative stresses in transgenic tomato [J]. Plant Physiol,2002,129(3):1086-1094.
    [91] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to highsalinity [J]. Annu Rev Plant Phys,2000,51:463-99.
    [92] Prasad T K, Anderson M D, Martin B A, et al. Evidence for chilling-induced oxidative stressin maize seedlings and a regulatory role for hydrogen peroxide [J]. Plant Cell,1994,6(1):65-74.
    [93] Guan L Q M, Zhao J, Scandalios J G. Cis-elements and trans-factors that regulate expressionof the maize Cat1antioxidant gene in response to ABA and osmotic stress: H2O2is thelikely intermediary signaling molecule for the response [J]. Plant J,2000,22(2):87-95.
    [94] Gong M, Li Y J, Chen S Z. Abscisic acid-induced thermotolerance in maize seedlings ismediated by calcium and associated with antioxidant systems [J]. J Plant Physiol,1998,153(3-4):488-496.
    [95] Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxidemediate abscisic acid signalling in guard cells [J]. Nature,2000,406(6797):731-734.
    [96] Zhang S Q, Klessig D F. MAPK cascades in plant defense signaling [J]. Trends in Plant Sci,2001,6(11):520-527.
    [97] Zhao Z G, Chen G C, Zhang C L. Interaction between reactive oxygen species and nitricoxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings [J]. Aust JPlant Physiol,2001,28(10):1055-1061.
    [98] Gomez J M, Hernandez J A, Jimenez A, et al. Differential response of antioxidative enzymesof chloroplasts and mitochondria to long-term NaCl stress of pea plants [J]. Free Radical Res,1999,31: S11-S18.
    [99] Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controllingoxidative stress in plants [J]. J Exp Bot,2002,53(372):1331-1341.
    [100] Roxas V P, Lodhi S A, Garrett D K, et al. Stress tolerance in transgenic tobacco seedlings thatoverexpress glutathione S-transferase/glutathione peroxidase [J]. Plant Cell Physiol,2000,41(11):1229-1234.
    [101] Roxas V P, Smith R K, Allen E R, et al. Overexpression of glutathione S-transferaseglutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress [J].Nat Biotechnol,1997,15(10):988-991.
    [102] Wang J, Zhang H, Allen R D. Overexpression of an Arabidopsis peroxisomal ascorbateperoxidase gene in tobacco increases protection against oxidative stress [J]. Plant CellPhysiol,1999,40(7):725-732.
    [103] Tsugane K, Kobayashi K, Niwa Y, et al. A recessive arabidopsis mutant that growsphotoautotrophically under salt stress shows enhanced active oxygen detoxification [J]. PlantCell,1999,11(7):1195-1206.
    [104] Kwak J M, Mori I C, Pei Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes functionin ROS-dependent ABA signaling in Arabidopsis [J]. Embo J,2003,22(11):2623-2633.
    [105] Murata Y, Pei Z M, Mori I C, et al. Abscisic acid activation of plasma membrane Ca2+channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstreamand downstream of reactive oxygen species production in abi1-1and abi2-1proteinphosphatase2C mutants [J]. Plant Cell,2001,13(11):2513-2523.
    [106] Ichimura K, Mizoguchi T, Irie K, et al. Isolation of ATMEKK1(a MAP kinase kinase Kinase)-Interacting proteins and analysis of a MAP kinase cascade in Arabidopsis [J]. BiochemBioph Res Co,1998,253(2):532-543.
    [107] Teige M, Scheikl E, Eulgem T, et al. The MKK2pathway mediates cold and salt stresssignaling in Arabidopsis [J]. Mol Cell,2004,15(1):141-152.
    [108] Ichimura K, Mizoguchi T, Yoshida R, et al. Various abiotic stresses rapidly activateArabidopsis MAP kinases ATMPK4and ATMPK6[J]. Plant J,2000,24(5):655-665.
    [109] Ulm R, Ichimura K, Mizoguchi T, et al. Distinct regulation of salinity and genotoxic stressresponses by Arabidopsis MAP kinase phosphatase1[J]. Embo J,2002,21(23):6483-6493.
    [110] Moon H, Lee B, Choi G, et al. NDP kinase2interacts with two oxidative stress-activatedMAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenicplants [J]. P Natl Acad Sci USA,2003,100(1):358-363.
    [111] Kovtun Y, Chiu W L, Tena G, et al. Functional analysis of oxidative stress-activatedmitogen-activated protein kinase cascade in plants [J]. P Natl Acad Sci USA,2000,97(6):2940-2945.
    [112] Vranova E, Inze D, Van Breusegem F. Signal transduction during oxidative stress [J]. J ExpBot,2002,53(372):1227-1236.
    [113] Iwata K, Tazawa M, Itoh T. Turgor pressure regulation and the orientation of corticalmicrotubules in Spirogyra cells [J]. Plant Cell Physiol,2001,42(6):594-598.
    [114] Viswanathan C, Zhu J K. Molecular genetic analysis of cold-regulated gene transcription [J].Philos T Roy Soc B,2002,357(1423):877-886.
    [115] Wang Q Y, Nick P. Cold acclimation can induce microtubular cold stability in a mannerdistinct from abscisic acid [J]. Plant Cell Physiol,2001,42(9):999-1005.
    [116] Knight H. Calcium signaling during abiotic stress in plants [J]. Int Rev Cytol,2000,195:269-324.
    [117] Kiegle E, Moore C A, Haseloff J, et al. Cell-type-specific calcium responses to drought, saltand cold in the Arabidopsis root [J]. Plant J,2000,23(2):267-278.
    [118] Plieth C, Hansen U P, Knight H, et al. Temperature sensing by plants: the primarycharacteristics of signal perception and calcium response [J]. Plant J,1999,18(5):491-497.
    [119] Allen G J, Muir S R, Sanders D. Release of Ca2+from Individual Plant Vacuoles by BothInsp(3) and Cyclic Adp-Ribose [J]. Science,1995,268(5211):735-737.
    [120] Navazio L, Bewell M A, Siddiqua A, et al. Calcium release from the endoplasmic reticulumof higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotidephosphate [J]. P Natl Acad Sci USA,2000,97(15):8693-8698.
    [121] DeWald D B, Torabinejad J, Jones C A, et al. Rapid accumulation of phosphatidylinositol4,5-bisphosphate and inositol1,4,5-trisphosphate correlates with calcium mobilization insalt-stressed Arabidopsis [J]. Plant Physiol,2001,126(2):759-769.
    [122] Takahashi S, Katagiri T, Hirayama T, et al. Hyperosmotic stress induces a rapid and transientincrease in inositol1,4,5-trisphosphate independent of abscisic acid in arabidopsis cellculture [J]. Plant Cell Physiol,2001,42(2):214-222.
    [123] Hirayama T, Ohto C, Mizoguchi T, et al. A Gene Encoding a Phosphatidylinositol-SpecificPhospholipase-C Is Induced by Dehydration and Salt Stress in Arabidopsis-Thaliana [J]. PNatl Acad Sci USA,1995,92(9):3903-3907.
    [124] Kim S A, Kwak J M, Jae S K, et al. Overexpression of the AtGluR2gene encoding anarabidopsis homolog of mammalian glutamate receptors impairs calcium utilization andsensitivity to ionic stress in transgenic plants [J]. Plant Cell Physiol,2001,42(1):74-84.
    [125] Harmon A C, Gribskov M, Harper J F. CDPKs-a kinase for every Ca2+signal?[J]. TrendsPlant Sci,2000,5(4):154-159.
    [126] Charrier B, Champion A, Henry Y, et al. Expression profiling of the whole ArabidopsisShaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chainreaction [J]. Plant Physiol,2002,130(2):577-590.
    [127] Urao T, Katagiri T, Mizoguchi T, et al. Two genes that encode Ca2+-dependent proteinkinases are induced by drought and high-salt stresses in Arabidopsis thaliana [J]. Mol GenGenet,1994,244(4):331-340.
    [128] Li J X, Lee Y R J, Assmann S M. Guard cells possess a calcium-dependent protein kinasethat phosphorylates the KAT1potassium channel [J]. Plant Physiol,1998,116(2):785-795.
    [129] Patharkar O R, Cushman J C. A stress-induced calcium-dependent protein kinase fromMesembryanthemum crystallinum phosphorylates a two-component pseudo-responseregulator [J]. Plant J,2000,24(5):679-691.
    [130] Chang C, Stewart R C. The two-component system-Regulation of diverse signalingpathways in prokaryotes and eukaryotes [J]. Plant Physiol,1998,117(3):723-731.
    [131] Suzuki T, Sakurai K, Ueguchi C, et al. Two types of putative nuclear factors that physicallyinteract with histidine-containing phosphotransfer (Hpt) domains, signaling mediators inHis-to-Asp phosphorelay, in Arabidopsis thaliana [J]. Plant Cell Physiol,2001,42(1):37-45.
    [132] Hoyos M E, Zhang S Q. Calcium-independent activation of salicylic acid-induced proteinkinase and a40-kilodalton protein kinase by hyperosmotic stress [J]. Plant Physiol,2000,122(4):1355-1363.
    [133] Mikolajczyk M, Awotunde O S, Muszynska G, et al. Osmotic stress induces rapid activationof a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1in tobaccocells [J]. Plant Cell,2000,12(1):165-178.
    [134] Munnik T, Ligterink W, Meskiene I, et al. Distinct osmo-sensing protein kinase pathways areinvolved in signalling moderate and severe hyper-osmotic stress [J]. Plant J,1999,20(4):381-388.
    [135] Kiegerl S, Cardinale F, Siligan C, et al. SIMKK, a mitogen-activated protein kinase (MAPK)kinase, is a specific activator of the salt stress-induced MAPK, SIMK [J]. Plant Cell,2000,12(11):2247-2258.
    [136] Cardinale F, Meskiene I, Ouaked F, et al. Convergence and divergence of stress-inducedmitogen-activated protein kinase signaling pathways at the level of two distinctmitogen-activated protein kinase kinases [J]. Plant Cell,2002,14(3):703-711.
    [137] Desikan R, Mackerness S A H, Hancock J T, et al. Regulation of the Arabidopsistranscriptome by oxidative stress [J]. Plant Physiol,2001,127(1):159-172.
    [138] Huang Y F, Li H, Gupta R, et al. ATMPK4, an arabidopsis homolog of mitogen-activatedprotein kinase, is activated in vitro by AtMEK1through threonine phosphorylation [J]. PlantPhysiol,2000,122(4):1301-1310.
    [139] Xu Q, Fu H F, Gupta R, et al. Molecular characterization of a tyrosine-specific proteinphosphatase encoded by a stress-responsive gene in Arabidopsis [J]. Plant Cell,1998,10(5):849-857.
    [140] Sanchez J P, Chua N H. Arabidopsis PLC1is required for secondary responses to abscisicacid signals [J]. Plant Cell,2001,13(5):1143-1154.
    [141] Liu J P, Ishitani M, Halfter U, et al. The Arabidopsis thaliana SOS2gene encodes a proteinkinase that is required for salt tolerance [J]. P Natl Acad Sci USA,2000,97(7):3730-3734.
    [142] Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants [J].Annu Rev Plant Biol,2006,57:19-53.
    [143] Mallory A C, Vaucheret H. Functions of microRNAs and related small RNAs in plants [J].Nat Genet,2006,38: S31-S36.
    [144] Chapman E J, Carrington J C. Specialization and evolution of endogenous small RNApathways [J]. Nat Rev Genet,2007,8(11):884-896.
    [145] Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA [J]. Nature,2004,431(7006):343-349.
    [146] Axtell M J, Snyder J A, Bartel D P. Common functions for diverse small RNAs of land plants[J]. Plant Cell,2007,19(6):1750-1769.
    [147] Barakat A, Wall P K, Diloreto S, et al. Conservation and divergence of microRNAs inPopulus [J]. BMC Genomics,2007,8:481.
    [148] Chen Z, Zhang J, Kong J, et al. Diversity of endogenous small non-coding RNAs in Oryzasativa [J]. Genetica,2006,128(1-3):21-31.
    [149] Fahlgren N, Howell M D, Kasschau K D, et al. High-throughput sequencing of ArabidopsismicroRNAs: evidence for frequent birth and death of MIRNA genes [J]. PLoS ONE,2007,2(2): e219.
    [150] Pilcher R L, Moxon S, Pakseresht N, et al. Identification of novel small RNAs in tomato(Solanum lycopersicum)[J]. Planta,2007,226(3):709-717.
    [151] Zhao B T, Liang R Q, Ge L F, et al. Identification of drought-induced microRNAs in rice [J].Biochem Bioph Res Co,2007,354(2):585-590.
    [152] Lelandais-Briere C, Naya L, Sallet E, et al. Genome-Wide Medicago truncatula Small RNAAnalysis Revealed Novel MicroRNAs and Isoforms Differentially Regulated in Roots andNodules [J]. Plant Cell,2009,21(9):2780-2796.
    [153] Llave C, Kasschau K D, Rector M A, et al. Endogenous and silencing-associated smallRNAs in plants [J]. Plant Cell,2002,14(7):1605-1619.
    [154] Mette M F, van der Winden J, Matzke M, et al. Short RNAs can identify new candidatetransposable element families in Arabidopsis [J]. Plant Physiol,2002,130(1):6-9.
    [155] Yoshikawa M, Peragine A, Park M Y, et al. A pathway for the biogenesis of trans-actingsiRNAs in Arabidopsis [J]. Gene Dev,2005,19(18):2164-2175.
    [156] Almeida R, Allshire R C. RNA silencing and genome regulation [J]. Trends Cell Biol,2005,15(5):251-258.
    [157] Bernstein E, Allis C D. RNA meets chromatin [J]. Gene Dev,2005,19(14):1635-1655.
    [158] Peragine A, Yoshikawa M, Wu G, et al. SGS3and SGS2/SDE1/RDR6are required forjuvenile development and the production of trans-acting siRNAs in Arabidopsis [J]. GeneDev,2004,18(19):2368-2379.
    [159] Allen E, Xie Z X, Gustafson A M, et al. microRNA-directed phasing during trans-actingsiRNA biogenesis in plants [J]. Cell,2005,121(2):207-221.
    [160] Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate theaccumulation of Arabidopsis mRNAs [J]. Mol Cell,2004,16(1):69-79.
    [161] Adenot X, Elmayan T, Lauressergues D, et al. DRB4-dependent TAS3trans-acting siRNAscontrol leaf morphology through AGO7[J]. Curr Biol,2006,16(9):927-932.
    [162] Hunter C, Willmann M R, Wu G, et al. Trans-acting siRNA-mediated repression of ETTINand ARF4regulates heteroblasty in Arabidopsis [J]. Development,2006,133(15):2973-2981.
    [163] de Heredia M L, Jansen R P. mRNA localization and the cytoskeleton [J]. Curr Opin CellBiol,2004,16(1):80-85.
    [164] Dreyfuss G, Kim V N, Kataoka N. Messenger-RNA-binding proteins and the messages theycarry [J]. Nat Rev Mol Cell Bio,2002,3(3):195-205.
    [165] Gebauer F, Hentze M W. Molecular mechanisms of translational control [J]. Nat Rev MolCell Bio,2004,5(10):827-835.
    [166] Ambros V. The functions of animal microRNAs [J]. Nature,2004,431(7006):350-355.
    [167] Baulcombe D. RNA silencing in plants [J]. Nature,2004,431(7006):356-363.
    [168] Bartels D, Sunkar R. Drought and salt tolerance in plants [J]. Crit Rev Plant Sci,2005,24(1):23-58.
    [169] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress responseand tolerance [J]. J Exp Bot,2007,58(2):221-227.
    [170] Jones-Rhoades M W, Bartel D P. Computational identification of plant MicroRNAs and theirtargets, including a stress-induced miRNA [J]. Mol Cell,2004,14(6):787-799.
    [171] Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs fromArabidopsis [J]. Plant Cell,2004,16(8):2001-2019.
    [172] Chiou T J, Aung K, Lin S I, et al. Regulation of phosphate homeostasis by microRNA inArabidopsis [J]. Plant Cell,2006,18(2):412-421.
    [173] Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance byrepressing auxin signaling [J]. Science,2006,312(5772):436-439.
    [174] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxidedismutase genes in Arabidopsis is mediated by downregulation of miR398and important foroxidative stress tolerance [J]. Plant Cell,2006,18(8):2051-2065.
    [175] Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signaltransduction [J]. Annu Rev Plant Biol,2004,55:373-399.
    [176] Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants [J].Trends Plant Sci,2004,9(10):490-498.
    [177] Kliebenstein D J, Monde R A, Last R L. Superoxide dismutase in Arabidopsis: An eclecticenzyme family with disparate regulation and protein localization [J]. Plant Physiol,1998,118(2):637-650.
    [178] Lu C, Fedoroff N. A mutation in the arabidopsis HYL1gene encoding a dsRNA bindingprotein affects responses to abscisic acid, auxin, and cytokinin [J]. Plant Cell,2000,12(12):2351-2365.
    [179] Han M H, Goud S, Song L, et al. The Arabidopsis double-stranded RNA-binding proteinHYL1plays a role in microRNA-mediated gene regulation [J]. P Natl Acad Sci USA,2004,101(4):1093-1098.
    [180] Reyes J L, Chua N H. ABA induction of miR159controls transcript levels of two MYBfactors during Arabidopsis seed germination [J]. Plant J,2007,49(4):592-606.
    [181] Liu P P, Montgomery T A, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10by microRNA160is critical for seed germination and post-germination stages [J]. Plant J,2007,52(1):133-146.
    [182] Bari R, Pant B D, Stitt M, et al. PHO2, microRNA399, and PHR1define aphosphate-signaling pathway in plants [J]. Plant Physiol,2006,141(3):988-999.
    [183] Aung K, Lin S I, Wu C C, et al. pho2, a phosphate overaccumulator, is caused by a nonsensemutation in a MicroRNA399target gene [J]. Plant Physiol,2006,141(3):1000-1011.
    [184] Combier J P, Frugier F, de Billy F, et al. MtHAP2-1is a key transcriptional regulator ofsymbiotic nodule development regulated by microRNA169in Medicago truncatula [J]. GeneDev,2006,20(22):3084-3088.
    [185] Jung H J, Kang H. Expression and functional analyses of microRNA417in Arabidopsisthaliana under stress conditions [J]. Plant Physiol Bioch,2007,45(10-11):805-811.
    [186] Fahlgren N, Howell M D, Kasschau K D, et al. High-Throughput Sequencing of ArabidopsismicroRNAs: Evidence for Frequent Birth and Death of MIRNA Genes [J]. PLoS ONE,2007,2(2): e219
    [187] Sunkar R, Zhu J K. Micro RNAs and short-interfering RNAs in plants [J]. J Integr Plant Biol,2007,49(6):817-826.
    [188] Achard P, Herr A, Baulcombe D C, et al. Modulation of floral development by agibberellin-regulated microRNA [J]. Development,2004,131(14):3357-3365.
    [189] Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets [J]. Cell,2002,110(4):513-520.
    [190] Zahran H H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions andin an arid climate [J]. Microbiol Mol Biol R,1999,63(4):968-989.
    [191] Boonjung H, Fukai S. Effects of soil water deficit at different growth stages on rice growthand yield under upland conditions.1. Growth during drought [J]. Field Crop Res,1996,48(1):37-45.
    [192] Kato K, Yokoyama H. Geographical variation in heading characters among wheat landraces,Triticum aestivum L., and its implication for their adaptability [J]. Theor Appl Gene(tTAG),1992,84(3):259-265.
    [193] Ribaut J M, Hoisington D A, Deutsch J A, et al. Identification of quantitative trait loci underdrought conditions in tropical maize.1. Flowering parameters and the anthesis-silkinginterval [J]. Theor Appl Genet,1996,92(7):905-914.
    [194] Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al. GENEVESTIGATOR. Arabidopsismicroarray database and analysis toolbox [J]. Plant Physiol,2004,136(1):2621-2632.
    [195] Wang J W, Wang L J, Mao Y B, et al. Control of root cap formation by microRNA-targetedauxin response factors in Arabidopsis [J]. Plant Cell,2005,17(8):2204-2216.
    [196] Guo H S, Xie Q, Fei J F, et al. MicroRNA directs mRNA cleavage of the transcription factorNAC1to downregulate auxin signals for Arabidopsis lateral root development [J]. Plant Cell,2005,17(5):1376-1386.
    [197] Millar A A, Gubler F. The Arabidopsis GAMYB-like genes, MYB33and MYB65, areMicroRNA-regulated genes that redundantly facilitate anther development [J]. Plant Cell,2005,17(3):705-721.
    [198] Mallory A C, Bartel D P, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXINRESPONSE FACTOR17is essential for proper development and modulates expression ofearly auxin response genes [J]. Plant Cell,2005,17(5):1360-1375.
    [199] Laufs P, Peaucelle A, Morin H, et al. MicroRNA regulation of the CUC genes is required forboundary size control in Arabidopsis meristems [J]. Development,2004,131(17):4311-22.
    [200] Mallory A C, Reinhart B J, Jones-Rhoades M W, et al. MicroRNA control of PHABULOSAin leaf development: importance of pairing to the microRNA5' region [J]. Embo J,2004,23(16):3356-3364.
    [201] Schwab R, Palatnik J F, Riester M, et al. Specific effects of MicroRNAs on the planttranscriptome [J]. Developmental Cell,2005,8(4):517-527.
    [202] Chen X M. A microRNA as a translational repressor of APETALA2in Arabidopsis flowerdevelopment [J]. Science,2004,303(5666):2022-2025.
    [203] Williams L, Grigg S P, Xie M T, et al. Regulation of Arabidopsis shoot apical meristem andlateral organ formation by microRNA miR166g and its AtHD-ZIP target genes [J].Development,2005,132(16):3657-3668.
    [204] Borsani O, Zhu J H, Verslues P E, et al. Endogenous siRNAs derived from a pair of naturalcis-antisense transcripts regulate salt tolerance in Arabidopsis [J]. Cell,2005,123(7):1279-1291.
    [205] Xie Z X, Allen E, Wilken A, et al. DICER-LIKE4functions in trans-acting small interferingRNA biogenesis and vegetative phase change in Arabidopsis thaliana [J]. P Natl Acad SciUSA,2005,102(36):12984-12989.
    [206] Boi S, Solda G, Tenchini M L. Shedding light on the dark side of the genome: Overlappinggenes in higher eukaryotes [J]. Curr Genomics,2004,5(6):509-524.
    [207] Chan S W L, Zilberman D, Xie Z X, et al. RNA silencing genes control de novo DNAmethylation [J]. Science,2004,303(5662):1336-1336.
    [208] Gilroy S, Trewavas A, Larsson C, et al. Signal sensing and signal transduction across theplasma membrane [M]. The plant plasma membrane,1990, pp203-232.
    [209] Alexandersson E, Fraysse L, Sjovall-Larsen S, et al. Whole gene family expression anddrought stress regulation of aquaporins [J]. Plant Mol Biol,2005,59(3):469-484.
    [210] Jang J Y, Rhee J Y, Kim D G, et al. Ectopic expression of a foreign aquaporin disrupts thenatural expression patterns of endogenous aquaporin genes and alters plant responses todifferent stress conditions [J]. Plant Cell Physiol,2007,48(9):1331-1339.
    [211] Chaumont F, Moshelion M, Daniels M J. Regulation of plant aquaporin activity [J]. Biol Cell,2005,97(10):749-764.
    [212] Reichow S L, Gonen T. Noncanonical binding of calmodulin to aquaporin-0: Implications forchannel regulation [J]. Structure,2008,16(9):1389-1398.
    [213] Masalkar P, Wallace I S, Hwang J H, et al. Interaction of Cytosolic Glutamine Synthetase ofSoybean Root Nodules with the C-terminal Domain of the Symbiosome Membrane Nodulin26Aquaglyceroporin [J]. J Biol Chem,2010,285(31):23880-23888.
    [214] Lee H K, Cho S K, Son O, et al. Drought Stress-Induced Rma1H1, a RINGMembrane-Anchor E3Ubiquitin Ligase Homolog, Regulates Aquaporin Levels viaUbiquitination in Transgenic Arabidopsis Plants [J]. Plant Cell,2009,21(2):622-641.
    [215] Capel J, Jarillo J A, Salinas J, et al. Two homologous low-temperature-inducible genes fromArabidopsis encode highly hydrophobic proteins [J]. Plant Physiol,1997,115(2):569-576.
    [216] Navarre C, Goffeau A. Membrane hyperpolarization and salt sensitivity induced by deletionof PMP3, a highly conserved small protein of yeast plasma membrane [J]. Embo J,2000,19(11):2515-2524.
    [217] Nylander M, Heino P, Helenius E, et al. The low-temperature-and salt-induced RCI2A geneof Arabidopsis complements the sodium sensitivity caused by a deletion of the homologousyeast gene SNA1[J]. Plant Mol Biol,2001,45(3):341-352.
    [218] Mitsuya S, Taniguchi M, Miyake H, et al. Disruption of RCI2A leads to over-accumulationof Na+and increased salt sensitivity in Arabidopsis thaliana plants [J]. Planta,2005,222(6):1001-1009.
    [219] Mitsuya S, Taniguchi M, Miyake H, et al. Overexpression of RC12A decreases Na+uptakeand mitigates salinity-induced damages in Arabidopsis thaliana plants [J]. Physiol Plantarum,2006,128(1):95-102.
    [220] Serrano P R, Gaxiola R. Microbial models and salt stress tolerance in plants [J]. Crit RevPlant Sci,1994,13(2):121-138.
    [221] Zhu J K. Genetic analysis of plant salt tolerance using arabidopsis [J]. Plant Physiol,2000,124(3):941-948.
    [222] Zhu J K, Hasegawa P M, Bressan R A. Molecular aspects of osmotic stress in plants [J]. CritRev Plant Sci,1997,16(3):253-277.
    [223] Mendoza I, Rubio F, Rodriguez-Navarro A, et al. The protein phosphatase calcineurin isessential for NaCl tolerance of Saccharomyces cerevisiae [J]. J Biol Chem,1994,269(12):8792-8796.
    [224] Allen G J, Sanders D. Calcineurin, a Type2b Protein Phosphatase, Modulates theCa2+-Permeable Slow Vacuolar Ion-Channel of Stomatal Guard-Cells [J]. Plant Cell,1995,7(9):1473-1483.
    [225] Maeda T, Takekawa M, Saito H. Activation of Yeast Pbs2Mapkk by Mapkkks or by Bindingof an Sh3-Containing Osmosensor [J]. Science,1995,269(5223):554-558.
    [226] Wu H J, Zhang Z H, Wang J Y, et al. Insights into salt tolerance from the genome ofThellungiella salsuginea [J]. P Natl Acad Sci USA,2012,109(30):12219-12224.
    [227] Bajaj S, Targolli J, Liu L F, et al. Transgenic approaches to increase dehydration-stresstolerance in plants [J]. Mol Breeding,1999,5(6):493-503.
    [228] Sheveleva E V, Marquez S, Chmara W, et al. Sorbitol-6-phosphate dehydrogenase expressionin transgenic tobacco-High amounts of sorbitol lead to necrotic lesions [J]. Plant Physiol,1998,117(3):831-839.
    [229] Sakamoto A, Murata A, Murata N. Metabolic engineering of rice leading to biosynthesis ofglycinebetaine and tolerance to salt and cold [J]. Plant Mol Biol,1998,38(6):1011-1019.
    [230] Samis K, Bowley S, McKersie B. Pyramiding Mn-superoxide dismutase transgenes toimprove persistence and biomass production in alfalfa [J]. J Exp Bot,2002,53(372):1343-1350.
    [231] Zeng L H, Shannon M C. Salinity effects on seedling growth and yield components of rice[J]. Crop Sci,2000,40(4):996-1003.
    [232] Chen S F, Zhou R C, Huang Y L, et al. Transcriptome sequencing of a highly salt tolerantmangrove species Sonneratia alba using Illumina platform [J]. Mar Genom,2011,4(2):129-136.
    [233] Jian X Y, Zhang L, Li G L, et al. Identification of novel stress-regulated microRNAs fromOryza sativa L.[J]. Genomics,2010,95(1):47-55.
    [234] Manaa A, Ben Ahmed H, Valot B, et al. Salt and genotype impact on Plant Physiol and rootproteome variations in tomato [J]. J Exp Bot,2011,62(8):2797-2813.
    [235]王鑫,马永祥,李娟.紫花苜蓿营养成分及主要生物学特性[J].草业科学,2003,20(10):39-41.
    [236]杨青川,苏加楷,耿华珠等.紫花苜蓿耐盐新品系选择效果的研究[J].草地学报,1997,5(04):244-250.
    [237] Shannon M. Principles and strategies in breeding for higher salt tolerance [J]. Plant Soil,1985,89(1):227-241.
    [238] Downes R. New herbage Cultivars Medicago sativa cv. Alfalfa [J]. Trop Grasslands,1994,28:191-192.
    [239] Chaudhary M T, Wainwright S J, Merrett M J. Comparative NaCl tolerance of lucerne plantsregenerated from salt-selected suspension cultures [J]. Plant Sci,1996,114(2):221-32.
    [240] Winicov I, Bastola D R. Salt tolerance in crop plants: New approaches through tissue cultureand gene regulation [J]. Acta Physiol Plant,1997,19(4):435-449.
    [241] Bastola D R, Pethe V V, Winicov I. Alfin1, a novel zinc-finger protein in alfalfa roots thatbinds to promoter elements in the salt-inducible MsPRP2gene [J]. Plant Mol Biol,1998,38(6):1123-1135.
    [242] Winicov I. Alfin1transcription factor overexpression enhances plant root growth undernormal and saline conditions and improves salt tolerance in alfalfa [J]. Planta,2000,210(3):416-422.
    [243] Merchan F, de Lorenzo L, Rizzo S G, et al. Identification of regulatory pathways involved inthe reacquisition of root growth after salt stress in Medicago truncatula [J]. Plant J,2007,51(1):1-17.
    [244] Jin H C, Sun Y, Yang Q C, et al. Screening of genes induced by salt stress from Alfalfa [J].Mol Biol Rep,2010,37(2):745-753.
    [245] Long R, Yang Q, Kang J, et al. Molecular cloning and characterization of a novel stressresponsive gene in alfalfa [J]. Biol Plantarum,2012,56(1):43-49.
    [246] Colditz F, Braun H P. Medicago truncatula proteomics [J]. J Proteomics,2010,73(10):1974-1985.
    [247] Larrainzar E, Wienkoop S, Weckwerth W, et al. Medicago truncatula root nodule proteomeanalysis reveals differential plant and bacteroid responses to drought stress [J]. Plant Physiol,2007,144(3):1495-1507.
    [248] Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment [J].Bioinformatics,2009,25(15):1966-1967.
    [249] Rajagopalan R, Vaucheret H, Trejo J, et al. A diverse and evolutionarily fluid set ofmicroRNAs in Arabidopsis thaliana [J]. Gene Dev,2006,20(24):3407-3425.
    [250] Mascarenhas J P, Hamilton D A. Artifacts in the localization of GUS activity in anothers ofpetunia transformed with a CaMV35S‐GUS construct [J]. Plant J,1992,2(3):405-408.
    [251] Muhitch M J. Characterization of pedicel beta-glucuronidase activity in developing maize(Zea mays) kernels [J]. Physiol Plantarum,1998,104(3):423-430.
    [252] Ringli C, Keller B, Ryser U. Glycine-rich proteins as structural components of plant cellwalls [J]. Cell Mol Life Sci,2001,58(10):1430-1441.
    [253] Burd C G, Dreyfuss G. Conserved structures and diversity of functions of RNA-bindingproteins [J]. Science,1994,265(5172):615-621.
    [254] Kim J S, Jung H J, Lee H J, et al. Glycine-rich RNA-binding protein7affects abiotic stressresponses by regulating stomata opening and closing in Arabidopsis thaliana [J]. Plant J,2008,55(3):455-466.
    [255] Sachetto-Martins G, Franco L O, de Oliveira D E. Plant glycine-rich proteins: a family or justproteins with a common motif?[J]. Biochim Biophys Acta,2000,1492(1):1-14.
    [256] Bergeron D, Boivin R, Baszczynski C L, et al. Root-specific expression of a glycine-richprotein gene in Brassica napus [J]. Plant Sci,1994,96(1):87-98.
    [257] Condit C M. Developmental expression and localization of petunia glycine-rich protein1[J].Plant Cell,1993,5(3):277-288.
    [258] de Oliveira D E, Seurinck J, Inzé D, et al. Differential expression of five Arabidopsis genesencoding glycine-rich proteins [J]. Plant Cell,1990,2(5):427-436.
    [259] Keller B, Sauer N, Lamb C. Glycine-rich cell wall proteins in bean: gene structure andassociation of the protein with the vascular system [J]. Embo J,1988,7(12):3625-3633.
    [260] Laberge S, Castonguay Y, Vézina L P. New cold-and drought-regulated gene from Medicagosativa [J]. Plant Physiol,1993,101(4):1411-1412.
    [261] Lei M, Wu R. A novel glycine-rich cell wall protein gene in rice [J]. Plant Mol Biol,1991,16(2):187-198.
    [262] No E G, Flagler R B, Swize M A, et al. cDNAs induced by ozone from Atriplex canescens(saltbush) and their response to sulfur dioxide and water-deficit [J]. Physiol Plantarum,1997,100(1):137-146.
    [263] Showalter A M, Butt A D, Kim S. Molecular details of tomato extensin and glycine-richprotein gene expression [J]. Plant Mol Biol,1992,19(2):205-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700