用户名: 密码: 验证码:
若干非光滑系统动力学与应用非线性控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于非线性现象具有无限的复杂性,线性反馈控制已很难进行恰当的补偿,因而随着对工程领域中各种非光滑、时变等非线性因素研究的深入,也需要在非线性控制理论和应用方面取得突破。通过理论分析和数值计算相结合的方法进一步揭示非光滑系统的动力学特性,并在此基础上探索应用非线性控制律的设计,主要采用基于微分几何法的二次型最优控制、滑模变结构控制以及自适应控制,有效地调节实际系统在临界工作状态附近的动力学特性,避免工程隐患的发生,提高工作效率,并且结合一些实验工作和有限元计算,为推动非线性控制器的设计和动力学理论分析提供依据。本文主要研究工作和成果包含以下几个部分:
     1、较全面地综述了几类非光滑系统动力学的最新研究进展,包括制动干摩擦系统、结构非线性弹翼系统和可变体飞行器时变边界系统。也对非线性控制中的几种重要方法进行了阐述,包括反馈线性化、滑模变结构控制和自适应控制。
     2、采用LuGre摩擦力模型,建立两自由度制动系统的动力学方程。应用Hopf分岔定理、增量谐波平衡法和数值方法分析自激振动周期解。基于微分几何法和线性二次型最优控制相结合的方法,设计单输入单输出非线性系统控制器,推迟制动系统出现自激振动的临界速度并有效降低颤振幅值,结合干摩擦实验和有限元分析,得到不同摩擦噪声的产生机理。
     3、基于三阶活塞理论建立了含间隙弹翼非线性气动弹性动力学方程。应用谐波平衡法研究了颤振系统的分岔特性;基于微分几何法和二次型最优控制相结合的方法,设计非线性系统控制器,提高系统的分岔临界速度;应用滑模变结构控制方法设计控制器,有效抑制非线性颤振,提高系统的气动弹性稳定性。考虑来自弹体的扰动时,得到不同类型的响应,包括单周期运动、多周期运动、概周期运动以及混沌运动。
     4、考虑一阶活塞理论,建立在气动力作用下伸缩悬臂梁的动力学模型。应用平均法研究伸展变形下一阶模态、二阶模态广义变量的动力学响应,提出基于独立模态空间的自适应滑模变结构控制方法,通过截断前两阶模态施加的控制有效地抑制伸缩运动过程中的振动,并比较两种运动的控制效果,得到伸展运动下对振动的控制更好。
Complexity in the nonlinear phenomenon, linear feedback control has made itdifficult to appropriate compensation, so as to the research on nonlinear factors suchas non-smooth and the time-varying in the field of engineering, the breakthrough innonlinear control theory and applications is imperative. The dynamics of non-smoothsystem has been revealed by theoretical analysis and numerical calculation method,and the design of nonlinear control law also has been discussed. Adopting differentialgeometry and linear quadratic optimal control method, sliding mode variable structurecontrol and adaptive control method, the dynamical characteristics on the criticalpoints have been controlled efficiently, avoiding the hidden trouble and improving thework efficiency. Combining experimental analysis and finite element calculations, thenonlinear controller design and dynamics theory analysis is promoted. Several worksand results included in the thesis are as follow:
     1. The latest progress and application of some non-smooth systems aresummarized, including dry-friction braking system, the structural nonlinear missle-wing system and time-varying system of aircraft. Besides, several nonlinear controlmethods are indicated, including feedback linearization, sliding mode variablestructure control and adaptive control.
     2. Adopting the LuGre friction model, the dynamical equations of a2-DOF discbrake system are derived by considering the friction force between the disc and pad.The self-excited vibration periodic solution is obtained by Hopf bifurcation theorem,incremental harmonic balance method and numerical method. The design methodbased on differential geometry and linear quadratic optimal control for SISOnonlinear system controller is used to reduce the chatter phenomena by postponing thecritical speed of Hopf bifurcation. Combined with dry friction experiment and thefinite element analysis, different mechanisms of friction noise are obtained.
     3. Based on the third-order piston, the nonlinear aeroelastic dynamic equationswith freeplay nonlinearity are derived. The bifurcation characteristcs are obtainedthrough harmonic balance method. The design method based on differential geometryand quadratic optimal control for nonlinear system controller is used to improve thecritical speed of Hopf bifurcation. The sliding mode variable structure control fornonlinear system controller is used to stabilize the flutter. Considering the disturbance from the missle body, single-periodic, multi-periodic, quasi-periodic motion andchaotic motion are obtained.
     4. Considering of the first-order piston, the nonlinear aeroelastic dynamicequations of the telescopic cantilever are derived. The dynamical responses of the firstand second order modal are obtained through the average method. The design methodbased on independent modal space of adaptive sliding mode variable structure controlis proposed. The vibration in telescopic movement is stablized by controlling the firsttwo modes, and to compare two control effects, the stretching movement is better.
引文
[1]高为炳,程勉,夏小华,非线性控制系统的发展,自动化学报,1991,17(5):513-523
    [2]王加春,李旦,董申,机械振动主动控制技术的研究现状和发展综述,机械强度,2001,23(2):156-160
    [3]陈关荣,控制非线性动力系统的混沌现象,控制理论与应用,1997,14(1):1-6
    [4]陈关荣,控制动力系统的分岔现象,控制理论与应用,2001,18(2):153-159
    [5] D. Rugh, Nonlinear System Theory, The John Hopkins University Press,Beltimore,1980.
    [6]陈予恕,黄文虎,高金吉等,机械装备非线性动力学与控制的关键技术,北京:机械工业出版社,2011
    [7]邓方林,复杂工程系统建模与仿真,北京:国防工业出版社,2009
    [8]秦荣,工程结构非线性,北京:科学出版社,2006
    [9]张伟,陈予恕,机械系统中的非线性动力学问题及其研究进展,中国机械工程,1998,9(7):64-69
    [10]方洋旺,非线性控制系统的综合理论研究,[博士学位论文],西安:西安交通大学,1997
    [11]付文彬,非线性动力学系统的分岔控制研究,[博士学位论文],长沙:湖南大学,2005
    [12]陆启韶,分岔与奇异性,上海:上海科技教育出版社,1995
    [13] S.F. Masri. Analytical and experimental studies of multiple-unit impact dampers.Journal of the Acoustical Society of America,1969,45(5):1111-1117.
    [14] N.M. Kinkaid, O.M. O’Reilly and P. Papadopoulos, Automotive disc brakesqueal, Journal of Sound and Vibration,2003,267(1):105–166.
    [15] C.K. Tse, M. Di Bernardo. Complex behavior in switching power converter.Proceeding of IEEE,2002,90(5):768-781.
    [16]陆启韶,非光滑系统动力学研究进展,中国力学学会学术大会,2005
    [17]金俐,非光滑动力系统的稳定性、分岔及混沌分析方法研究,[博士学位论文],北京:北京航空航天大学,2005
    [18]冯进钤,非线性系统的初步研究,[博士学位论文],西安:西北工业大学,2007
    [19]胡海岩,非光滑动力系统周期响应的数值解法,南京航空学院学报,1992,24(4):394-402
    [20]胡海岩,高维非光滑动力系统的周期响应数值分析,固体力学学报,1994,15(2):135-145
    [21] U. Galvanetto. Computation of the separatrix of basins of attraction in anon-smooth dynamical system, Physic D,2008
    [22]王璋奇,杨文刚,转子碰摩系统的非线性数值分析,中国科技论文在线,2009
    [23]张思进,陆启韶,碰摩转子系统的非光滑分析,力学学报,2000,32(1):59-69
    [24]金俐,陆启韶,非光滑非线性动力系统的稳定性分析,第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集,2004:139-141
    [25]陆启韶,金俐,具有刚性约束的非线性动力系统的局部映射方法,固体力学学报,2005,26(2):132-138
    [26]慕小武,程桂芳,非自治非光滑系统的Matrosov稳定性定理,应用数学学报,2007,30(1):168-175
    [27] Y. Yoshitake, A. Sueoka, N. Shoji et al. Vibrations of nonlinear systems withdiscontinuities[J]. The Japan Society of Mechanical Engineers,1998,41(4):710-717.
    [28] R.I. Leine, D.H. Campen. Bifurcation phenomena in non-smooth dynamicalsystems[J]. European Journal of Mechanics A/Solids,2006,25:595-616.
    [29]徐慧东,谢建华,一类单自由度分段线性系统的分岔和混沌控制,振动与冲击,2008,27(6):20-24
    [30]金俐,陆启邵,非光滑动力系统Lyapunov指数谱的计算方法,力学学报,2005,37(1):40-46
    [31]陆启韶,王士敏,复杂非线性系统的一些动力学与控制问题,2004年10月,第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集
    [32] F.H. Clarke. Nonsmooth Analysis in Control Theory: A Survey. EuropeanJournal of Control,2001,7(3):63-78.
    [33] F.H. Clarke. Lyapunov Functions and Feedback in Nonlinear Control, LectureNotes in Control and Information Science. Springer-Verlag,2004.
    [34] F.H. Clarke, Y.S. Ledyaev, R.J. Stern. Asymptotic Stability and SmoothLyapunov Functions. Journal of Differential Equations,1998,149(11):69-114.
    [35] L. Rosier. Smooth Lyapunov Functions for Discontinous Stable Systems.Set-Valued Analysis,1999,7(4):375-405
    [36] Q. Wu, S. Onyshko, N. Sepehri, et al. On Construction of Smooth LyapunovFunctions for Nonsmooth Systems. International Journal of Control,1998,69(3):442-457
    [37] D.K. Frederick, G.F. Franklin. Design of Piecewise-linear Switching Functionsfor Relay Control Systems. IEEE Transactions Automatic Control,1967,12(4):380-387.
    [38] X.H. Yu, Y.Q. Wu. Adaptive Terminal Sliding Mode Control of UncertainNonlinear Systems-Backstepping Approach. Control Theory and Applications.1998,15(6):900-907.
    [39] W.J. Wang, H.R. Lin. Fuzzy Control Design for the Trajectory Tracking onUncertain Nonlinear Systems. IEEE Transactions on Fuzzy Systems,1999,7(1):53-62.
    [40] E.P. Ryan. Adaptive Stabilization of a Class of Uncertain Nonlinear Systems: ADifferential Inclusion Approach. Systems and Control Letters,1998,10(2):95-101.
    [41] Z. Sun, S.S. Ge. Nonregular Feedback Linearization: A Nonsmooth Approach,IEEE Transactions on Automatic Control,2003,48(10):1772-1776.
    [42]丁千,陈予恕,叶敏,梁以德,一类非自治滞后-自激系统的主共振与锁模现象,力学学报,2002,34(1)∶123-130
    [43]丁千,孙艳红,弯扭耦合振动阻尼叶片在多谐波激励下的共振,振动工程学报,2004,17(增刊):94-96
    [44]丁千,黄毅,孙艳红,干摩擦阻尼叶片多谐波激振下的共振响应,振动与冲击,2005,24(4):103-105
    [45] Q. Ding, A.Y.T. Leung, J.E. Cooper. Dynamic Analysis of a Self-excitedSystem with Hysteretic Non-linearity. Journal of Sound and Vibration,2001,245(1):151-164.
    [46] Q. Ding, Y. Chen. Analyzing resonant response of a system with dry frictiondamper using an analytical method, Journal Vibration and Control,2008,14(8):1111-1123.
    [47]李博,丁千,陈艳,刹车系统摩擦自激振动的数值研究,科技导报,2007,25(23):28-32
    [48]陈艳,丁千,平台和缘板阻尼叶片共振响应的数值分析,振动与冲击,2008,121(5):53-55
    [49]黄毅,丁千,内共振系统的干摩擦自激振动,振动与冲击,2008,121(5):103-104,159
    [50]丁千,谭海波,干摩擦阻尼叶片周期振动响应的解析计算,机械强度,2005,27(5):571-574
    [51]丁文镜,自激振动,北京:清华大学出版社,2009
    [52] Y. Li, Z.C. Feng. Bifurcation and Chaos in Friction-induced Vibration.Communication in Nonlinear Science and Numerical Simulation,2004,9(6):633647.
    [53] B.L. Van de Vrande, D.H. Van Campen, A. De Kraker, Approximate analysisof dry-friction-induced stick-slip vibrations by a smoothing procedure.Nonlinear Dynamics,1999,19(2):159-171.
    [54] U. Galvanetto, S. R. Bishop. Characterisation of the dynamics of afour-dimensional stick-slip system by a scalar variable. Chaos, Solitions andFractals,1995,5(11):2171-2179.
    [55] U. Galvanetto. Some discontinous bifurcations in a two-block stick-slip system.Journal of Sound and Vibration,2001,248(4):653-669.
    [56] C. Pierre, A.A. Ferri, E.H. Dowell. Multi-Harmonic Analysis of Dry FrictionDamped Systems Using an Incremental Harmonic Balance Method. Journal ofApplied Mechanics,1985,52(4):962-968.
    [57] B. Armstrong-Helouvry, P. Dupont, C. Canudas de Wit. A survey of models,analysis tools and compensation methods for the control of machines withfriction. Automatica,1994,30(7):1083–1138.
    [58] R.A. Ibrahim, S. Madhavan, et al. Experimental investigation of friction-induced noise in disc brake systems. International Journal of Vehicle Design,2000,23(3/4):218-240.
    [59] T. K. Kao, et al. Brake disk hot spotting and thermal judder: an experimentaland finite element study. International Journal of Vehicle Design,2000,23(3/4):276-296.
    [60]陈光雄,周仲荣,谢友柏,摩擦噪声研究的现状和进展,摩擦学学报,2000,20(6):478-481
    [61]孟光,陈进,蒋伟康等,高速轨道交通减振降噪的研究及其关键技术的展望,机车电传动,2003,增刊
    [62]张振淼,城市轨道交通环境噪声的评价与控制以及衰减噪声的途径,地铁与轻轨,2001(2):20-23
    [63]张瑞亭,赵云生,高速列车的减振降噪技术,国外铁道车辆,2005,42(2):10-16
    [64] O. Giannini, A. Akay, F. Massi. Experimental analysis of brake squeal noise ona laboratory brake setup, Journal of sound and vibration,2006,292(1-2):1-20.
    [65] J. Awrejcewicz, P. Yuriy. Dynamics of a two-degrees-of-freedom system withfriction and heat generation. Communication in Nonlinear Science andNumerical Simulation,2006,11(5):635-645.
    [66] H.R. Mills. Brake squeak. Technical Report9000B, Boston:Institution ofAutomobile Engineers,1938.
    [67] R.T. Spurr. A theory of brake squeal. Proceedings of the Institution ofMechanical Engineers,1961,1(4):30-40.
    [68] E.J. Berger. Friction modeling for dynamic system simulation. AppliedMechanics Reviews,2002,55(6):535-577.
    [69] V. Aronov, A.F. D'souza, S. Kalpakjian. Interactions Among Friction, Wear,and System Stiffness—Part2: Vibrations Induced by Dry Friction. ASMEJournal of Tribology,1984,106(1):59-64.
    [70]陈小悦.鼓式制动器低频振动的研究,[博士学位论文],北京:清华大学,1988
    [71]韩秋实,许宝杰,雷纪刚,刹车装置摩擦噪声的动力学模型及理论分析,北京机械工业学院学报,1999,14(2):1-5
    [72]余为高,于学华,应用有限元法对盘式制动器制动噪声分析,科学技术与工程,2009,9(12):3234-3236
    [73]罗明军,王文林,汽车盘式制动器制动尖叫的分析,南昌大学学报,2009,31(1):72-74,79
    [74]宿新东,管迪华,利用子结构动态特性优化设计抑制制动器尖叫,汽车工程,2003,25(2):167-170
    [75]周昌祈,余晓星,盘式制动器制动噪声影响因素的有限元分析,汽车工程师,2011(1):44-47
    [76]余卓平,孟德建,张立军,基于道路和台架的制动器振动噪声试验方法研究,汽车技术,2009(6):1-7
    [77]管迪华,宿新东,制动振动噪声研究的回顾、发展与评述,工程力学,2004,21(4):150-155
    [78]黄学文,张金换,懂光能,谢友柏,摩擦制动噪声防治研究进展,润滑与密封,2006(11):194-197
    [79] S. Chatterjee. Nonlinear control of friction-induced self-excited vibration,International Journal of Nonlinear Mechanics,2007,42(3):459-469.
    [80] S. Lignon, J.J. Sinou, L. Jezequel. Stability analysis and μ-synthesis control ofbrake systems, Journal of sound and vibration,2006,298(4-5):1073-1087.
    [81]郭桂梅,摩擦自激振动系统的分岔控制研究,机械强度,2009,31(4):523-526
    [82]陈桂彬,杨超,邹丛青,气动弹性设计基础,北京:北京航空航天大学出版社,2010
    [83]李静,防空导弹颤振研究,第八届全国空气弹性学术交流会会议,2003
    [84]杨超,徐赟,谢长川,高超声速飞行器气动弹性力学研究综述,宇航学报,2010,31(1):1-11
    [85]李润方,王建军,齿轮系统动力学振动、冲击、噪声,北京:科学出版社,1997
    [86]陈树辉,强非线性振动系统的定量分析方法,北京:科学出版社,2007
    [87] L. K. Abbas, et al., Numerical studies of a non-linear aeroelastic system withplunging and pitching freeplays in supersonic/hypersonic regimes. AerospaceScience and Technology,2007,11(5):405-418.
    [88] D.H. Lee, P.C. Chen. Nonlinear aeroelastic studies on a folding wingconfiguration with free-play hinge nonlinearity.47thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.2007:1754-1775.
    [89]郑国勇,杨翊仁,超音速流中结构非线性二元机翼的复杂响应研究,振动与冲击,2007,26(12):96-100
    [90]赵永辉,胡海岩,具有操纵面间隙非线性二维翼段的气动弹性分析,航空学报,2003,24(6):521-525
    [91]丁千,王冬立,用规范型直接法研究立方非线性机翼的颤振,飞行力学,2005,23(3):85-88
    [92] N. Bhoir, S.N. Sigh. Control of unsteady aeroelastic system via state-dependentRiccati equation method. Journal of Guidance, Control, and Dynamics,2005,28(1):78-84.
    [93]李道春,向锦武,间隙非线性气动弹性颤振控制,北京航空航天大学学报,2007,33(6):640-643
    [94]宋晨,吴志刚,杨超,二元机翼滑模变结构控制颤振主动抑制,北京航空航天大学学报,2010,36(12):1400-1403
    [95] L. Librescu, P. Marzocca, et al. Supersonic/hypersonic flutter and post flutter ofgeometrically imperfect circular cylindrical panels. Journal of Spacecraft andRockets,2002,39(5):802-812.
    [96] Z.C. Yang, L.C. Zhao. Analysis of limit cycle flutter of an airfoil inincompressible flow. Journal of Sound and Vibration,1988,123(1):1-13.
    [97] L. In, K. Seung-Ho. Aeroelastic Analysis of a Flexible Control Surface withStructural Nonlinearity. Journal of Aircraft,1995,32(4):868-874.
    [98] P. Bean, W. Silva. Reduced-Order Modeling: New Approaches for Computat-ional Physics. Progress in Aerospace Sciences,2004,40(1-2):51-117.
    [99] B.Y. Min, J.W. Lee, Y.H. Byun. Numerical investigation of the shockinteraction effect on the lateral jet controlled missile. Aerospace Science andTechnology,2006,10(5):385-393.
    [100] L.Z. Yang, M.H. Wang, Z.H. Gao. Numerical investigation of unsteadyaerodynamic characteristics of a pitching missile. Aerospace Science andTechnology,2011,15(2):129-136.
    [101] P. Dewilde, Alle-Jan van der Veen. Time-varying systems and computations.Netherlands: Kluwer Academic Publishers,1998.
    [102]王光远,论时变结构力学,土木工程学报,2000,33(6):105-108
    [103]曹志远,时变力学及其工程应用,力学与实践,1999,21(5):1-4
    [104]孙明贵,唐平,陈占清,时变边界系统动力学行为研究展望,常德师范学院学报,2003,15(2):12-15
    [105]孙焕纯,宋亚新,张典仁,变质量、变阻尼、变刚度结构系统的动力响应,计算结构力学及其应用,1996,13(2):127-137
    [106]李创第,李桂青,黄任常,非线性时变结构动力可靠性分析的包络过程法,广西大学学报,1999,23(4):319-324
    [107]李鸿光,杨文平,闻邦椿,具有可动边界和间隙的机械系统自激振动分析,机械科学与技术,2000,19(2):177-179
    [108]陈占清,缪协兴,时变边界的变质量刚体的动力学方程,力学与实践,2001,23(5):47-49
    [109]陈占清,唐平,缪协兴,时变边界刚体的平动与转动耦合特性,湘潭师范学院学报,2002,24(2):29-33
    [110]胡振东,赵姗姗,高速电梯系统时变动力学模型与分析,力学季刊,2002,23(3):422-426
    [111]崔尔杰,白鹏,杨基明,智能变形飞行器的发展道,航空制造技术,2007(8):38-41
    [112]李玉璞,孙铿,张宏,自适应机翼控制技术新进展,国际航空杂志,2001(9):56-57
    [113] M.P. Snyder, B. Sanders, F.E. Eastep, et al. Vibration and FlutterCharacteristics of a Folding Wing. Journal of aircraft,2009,46(3):791-799.
    [114] R.A. Gerald, L.C. David, J.P. David. Aeroelastic modeling,analysis and testingof a morphing wing structure. AIAA-2007-1734,2007.
    [115] F.D. Marques. Active Control of Nonlinear Aeroelastic Response Using aConformal Surface, AIAA paper2006-1837.
    [116]陆宇平,何真,变体飞行器控制系统综述,航空学报,2009,30(10):1906-1911
    [117]孙麟,张伟,曹东兴等,可变形机翼非线性振动的理论研究,中国力学学术大会2009,2009
    [118]刘豹,现代控制理论,北京:机械工业出版社,2000
    [119]程代展等译,应用非线性控制,北京:机械工业出版社,2009
    [120]胡寿松,自动控制原理,北京:科学出版社,2001
    [121]陈予恕,非线性振动,北京:高等教育出版社,2002
    [122]胡海岩,应用非线性动力学,北京:航空工业出版社,2000
    [123]崔平远,薛小平,陈冲,非线性系统精确线性化的微分几何法,飞行力学,1993,11(2):1-9
    [124] R. Su. On the linear equivalents of nonlinear systems. Syst. Contr. Lett.,1982,2(1):48-52.
    [125] A.J. Krener, A. Isidori. Linearization by output injection and nonlinearobservers. Syst. Contr. Lett.,1983,3(1):47-52.
    [126] W.M. Boothby. Some comments on global linearization of nonlinear systems.Syst. Contr. Lett.,1984,4(3):143-147.
    [127] R. Su, L.R. Hunt. A canonical expansion for nonlinear systems. IEEETransactions on Automatic Control,1986,31(7):670-673.
    [128] W.P. Dayawansa, W.M. Boothby, D. Elliott. Global state and feedbackequivalence of nonlinear systems. Syst. Contr. Lett.,1985,6(4):229-234.
    [129] M. Ilic Spong, T.J.E. Miller, S.R. Macminn, et al. Instantaneous torque controlof electric motor drivers. IEEE Trans. Power Electron,1987,2(1):55-61.
    [130]张亮,孙玉坤,基于微分几何法的磁悬浮开关磁阻电机径向力的变结构控制,中国电机工程学报,2006,26(19):121-126
    [131]朱铁夫,李明,郁万鹏,反馈线性化及其在飞控系统中的应用,飞机设计,2004(2):42-46
    [132] L. Fiorentini, A. Serrani, M.A. Bolender, et al. Nonlinear Robust Adaptivecontrol of flexible air-breathing hypersonic vehicles. In AAIA Journal ofGuidance, Control, and Dynamics,2009,32(2):401-415.
    [133] J.K. Andrew, J. Kurdila, T.W. Strganac. Nonlinear control of a prototypicalwing section with torsional nonlinearity. Journal of Guidance, Control, andDynamics,1997,20(6):1-9.
    [134] M. Krstic, I. Kanellakopoulos, P.V. Kokovic. Adaptive nonlinear controlwithout overparametrication. Syst. Contr. Lett.,1992,19(3):177-185.
    [135] A. Isidori, A.J. Krener, C. Gori-giorgi, et al. Nonlinear decoupling via feedback:a differential geometric approach. IEEE Trans. On automatic control,1981,26(2):331-345.
    [136] A. Teel, L. Praly. Tools for semiglobal stabilization by partial state and outputfeedback. SIAM Journal of Control and Optimization,1995,33(5):1443-1488.
    [137] J. M. Coron. Linearized control systems and applications to smooth stabilization.SIAM Journal of Control and Control and Optimization,1994,32(2):358-386.
    [138]高为炳,变结构控制的理论及设计方法,北京:科学出版社,1996
    [139]王丰尧,滑模变结构控制,北京:机械工业出版社,1995
    [140] B.P. Kang, J.L. Ju. Sliding mode controller with filtered signed for robotmanipulators using virtual plant/controller. Mechatronics,1997,7(3):277-286.
    [141] C. Edwards. A practical method for the design of sliding mode controllers usinglinear matrix inequalities. Automatica,2004,40(10):1761-1769.
    [142] V. I. Utkin. Variable structure systems with sliding modes. IEEE Transactionson Automatic control,1997,22(2):212-222.
    [143] J.X. Xu, Y.J. Pan, T.H. Lee. A gain scheduled sliding mode control schemeusing filtering technique with applications to multi-link robotic manipulators.Journal of Dynamic Systems, Measurement and Control,2000,122(4):641-649.
    [144] J.C. Wu, T.S. Liu. A sliding-mode approach to fuzzy control design. IEEETransaction on control systems technology,1996,4(2):141-151.
    [145] D. Muì oz, D. Sbarbaro. An adaptive sliding2mode controller for discretenonlinear systems. IEEE Transaction on Industrial Electronics,2000,47(3):574-581.
    [146] X. Y, S.K. Lu. Spurgeon, I. Postlethwaite. Robust variable structure control of aPVTOL aircraft. International Journal of Systems Science,1997,28(6):547-558.
    [147] I. Kaminer, P.P. Khargonekar. Design of localizer capture and track modes for alateral autopilot using H-infinite synthesis. IEEE control systems magazine,1990,10,13-21.
    [148] H.H. Yeh, E. Nelson, A. Sparks. Nonlinear tracking control for satelliteformations. Journal of Guidance, Control, and Dynamics,2002,25(2):376-386.
    [149] C.M. Lin, C.F. Hsu. Hybrid fuzzy sliding mode control of an aeroelastic system.Journal of Guidance, Control, and Dynamics,2002,25(4):829-832.
    [150] C.M. Lin, W.L. Chin. Adaptive decoupled fuzzy sliding mode control of anonlinear aeroelastic system. Journal of Guidance, Control, and Dynamics,2006,29(1):206-209.
    [151] S. Na, L. Librescu, P. Marzocca, et al. Aeroelastic Response of Flapped-WingSystems Using Robust Estimation Control Methodology. Journal of Guidance,Control, and Dynamics,2006,29(1):199-202.
    [152]陈新海,李言俊,周军,自适应控制及其应用,西安:西北工业大学出版社,1995
    [153] J.S. Vipperman, R.A. Burdisso, C.R. Fuller. Active control of broadbandstructural vibration using the LMS adaptive algorithm. Journal of Sound andVibration,166(2):283-299.
    [154] K.S. Tsakalis, P.A. Ioannou. Adaptive control of linear time-varying plants.Automatica,1987,23(4):459-468.
    [155] P.R. Pagilla, B. Yu, K.L. Pau. Adaptive control of time-varying mechanicalsystems: analysis and experiments. IEEE/ASME Transactions on Mechatronics,2000,5(4):410-418.
    [156] R. Ordonez, K.M. Passino. Adaptive control for a class of time-varyingnonlinear systems. Proceedings of the American Control Conference,2000,5:3133-3137.
    [157] P.R. Pagilla, B. Yu. Adaptive control of a robot carrying a time-varying payload.IEEE Conference on Control Applications-Proceedings,2000,1:68-73.
    [158] S.S. Ge, G.Y. Li, T.H. Lee. Adaptive NN control for a class of strict-feedbackdiscrete-time nonlinear systems. Automatica,2003,39(5):807-819.
    [159] R. Marino, P. Tomei. Adaptive control of linear time-varying systems.Automatica,2003,39(5):651-659.
    [160]韩曾晋,自适应控制,北京:清华大学出版社,1995
    [161] J. Zhou, M.J. Er, J.M. Zruada. Adaptive neural network control of uncertainnonlinear systems with nonsmooth actuator nonlinearities. Neurocomputing,2007,70(6):1062-1070.
    [162] S.S. Ge, F. Hong, T.H. Lee. Adaptive neural network control of nonlinearsystems with unknown time delays. IEEE Transactions on Automatic Control,2003,48(11):2004-2010.
    [163] Y.A. Huang, Z.C. Deng, Y.L. Xiong. High-order model and slide mode controlfor rotating flexible smart structure. Mechanism and Machine Theory,2008,43(8):1038-1054.
    [164] X.C. Li, W. Xu, Y.Z. Xiao. Adaptive slide mode control for a class of chaoticsystems with perturbations. Acta Physica Sinica,2008,57(8):4721-4728.
    [165] Y.Q. Zhou, X.S. Mei, G.D. Jiang, et al. Sensor less evaluation for a computernumerical control machine tool slide level using an empirical modedecomposition method. Journal of Mechanical Engineering Science,2010,224(3):721-730.
    [166] M.R. Bolivar, A.S.I. Zinober, R.H. Sira. Dynamic adaptive sliding mode outputtracking control of a class of nonlinear systems. International Journal of Robustand Nonlinear Control,1997,7(4):387-405.
    [167] F.J. Lin, S.L. Chiu, K.K. Shyu. Novel sliding mode controller for synchronousmotor drive. IEEE Transaction on Aerospace and Electronic Systems,1998,34(2):532-542.
    [168] G. Wheeler, C.H. Su, Y. Stepanenko. A sliding mode controller with improvedadaptation laws for the upper bounds on the norm of uncertainties. Automatica,1998,34(12):1657-1661.
    [169] N. Bekiroglu, H.I. Bozma, Y. Istefanopulos. Model reference adaptive approachto sliding mode control. Proceeding of American Control Conference,1995,6:1028-1032.
    [170] J.B. Song, Y. Ishida. A robust sliding mode control for pneumatic servo systems.International Journal of Engineering Science,1997,35(8):711-723.
    [171] S. Chatterjee, Time-delayed feedback control of friction-induced instability.International Journal of Non-Linear Mechanics,2007,42(9):1127-1143.
    [172]李博,丁千,陈艳,刹车系统摩擦自激振动的数值研究,科技导报,2007,25(23):28-32.
    [173] C. Canudas de Wit, H. Olsson, K.J. Astrom, et al.. A new model for control ofsystems with friction, IEEE Transaction on Automatic Control,1995,40(3):419–425.
    [174]沈建和,非线性振动系统的分岔、混沌及相关控制,[博士学位论文],广州:中山大学,2008
    [175] S.L. Lau, Y.K. Cheung. Amplitude incremental variational principle fornonlinear of elastic systems. Journal of Applied Mechanics,1981,48(4):959-964.
    [176]张海军,谷正气,杨易,龚旭,汪怡平,鼓式制动器低频振动的分析与改进,汽车工程,2009,31(11):1060-1065
    [177] B.H.K. Lee, S.J. Price, Y.S. Wong. Nonlinear aeroelastic analysis of airfoils:bifurcation and chaos. Progress in Aerospace Sciences,1999,35:205-334.
    [178] V. Mukhopadyay. Historical perspective on analysis and control of aeroelasticresponses. Guidance Control Dynamic.2003,26(5):673–684.
    [179]郑国勇,杨翊仁,具有操纵面立方非线性机翼的混沌响应,工程力学,2010,27(2):209-213
    [180]陈曦,张伟,可伸缩机翼的控制系统设计与非线性振动实验研究,中国力学大会-2011暨钱学森诞辰100周年纪念大会,2011
    [181]杨靖波,含间隙轴向运动悬臂梁和旋转梁非线性动力学与振动主动控制的研究,[博士学位论文],北京:北京大学,2004
    [182]曹树谦,张文德,萧龙翔,振动结构模态分析:理论、实验与应用,天津:天津大学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700