用户名: 密码: 验证码:
超宽带无线通信系统及若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带(UWB)技术是近年发展很快的一种无线通信新技术,根据美国联邦通信委员会的定义,超宽带是指信号的-10dB相对带宽超过20%或绝对带宽超过500MHz。超宽带系统具有许多优点,这使其被视作短距离、高(低)速无线通信最具开发潜力的物理层技术之一。超宽带无线通信系统具有广泛的应用前景,将成为未来无线泛在网络的重要组成部分。目前,UWB在商业多媒体设备、无线传感器网络、无线定位、家庭和个人网络、智能交通系统等诸多领域的应用前景已得到了专业界的普遍认可。因此,建立和完善超宽带无线通信系统的基本理论,解决其关键技术,是具有非常重要的科学意义和现实意义的。本论文主要对超宽带无线通信系统中的关键技术及UWB后续演进问题进行了研究,可以归纳为以下三个方面的内容:(1)UWB脉冲波形优化设计;(2)认知超宽带(CUWB)无线通信系统分析及架构设计;(3)CUWB系统的自适应脉冲波形设计。
     本论文共分为6章,其主要内容如下:
     第1章为绪论,介绍了课题研究的背景,对UWB系统的概念、特点、应用前景以及关键技术进行了简介,并对本文的研究重点和创新点进行了说明。
     第2章对UWB脉冲波形设计进行了概述。介绍了UWB-IR系统的基本原理,通过对典型脉冲信号的功率谱分析说明了UWB脉冲波形设计的重要性,根据已有的文献总结出了超宽带成形脉冲设计的一般要求及评价指标,并探讨了几种典型的超宽带成形脉冲。
     第3章主要介绍了一种基于扁长椭球波函数(PSWFs)的超宽带成形脉冲优化设计算法。首先,指出了当前脉冲优化设计中存在的一些不足之处,并介绍了与本算法相关的理论基础,主要涉及了PSWFs的相关概念、特性及其近似求解法。接着,从满足特定辐射掩蔽规定和提高频谱利用效率的角度出发,基于PSWFs的完备正交特性,详细地阐述了一种应用有限项PSWFs脉冲基的正交综合来优化设计UWB成形脉冲的新算法,并通过仿真验证了算法的有效性。
     第4章主要阐述了一种被称为认知超宽带无线通信系统的新型智能无线系统。首先,对认知无线电进行了概述,简单地介绍了认知无线电的基本概念、典型的认知循环模型及其主要的功能特性。接着,分析了认知无线电技术与超宽带技术相结合进行研究的必要性及可行性,给出了认知超宽带无线通信系统的定义,阐述了CUWB系统的基本工作原理,描述了其认知过程,给出了简化的系统认知循环处理模型,并指出了CUWB系统应具有的功能特性。然后,针对这些功能特性,对CUWB系统的核心功能与关键技术进行了详细分析。最后,采用分层功能抽象和跨层联合设计相结合的方法对CUWB系统的整个结构框架进行了研究设计。
     第5章主要介绍了一种基于干扰温度的测量来实现CUWB系统自适应脉冲波形的设计算法。首先对干扰温度的概念及其谱估计方法进行了简单的介绍,接着从自适应频谱环境和兼容FCC频谱模板的角度出发,建立了基于干扰温度测量来动态构建CUWB系统自适应辐射掩蔽的机制。然后,利用PSWFs函数的特性,提出了一种基于多频带的扁长椭球波函数基的加权线性组合来设计CUWB自适应脉冲波形的算法。仿真结果表明,该算法所产生的脉冲波形不仅能满足CUWB系统特定频谱模板的要求,而且能自适应模板的动态变化。
     第6章对全文进行了总结,并指出了后续进一步的研究工作。
Ultra Wideband (UWB) radio is a novel wireless communication technology, which has been speed up to develop in recent years. According to the Federal Communications Commission (FCC) UWB rulings, the signal is recognized as UWB if the -10dB fractional bandwidth of the signal is greater than 20% or the absolute bandwidth of the signal is greater than 500MHz. UWB system has many benefits, which made UWB the most potential physical layer technology for short distance and high or low speed wireless communication. Ultra Wideband wireless communication system has an extensive perspective of application, and will become an important part of future wireless ubiquitous network. At present, UWB has been an excellent candidate for a variety of applications such as commerce multimedia equipment, wireless sensor network, wireless positioning, wireless home or personal network, as well as intelligent traffic system. As a result, it's of all-important significance of science and reality to establish and consummate the basic theory of UWB wireless communication system and resolve the key techniques. This dissertation mainly discusses the key techniques and continuous evolution issues of UWB communication technology. The issues can be divided into three parts: optimal UWB pulse waveform design, system analysis and architecture design of Cognitive Ultra Wideband (CUWB) wireless communication system, and adaptive pulse waveform design for CUWB system.
     This dissertation includes 6 chapters. The main content and innovation can be summarized as following:
     Chapter 1 is the introduction. In the chapter, the notion, the characteristics, prospect of deployment, and the key techniques of UWB system are introduced. Then, the main research content and innovation of this dissertation are summarized.
     In chapter 2, the general issues of UWB pulse waveform design are described. The basic principle of UWB-IR system is introduced. The power spectrum analysis of classic pulse signal shows the importance of UWB pulse waveform design. Finally, the common requirement and estimate target of UWB shaping pulse design are summarized based on the work of pioneer researchers, moreover, several typical UWB shaping pulse are introduced.
     In chapter 3, a novel optimal UWB shaping pulse design algorithm based on prolate spheroidal wave functions (PSWFs) is described. Firstly, some shortage of UWB pulse design at present is pointed out. The theoretical groundwork of PSWFs related with the algorithm is introduced, including the definition, the characteristics and approximate numerical solution of PSWFs. Then, a novel UWB pulse design algorithm based on the complete orthogonality of PSWFs was presented to improve the spectrum utilization efficiency and conform the special emission mask constraint. UWB pulse could be obtained by orthogonal synthesis of finite number of PSWFs pulse basis, which matching FCC emission mask. The simulation results show the validity of this algorithm.
     In chapter 4, a novel intelligent wireless system which is called Cognitive Ultra Wideband (CUWB) wireless communication system is expatiated. Firstly, Cognitive radio is simply introduced, mainly including the concept, the typical cognitive cycle model and the main functional characteristics. Then, essentiality and feasibility of the research combined ultra wideband with cognitive radio is analysed. Furthermore, the chapter gives the notion of CUWB, expounds the operating fundament of CUWB, describes the system cognitive cycle, presents a simple system cognitive cycle processing model and analyzes the core functions and key techniques of CUWB system in detail. Finally, the architecture of CUWB system is established by applying the design methods combined ISO layer design with cross-layer design.
     In chapter 5, a novel adaptive pulse waveform design algorithm based on measurement of interference temperature for CUWB system is presented. Firstly, the concept and the power spectrum estimate method of interference temperature are introduced. Then, this chapter gives a scheme of dynamically obtaining adaptive emission mask based on measurement of interference temperature to adapt to spectrum environment and be compatible with FCC spectral mask. Finally, a method to generate adaptive CUWB shaping pulse is proposed based on weight combination of PSWFs matching UWB multiple sub-band spectral mask. The simulation results show that the pulse waveforms shaped by this method conform the spectral mask constraint for CUWB, adapt to dynamical variety of the spectral mask.
     In the last chapter, we conclude the whole dissertation and point out succeeding works in the future researches.
引文
[1] Eftekhari A., R. R. Lewis. Feasibility of Fixed Wireless Access. Proc. of ISART2003, Colorado USA, Mar. 2003, pp. 111-118.
    [2] W. Webb. Broadband Fixed Wireless Access as a Key Component of the Future Integrated communications environment. IEEE Commun. Mag., vol.39 (9), 2001, pp. 115-121.
    [3] D. Gesbert,L. Haumonte. Technologies and performance for Non-Line-of-Sight Broadband Wireless Access Networks. IEEE Commun. Mag. vol.40 (4), 2002, pp.86-95.
    [4] B.P. Crow, I. Widjaja, L.G. Kim, et al. IEEE 802.11 Wireless Local Area Networks. IEEE Commun. Mag. vol.35 (9), Sept. 1997, pp.116-126.
    [5] T. Zahariadis, K. Pramataris and N. Zervos. A comparison of competing broadband in-home technologies. Electronics & Communication Engineering Journal, vol.14 (4), Aug. 2002, pp. 133-142.
    [6] I. Chlamtac, M. Conti, J.J.-N. Liu. Mobile ad hoc networking: imperatives and challenges. Ad Hoc Networks, Elsevier B.V., Jul 2003, pp. 13-16.
    [7] M. Tubaishat, S.P. Kumar. Sensor networks: an overview. IEEE Potentials, vol.22, no.2, April-May 2003, pp.20-30.
    [8] Jeff Foerster et al. Ultra-Wideband Technology for Short-or Medium-Range Wireless Communications. Intel Technology Jornal, Q2, 2001.
    [9] D.G. Leeper. Ultra wideband - the next step in short-range wireless. 2003 IEEE MTT-S International Microwave Symposium Digest, vol. 1, 8-13 June 2003, pp.357-360.
    [10] Domenico Porcino, Walter Hirt. Ultra-wideband radio technology: potential and challenges ahead. IEEE Communications Magazine, July, 2003.
    [11] Hirt W. Ultra-wideband radio technology: overview and future research. Computer and Communications, 2003, 26(1).
    [12] Win M Z, Scholtz R A. Impulse radio: how it works. IEEE Communications Letters. 1998, 2(2).
    [13] R.J. Fontana. Recent System Applications of Short-Pulse Ultra-Wideband (UWB) Technology. IEEE Trans. on Microwave Theory and Techniques, vol.52 (9), Sep. 2004, pp.2087-2104.
    [14] FCC. Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems. First Report and Order, ET Docket 98-153, FCC 02-8, adopted/released Feb. 14/Apr. 22, 2002.
    [15] 陈国东,武穆清。基于Ad Hoc组网的超宽带无线通信网络及其关键技术[J]。现代电信科技,2005.12,pp.45-49.
    [16] M.Z. Win and R. A. Scholtz. On the energy capture of ultra-wide bandwidth signals in dense multipath environments. IEEE Commun. Lett. vol.2 (9), Sept.1998, pp. 245-247.
    [17] R.A. Scholtz. Multiple access with time-hopping impulse modulation. Proc. MILCOM'93, vol.2, Oct. 1993, pp. 447-450.
    [18] R. Fontana. A brief history of UWB communications. [Online]. Available: http://www.multispectral.com.
    [19] UltraLab.[Online]. Available: http://idtra.use.edu/New-Site/.
    [20] Win, M.Z., Scholtz, R.A.. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications, Volume: 4 8 Issue:4 ,pp.67 9-6 89,April 2000.
    [21] UWB论坛.[Online]. Available: http://www.uwbforum.org/.
    [22] MBOA: Multi-Band OFDM Alliance. [Online]. Available: http://www.mboa.org/.
    [23] WiMedia联盟.[Online]. Available: http://www.wimedia.org/.
    [24] IEEE802.15 工作组文献.[Online]. Available: http://ieee802.org/i5/index.html.
    [25] EIST ULTRAWAVE项目.[Online]. Available: http://www.ultrawaves.org/.
    [26] EIST UCAN项目.[Online]. Available: http://www.ucan.biz/.
    [27] S.A., Hanna. UWB developments within task group 1-8 of the ITU-R. Proc. of Joint UWBST & IWUWBS2004, May 2004, pp.31-34.
    [28] 本专辑责任编委.超宽带无线电技术[J].通信学报,October 2005,Vol.26 No.10,pp.2-6.
    [29] CONROY J T, LoCicero J L, UCCIDR. Communication techniques using monopulse waveforms [A]. IEEE MILCOM99, 1999.
    [30] GHAVAMI M, MICHAEL L B, HARUYAM A S, et al. A novel UWB pulse shape modulation system [J]. Kluwer Wireless Personal Communications Journal, 2002, 23:105-120.
    [31] IACOBUCCIM S, BENEDETTOM G D. Radio frequency interference issues in impulse radio multiple access communication systems [A]. IEEE Conference on Ultra Wideband Systems and Technologies, 2002.
    [1]. M.Z. Win and R. A. Scholtz. Impulse radio: How it works. IEEE. Commun. Lett. vol. 2, Jan. 1998, pp. 10-12.
    [2]. G. Roberto Aiello and Gerald D.Rogerson. Ultra-wideband wireless system. IEEE microwave magazine, 2003, 06.
    [3]. Weihua Zhang, Xuemin Shen and Qi Bi. Ultra-wideband wireless communications. Wireless communication and mobile computing.2003, 3, pp:633-685.
    [4].王德强,李长青,乐光新.超宽带无线通信技术(1).中兴通信技术,2005,11(4):75-78.
    [5].王德强,李长青,乐光新.超宽带无线通信技术(2).中兴通信技术,2005,11(5):54-58.
    [6]. M.Z. Win, R.A. Scholtz. Ultra-wideband width Time-Hopping Spread-Spectrum impulse radio for wireless multiple-access communications. IEEE Trans on Communications. 2000, 48(4): 679-690.
    [7]. R.A. Scholtz. Multiple access with time-hopping impulse modulation. Proc. MILCOM'93, vol.2, Oct. 1993, pp. 447-450.
    [8]. J. Romme and L. Piazzo. On the power spectral density of time-hopping impulse radio. Proc. of UWBST2002, May 2002, pp.241-244.
    [9]. D. Cassioli and F. Mazzenga. Spectral Analysis of UWB Multiple Access Schemes Using Random Scrambling. IEEE Trans. on Wireless Commun., vol.3 (5), Sep. 2004, pp.1637-1647.
    [10]. H. Xiaojing, L.Yunxin. Performances of impulse train modulated ultra-wideband systems. IEEE Trans. on Commun.2 002, 758-762.
    [11]. Maria-Gabriella, Di Benedetto, Guerino Giancola. Understanding Ultra Wide Band Radio Fundamentals [M]. America: Pearson Education, 2004.
    [12]. CONROY J T, LOCICERO J L, UCCI D R. Communication techniques using monopulse waveforms[A]. Proceedings of IEEE MILCOM'99[C]. 1999. 1185-1191.
    [13]. FCC,. Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems,. First Report and Order, ET Docket 98-153, FCC 02-8, adopted/released Feb. 14/Apr. 22, 2002.
    [14]. M. Welborn and J. McCorkle, .The Importance of Fractional Bandwidth in Ultra-Wideband Pulse Design. Proc. ICC'02, vol.2, May 2002, pp.753-757.
    [15]. X. Chen, S. Kiaei,..Monocycle shapes for ultra wideband system,. Proc. ISCAS 2002, vol.1, May 2002, pp.597-600.
    [16]. T. Zhang, T. D. Abhayapala, R. A. Kennedy,. Performance of ultra-wideband correlator receiver using Gaussian monocycles,. Proc. ICC'03, vol.3, May 2003,pp.2192-2196.
    [17]. L. Guofeng, P. Spasojevic and L. Greenstein, .Antenna and pulse designs for meeting UWB spectrum density requirements,. Proc. UWBST 2003, Nov. 2003,pp.162-166.
    [18]. Z. Wu, F. Zhu, C. R. Nassar,. High performance ultra-wide bandwidth systems via novel pulse shaping and frequency domain processing,. Proc. UWBST 2002, May 2002, pp.53-58.
    [19]. H. Zhang., R. Kohno,. Soft-spectrum adaptation in UWB impulse radio,. Proc.PIMRC2003, vol.1, Sept. 2003, pp.289-293.
    [20]. Y. Wu, A. F. Molisch, K.Sun-Yuan,. Impulse radio pulse shaping for ultra-wideband (UWB) systems,. Proc. PIMRC2003, vol.1, Sept. 2003, pp.877-881.
    [21].葛利嘉,曾凡鑫,刘郁林,等.超宽带无线通信[M].北京:国防工业出版社,2005.
    [22]. M. Ghavami, L. B. Michael, and R. Kohno. Hermite function based orthorgonal pulses for uwb communications. Proc. WPMC'01, Sept. 2001, pp. 437-440.
    [23]. J.A.N. da Silva, M. L. R. de Campos. Orthogonal Pulse Shape Modulation for Impulse Radio. Proc. ITS'02, Sept. 2002, pp. 911-921.
    [24]. C. Mitchell, R. Kohno. High data rate transmissions using orthogonal modified Hermite pulses in UWB communications. Proc. ICT 2003, vol.2, Mar. 2003, pp.1278-1283.
    [25]. G T. F. de Abreu, C. J. Mitchell, and R. Kohno. On the design of orthogonal pulse-shape modulation for uwb systems using hermite pulses. Journal of Communications and Networks, vol.5(4), Dec. 2003, pp.328-343.
    [26]. M. Ghavami, L. B. Michael, R. Kohno. Ultra Wideband Signals and Systems in Communication Engineering [M]. England: John Wiley & Sons, Ltd, 2004.
    [1]. PARR B, CHO B, WALLACE K. A novel ultra-wideband pulse design algorithm [J]. IEEE Communications Letters, 2003, 7(5): 219-221.
    [2]. Reza.S.Dilmaghani, Mohammad Ghavami, Ben Allen, et al. Novel UWB pulseshaping using prolate spheroidal wave functions [A]. Proc 14th IEEE International Symposium on Personal, Indoor & Mobile Radio Communications (PIMRC2003) [C]. B J, 2003.602-606.
    [3]. Kohno R, Zhang H, Ogawa H. CRL-UWB Consortium's Soft-Spectrum UWB PHY Proposal for IEEE 802.15.3a [R]. IEEE P802.15-03/097r3, 2003.
    [4]. Honggang ZHANG, Ryuji KOHNO. Soft-Spectrum Adaptation in UWB Impulse Radio. The 14" IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings, 2003.
    [5]. Kohno R, Zhang H, Nagasaka H. Ultra Wideband Impulse Radio Using Free-Verse Pulse Waveform Shaping, Soft-Spectrum Adaptation, and Local Sine Template Receiving[R]. IEEE P802.15-03/097r1, 2003.
    [6]. Kazuto Usuda, Honggang Zhang, Masao Nakagawa. M-ary pulse shape modulation for PSWF-based UWB system in multipath fading environment. IEEE Globecom 2004,Dallas, Dec.2004.
    [7]. Honggang Zhang, Ryuji Kohno. SSA realization in UWB multiple aceess systems based on prolate spheroidal wave functions. IEEE WCNC 2004, Atlanta, March 2004.
    [8]. Xiliang L, Liuqing Y, Georgios B G. Designing optimal pulse shaper for ultra wideband impulse radio [A]. IEEE Conference on Ultra Wideband Systems and Technologies[C].2003.349-353.
    [9]. Mohammad G, Lachlan B M, Ryuji K. Hermite function based orthogonal pulse for ultra wideband communications [EB/OL].http://www.csl.sony.xo.jp/ATL/papers/uwb.html.
    [10].林志远,魏平.一种新的UWB通信脉冲设计[J].通信学报,2006,第27卷7期:123-126.
    [11]. Wu Xianren, Tian Zhi, Davidson T N, et al. Optimal waveform design for UWB radios [J/OL].Proc. IEEE ICASSP'04, 2004: Ⅳ-521~Ⅳ-524.
    [12].邹卫霞,周正.基于频段及带宽限制设计UWB脉冲的算法[J].北京邮电大学学报,2005,28(5):94-97.
    [13].陶纯堪,陶纯匡.光学信息论[M].北京:科学出版社,2004:1-10.
    [14]. Slepian, D. and Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty, I, Bell System Tech. J., 1961, 40, 43-64.
    [15]. Landau, H.J. and Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty, Ⅱ, Bell System Tech. J., 1961, 40, 65-84.
    [16]. Landau, H.J. and Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty, Ⅲ, Bell System Tech. J., 1962, 41, 1295-1336.
    [17]. Slepian, D. Prolate spheroidal wave functions, Fourier analysis and uncertainty, Ⅳ, Bell System Tech. J., 1964, 43, 3009-3058.
    [18]. Slepian D. Some asymptotic expansions for prolate spheroidal wave functions [J]. J Math Phys, 1965, 44(2): 99-140.
    [19]. Knab J J. Interpolation of band-limited functions using the approximate prolate series [J]. IEEE Trans Inform Theory (Corres), 1979, IT-25(6): 717-720.
    [20]. Slepian D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-Ⅴ: the discrete case [J]. Bell System Tech Journal, 1978, 57(5): 1371-1430.
    [21]. Slepian, D. Some comments on Fourier analysis, uncertainty, and modeling, SIAM Review, 1983, 25, 379-393.
    [22]. Jain, K.A. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ, Prentice Hall, 1989.
    [23]. XIAO H, ROKL IN N, YARV IN N. Prolate spheroidal wave functions, quadrature and interpolation [J]. Inverse Problems, 2001, 17:805-838.
    [24].陈祖明,周家胜.矩阵论引论[M].北京:北京航空航天大学出版社,1998.
    [25]. FCC. Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems. First Report and Order, ET Docket 98-153, FCC 02-8, adopted/released Feb. 14/Apr. 22, 2002.
    [26]. Maria-Gabriella, Di Benedetto, Guerino Giancola. Understanding Ultra Wide Band Radio Fundamentals [M]. America: Pearson Education, 2004.
    [27]. Q.Y. Chen, D. Gottlieb, and J.S. Hesthaven. Spectral Methods Based on Prolate Spheroidal Wave Functions for Hyperbolic PDEs [J]. http://www.math.umass.edu/~qchen/PSPDF/revpaper_PSWF.pdf.
    [28].张洪欣,吕英华,贺鹏飞,等.消除与WLAN同频干扰的UWB正交成形脉冲序列设计[J].武汉大学学报(理学版),Vol.51 No.S2.Dec.2005:061~063.
    [29].罗振东,高宏,刘元安,等.抑制多窄带干扰的超宽带脉冲设 计方法[J].北京邮电大学学报,2005,28(1):55258.
    [30].陈国东,武穆清.一种新的UWB脉冲优化设计算法[J].武汉大学学报(理学版).(已录用).
    [31].陈国东,武穆清.一种基于PSWFs正交综合的UWB脉冲优化设计.电子科技大学学报.(已录用).
    [1]. MITOLA J. Cognitive radio for flexible mobile multimedia communications. Mobile Multimedia Communications, IEEE International Workshop, 1999.
    [2]. J. Mitola et al. Cognitive Radios: Making Software Radios more Personal. IEEE Personal Communications, vol. 6, no. 4, August 1999.
    [3]. MITOLA J. Cognitive radio: An integrated agent architecture for software defined radio. PhD Dissertation, Royal Inst Technok (KTH), Stockholm, Sweden, 2000.
    
    
    
    [4]. Angsuman Rudra. Cognitive radio: An evolution from software radio. VMEbus Systems, December 2004:38-39.
    [5]. Danijela Cabric, Mike S.W. Chen, David A. Sobel, et al. Future Wireless Systems: UWB, 60GHz, and Cognitive Radios. IEEE custom integrated circuits conference, 2005: 793-796.
    [6]. B.Wild, K.Ramchandran. Detecting primary receivers for cognitive radio applications. New Frontiers in Dynamic Spectrum Access Networks, pp: 124 - 130, Nov. 2005.
    [7]. G Ganesan and Y.G Li. Cooperative Spectrum Sensing in Cognitive Radio Networks. IEEE DYSPAN, Nov. 2005.
    [8]. HAYKIN S. Cognitive Radio: Brain-Empowered Wireless Communications [J]. IEEE JSAC, vol. 23,no. 2,February 2005.
    [9]. C. J. Riese. Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed Genetic Algorithms for Secure and Robust Wireless Communications and Networking. Ph.D. Dissertation, Virginia Tech,Blacksburg,VA,August 2004.
    [10]. FCC-03-322: Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies. [2007-03-08] [Online], Available: http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-03-322Al.pdf
    
    [11]. GRANELLI F, ZHANG H G Cognitive ultra wide band radio: a research vision and its open challenges. Networking with Ultra Wideband and Workshop on Ultra Wide Band for Sensor Networks, 2005. Networking with UWB 2005. 2nd International Workshop 4-6 July 2005 Page(s):55 - 59.
    [12]. ZHOU X F, YAZDANDOOST K.Y, ZHANG H G, et al. Cognospectrum: spectrum adaptation and evolution in cognitive ultra wideband radio. 2005 IEEE International Conference on 5-8 Sept. 2005 Page(s):713-718.
    [13]. A. Sahai, N. Hoven and R. Tandra, Some fundamental limits in cognitive radio. Proc. Allerton Conf, on Commun, Control and Computing, Oct. 2004.
    [14]. D. Cabric, S. M. Mishra, and R. W. Brodersen. Implementation issues in spectrum sensing for cognitive radios. Conference on Signals, Systems, and Computers, 2004.
    [15]. B. Fette. Technical challenges and opportunities. Presented at the Conf. Cogn. Radio, Las Vegas, NV, Mar. 15-16, 2004.
    [16]. John Walko. Cognitive radio. IEE Review,May 2005. [2007-03-08] [Online], Available: www.iee.org/review.
    [17]. Federal Communications Commission. Spectrum Policy Task Force. Rep. ET Docket no. 02-135, Nov. 2002.
    [18]. WolframResearch. [Online]. Available: http://scienceworld.Wolfram.com/physics/antennatemperature.html
    [19]. B. Bale et al. Noise in wireless systems produced by solar radio bursts. Radio Sci. vol. 37, 2002.
    [20]. L. J. Lanzerotti et al. Engineering issues in space weather. In Modern Radio Science, Ed. London, U.K.: Oxford Univ. Press, 1999, pp. 25-50.
    [21]. The National Association for Amateur Radio, Rep., ET Docket no.03-237,2004.
    [22]. S. Haykin. Communication Systems. 4thed. New York: Wiley, 2001, pp. 61.
    [23]. IEEE 802.22 working group on wireless regional area networks. [2007-03-08]. http://www.ieee802.org/22/.
    [24]. W.A.Gardner. Signal Interception: A Unifying Theoretical Framework for Feature Detection. IEEE Trans, on Communications, vol. 36, no. 8. August 1988.
    [25]. P. Kolodzy et al. Next generation communications. Kickoff meeting in Proc. DARPA, Oct. 17, 2001.
    [26]. M. McHenry. Frequency agile spectrum access technologies. In FCC Workshop Cogn. Radio, May 19, 2003.
    [27]. P. Kolodzy. Spectrum Policy Task Force: Findings and Recommendations. International Symposium on Advanced Radio Technologies (ISART), March 2003.
    [28]. G. Staple and K. Werbach. The end of spectrum scarcity. IEEE Spectrum, vol. 41, no. 3, pp. 48-52, Mar. 2004.
    [29]. Robert W. Brodersen, Adam Wolisz. CORVUS: A COGNITIVE RADIO APPROACH FOR USAGE OF VIRTUAL UNLICENSED SPECTRUM. [2007-03-08]. Online: http://bwrc.eecs.berkeley.edu/Research/MCMA/CR_White_paper_final1.pdf
    [30]. Honggang ZHANG, Ryuji KOHNO. Soft-Spectrum Adaptation in UWB Impulse Radio. The 14" IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings, 2003.
    [31]. H.Yamaguchi. Active interference cancellation technique for MB-OFDM cognitive radio. Microwave Conference, 2004. 34th European, Oct. 2004, Volume 2, pp: 1105-1108.
    [32].张其善,金明录.信号复制生成理论及应用.北京:人民邮电出版社,2001.
    [33].王纲,张军,张其善.非正弦函数理论及其在通信中的应用.北京:电子工业出版社,2006.
    [34]. Martin Mauve, Jorg Widmer. A Survey on Position Based Routing in Mobile Ad Hoc Networks. IEEE Network, 2001.
    [35]. Woo CheolChung, Dong SamHa. An Accurate Ultra Wideband (UW B) Ranging for Precision Asset Location. Proceedings of the IEEE Conference on Ultra Wideband System s and Technologies. Reston (VA,USA), 2003. Piscataway (NJ, USA): IEEE, 2003.389—393.
    [36]. Val Jones, Richard Bults,et al. Healthcare PANs: Personal Area Networks for trauma care and home care. Proceedings Fourth International Symposium on Wireless Personal Multimedia Communications (WPMC), 2004, pp. 1369-1374. Aalborg.
    [37].陈国东,武穆清.认知UWB无线通信系统研究展望.中国科技论文在线,2006.08.03.
    [38].陈国东,武穆清.认知超宽带无线通信系统的结构模型[J].现代电信科技,2007,4:27-32.
    [39].陈国东,夏海轮,武穆清.认知超宽带无线通信系统及关键技术分析[J].中央民族大学学报(自然科学版).(已录用).
    [1]. Honggang ZHANG, Ryuji KOHNO. Soft-Spectrum Adaptation in UWB Impulse Radio. The 14" IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings, 2003.
    [2].张洪欣,吕英华,贺鹏飞,等.利用小波函数生成UWB正交成形脉冲序列的方法[J].北京邮电大学学报,2006,29(4):65-68.
    [3]. H.Yamaguchi. "Active interference cancellation technique for MB-OFDM cognitive radio". Microwave Conference,2004. 34th European, Volume 2, pp: 1105-1108, Oct. 2004.
    [4]. Zhang Honggang, Zhou Xiaofei, and Chlamtac Imrich. Multiple signal waveforms adaptation in cognitive ultra-wideband radio evolution. IEEE journal on selected areas in communications, 2006, 24(4): 878-884.
    [5]. FCC-03-322: Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies. [2007-03-08] [Online],Available: http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-03-322Al.pdf
    [6]. Kolodzy P J. Interference temperature: a metric for dynamic spectrum utilization. International Journal of Network Management, 2006, 16: 103-113.
    [7]. Federal Comm. Commission, Spectrum Policy Task Force, Report ET Docket no. 02-135, Nov. 2002
    [8]. HAYKIN S. Cognitive Radio: Brain-Empowered Wireless Communications [J]. IEEE JSAC, vol. 23, no. 2, February 2005.
    [9]. Parr B, Cho B, Wallace k. A novel ultra-wldeband pulse design algorithm [J]. IEEE Communications Letters, 2003, 7(5): 219-221.
    [10]. M.E. Mann and J. Park, "Oscillatory spatiotemporal signal detection in climate studies: A multiple-taper spectral domain approach," in Advances in Geophysics, R. Dnowska and B. Saltzman, Eds. New York: Academic, 1999, vol. 41, pp. 1-131.
    [11]. P. Stoica and T. Sundin. On nonparametric spectral estimation. Circuits, Syst., Signal Process, vol. 16, pp. 169-181, 1999.
    [12]. Bronez T P. On the performance advantage of multitaper spectral analysis. IEEE Trans on Signal Processing, 1992, 40(12):2 941~2 946.
    [13]. Rick Roberts. Comments on FCC NPRM ET Docket 03-237 Interference Noise Temperature [EB/OL]. [2006-09-09] http://www.ieee802.org/15/pub/2003/15-03-0534-00-003a-comments-fcc-npr-etdocket-03-237-interference-noise-temperature.doc
    [14]. Xiaofei Zhou, Yazdandoost K.Y, Honggang Zhang, et al. Cognospectrum: spectrum adaptation and evolution in cognitive ultra-wideband radio. 2005 IEEE International Conference on 5-8 Sept. 2005 Page(s):713-718.
    [15]. Granelli F. and Zhang Honggang. Cognitive ultra wide band radio: a research vision and its open challenges. Networking with Ultra Wide Band and Workshop on Ultra Wide Band for Sensor Networks, 2005. Networking with UWB 2005.2nd International Workshop 4-6 July 2005 Page(s):55-59.
    [16].邹卫霞,周正.基于频段及带宽限制设计UWB脉冲的算法[J].北京邮电大学学报,2005,28(5):94-97.
    [17].陶纯堪,陶纯匡.光学信息论[M].北京:科学出版社,2004:1-10.
    [18]. Kazuto Usuda, Honggang Zhang, Masao Nakagawa. M-ary pulse shape modulation for PSWF-based UWB system in multipath fading environment. IEEE Globecom 2004, Dallas, Dec.2004.
    [19].陈国东,武穆清.一种基于PSWFs的UWB自适应脉冲设计[J].北京邮电大学学报.(已录用).
    [20].陈国东,武穆清.一种基于多频带PSWFs组合的CUWB自适应脉冲波形设计.电子与信息学报[J].(已录用).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700