用户名: 密码: 验证码:
北半球温带气旋的气候学及其变率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温带气旋是影响中高纬度地区大范围天气变化的重要天气系统之一,能够造成明显或激烈的天气现象和灾害,因此研究温带气旋的气候特征、活动规律和变率趋势对理解天气、气候变化以及极端气候事件具有重要的科学和实际意义。本文在温带气旋的客观判定和追踪方法的基础上,利用欧洲中心的再分析数据ERA40统计分析了北半球和东亚地区温带气旋的气候态及其变率问题,并从大尺度环流指数和大气的斜压性方面讨论了温带气旋和风暴轴20世纪后44年变化的可能原因。之后检验了国际耦合模式比较计划5(CMIP5)最新的6个全球气候系统模式(BCC-CSM1.1,CanESM2,GFDL-ESM2M,HadGEM2-CC,MPI-ESM-LR和NorESM1-M)对北半球温带气旋和风暴轴的模拟能力。并利用这6个气候系统模式的模拟结果预估了未来RCP4.5浓度路径下北半球温带气旋和风暴轴的可能变化趋势。主要结论概括如下:
     (1)基于海平面气压场,气旋自身移动外推和局地引导气流的温带气旋客观判定和追踪方法能够识别80%以上的真实气旋过程,并能够成功地再现东亚地区温带气旋特性气候态的空间分布和频率分布。通过聚类分析方法获得了影响东亚地区的6条主要气旋路径,其中4条路径对我国的影响较大,并且很可能和我国春季沙尘暴,冬季暴雪,强降水和海上大风等极端天气现象有着密切的关系。
     (2)揭示了20世纪后半叶北半球温带气旋过程数北增南减的线性变化趋势,这在一定程度上体现了北半球风暴路径有着向极地偏移的变化特征。北极涛动指数(AO)同北半球较高纬度和较低纬度温带气旋过程数分别有较强的正相关和负相关,表明极涡加强和收缩时北半球温带气旋活动向极地偏移,而极涡减弱和南移时,气旋活动向低纬度偏移。发现了北大西洋和北太平洋风暴轴的年代际变化与同地区温带气旋活动密切相关。北大西洋风暴轴有着同北半球一致的向极地移动的趋势,而北太平洋风暴轴则相反地向赤道偏移。两大风暴轴对应的400hPa大气斜压性指数的同位相变化很可能是分别造成了北太平洋地区气旋活动和风暴轴的南移增强以及北大西洋地区气旋活动和风暴轴的北移增强的一个原因。
     (3)研究发现东亚北方温带气旋过程数20世纪80年代中期之后显著减少,并伴随着源地的北移。这主要的原因是80年代之后该地区大气斜压性减弱,强斜压区向高纬度移动造成的。南方气旋过程数20世纪后44年整体线性增加,原因则是平均位于40-55°N的北太平洋风暴路径有向低纬度偏移的变化趋势,从而导致了西北太平洋气旋源地的南移。
     (4)CMIP5的6个全球气候系统模式对温带气旋特性的空间分布和频率分布的气候态模拟能力好于对时间序列的模拟能力。模拟的气旋过程数偏少,气旋生命期的模拟值普遍偏长,加深速率的模拟值偏慢。BCC-CSM1.1能够模拟出北半球温带气旋活动北移的变化特征,至少4个模式能够较好地体现出北半球温带气旋气压值的线性变化趋势。
     (5)利用6个全球气候系统模式预估发现,相对于20世纪后50年来说,RCP4.5浓度路径下的2053-2099时段北半球温带气旋各特征变化的显著性基本都大于2006-2052时段。虽然各模式的模拟结果存在一定的差异性,但共同模拟出了至21世纪末北半球大范围地区的气旋生成和活动将减少,较低纬度减少的更显著。另外,过半的模式模拟结果显示未来北半球气旋中心气压将有降低的趋势。大多数的模式模拟结果得到北大西洋风暴轴未来将继续向极地活动偏移,但强度主要将减弱;过半的模式模拟结果为北太平洋风暴轴也将向极地偏移,强度变化则随季节的不同而不同。东亚地区温带气旋的变化同北半球的情况非常相似和一致,无论是南方气旋还是北方气旋,气旋生成和活动频率将显著减少,气旋中心气压值将显著降低。
     (6)6个模式的模拟结果均显示对流层中层斜压区未来将向高层和高纬度扩展,对流层高层急流轴向高层移动的变化趋势,南半球的变化更为显著。斜压区的变化在某种程度上体现了风暴轴的变化,因此这从另一方面支持了论文中两大洋风暴路径未来可能向极地偏移的结论。北半球斜压区和风暴轴向高纬度的移动抵消了高纬度地面气旋数目的减少,这也解释了未来北半球较低纬度地面气旋数目比较高纬度地区减少更为显著的原因。
Extratropical cyclone (EC) is one of the important synoptic systems which affect weathervariability over a wide area of mid and high latitudes, and it can cause significant or intenseweather phenomena and disasters. As a result, it has the scientific and practical significanceto do some research on climate characteristics, activity law and variability trends ofextratropical cyclones (ECs) for understanding weather and climate change and extremeclimate events. Based on an objective detecting and tracking method of ECs, EuropeanCenter for Medium-Range Weather Forecasts (ECMRWF) reanalysis data ERA40are appliedto statistically analyze climatology and variations of ECs over the North Hemisphere andEast Asia, as well as storm tracks over the North Hemisphere. The possible reasons aboutvariations of EC and storm track during the last44years in20th century were discussed interms of large scale circulation index and atmospheric baroclinicity. After that, the simulatedcapability of6global climate system models (BCC-CSM1.1, CanESM2, GFDL-ESM2M,HadGEM2-CC, MPI-ESM-LR and NorESM1-M), released latterly by Coupled ModelIntercomparison Project Phase5(CMIP5), about ECs over the North Hemisphere was tested.At last, the future possible variation tends of ECs and storm track over the North Hemisphereunder RCP4.5were estimated by using these6climate system models. The main conclusionsummed up as follows:
     (1) Based on sea level pressure field, cyclone movement extrapolation and local guideairflow, the objective method for detecting and tracking ECs can track more than80%realcyclone processes, and successfully represent the spatial and frequency distribution ofcyclones’ climatological features. A clustering analysis produced6major cyclone trajectories,among which4trajectories would have an affect on China, and have important connectionswith severe weather/climate phenomena such as spring sand storms, winter blizzard, heavyrainfall and offshore wind.
     (2) A linear increase trend of EC process numbers in the north and decrease in south partof North Hemisphere for the second half of20th century was revealed, which reflected thepoleward shift of the storm track in the North Hemisphere. The cyclone process number had anegative and positive correlation with Arctic Oscillation index (AO) in the lower and higherlatitude region respectively, indicating that ECs of the North Hemisphere migrate to the pole when polar vortex strengthens and shrinks, while ECs migrate to the lower latitudes whenpolar vortex weakens and moves southward. It was found that the interdecadal variations ofstorm tracks over North Pacific and North Atlantic had a close relationship with their ECactivities. Storm track over North Atlantic had a poleward shift, which was consistent withthe counterparts of the North Hemisphere, while storm track over North Pacific had anequatorward shift. The same phase variations of atmospheric baroclinity on400hPa levelmight be one reason for the southward migration and enhancement of ECs and storm trackover North Pacific; northward shift and enhancement over North Atlantic.
     (3) Accompanied by a northward shift of cyclone source region, the north cyclonenumber in East Asia indicated obvious decrease trend after the mid1980s. This is becauseatmospheric baroclinicity weakened in this region, and the strong baroclinicity zone moved tohigher latitudes. There was a linear increased trend of the south cyclone number during thelast44years of20th century, mainly because North Pacific storm track, located in40-55°N,had a shift trend to lower latitude, resulting in the southward migration of the NorthwestPacific cyclone formation region.
     (4) The simulation capability for space and frequency distribution of cyclones’climatological features was better than that for time series by6global climate system modelsof CMIP5. For simulations, Cyclone processes were fewer, life spans were longer, anddeepen rates were slower. The models of BCC-CSM1.1can represent northward shift of ECsactivities, and at least4models could reflect linear change trends of ECs’ pressure over theNorth Hemisphere
     (5) By using the six global climate system models for assessment, it was discovered thatthe changes of ECs’ features under RCP4.5during2053-2099period would be moreremarkable than that during2006-2052period compared with20th century. The models’simulation results had some differences, however, we found an agreement of reducedcyclogenesis and cyclone activity over large North Hemisphere region at the end of21thcentury, especially in the lower latitudes. Moreover, more than half of the models showed thatcyclone center pressure over the North Hemisphere would decline in the future. Most modelsestimated that North Atlantic storm track would keep for moving poleward, but withweakened strength; more than half of the models forecasted that North Pacific storm trackwould also move northward with inconsistent strength changes in different seasons. Changesof East Asia cyclones were similar and consistent with that in the North Hemisphere. Nomatter north or south cyclones, the formation and activity frequency would decrease, andcyclone pressure would decline significantly.
     (6) It was found in all6models that the baroclinic zone on middle-troposphere wouldexpand to higher level and higher latitudes, and jet stream axis on top-troposphere would move to higher level in the future under RCP4.5. These changes would be more notable in theSouth Hemisphere. The changes of baroclinic zone can reflects the changes of storm track, sothis supports the above conclusion of possible poleward shift of two ocean storm paths in thefuture. In the future North Hemisphere, the northward movements of baroclinic zone andstorm track would offset the reduction of the ground cyclone number in the higher latitudes,which explained the reason why cyclones in the lower latitudes would decrease moresignificantly than that in the higher latitudes.
引文
1. Alpert P, Neeman U, Shayel Y. Climatological Analysis of the Mediterranean Cyclones usingECMWF data. Tellus A,1990,42:65-77
    2. Ayrault F, Lalaurette F, Joly A, et al. North Atlantic ultra high frequency variability. Tellus A,1995,47:671-696
    3. Arora V K, Boer G J. Uncertainties in the20th century carbon budget associated with land use change,Glob Change Biol,2010,16(12):3327–3348
    4. Blackmon M L. A climatological spectral study of the500mb geopotential height of the NorthernHemisphere. J Atmos Sci,1976,33:1607-1623
    5. Blackmon M L, Wallace J M, Lee Y-H. Horizontal structure of500-mb height fluctuations with short,medium and long time scales. J Atmos Sci,1984a,41:961–979
    6. Blackmon M L, Wallace J M, Lee Y-H. Time variation of500-mb height fluctuations with short,medium and long time scales. J Atmos Sci,1984b,41:981–991
    7. Barry R G, Chorley R J. Atmosphere, Weather and Climate.1992,6thed. Routledge,392pp
    8. Blackmon M L, Wallace J M, Lau N-C, et al. An observational study of the Northern Hemispherewintertime circulation. J Atmos Sci,1997,34:1040–1053
    9. Blender R, Fraedrich K, Lunkeit F. Identification of cyclone-track regimes in the North Atlantic. Q JR Meteorol Soc,1997,123:727-741
    10. Blender R, Schubert M.2000. Cyclone tracking in different spatial and temporal resolutions. MonWea Rev,128:377-384
    11. Bengtsson L, Hodges K I, Roeckner E. Storm tracks and climate change. J Clim,2006,19:3518–3543
    12. Bartholy J, Pongrácz R, Pattantyús-ábrahám M. European cyclone track analysis based on fourgeopotential fields of ECMWF ERA-40datasets. Int J Climatol2006,26:1517–1527
    13. Benestad R E, Chen D. The use of a calculus-based cyclone identification method for generatingstorm statistics. Tellus A,2006,58:473–486
    14. Bartholy J, Pongrácz R, Pattantyú-ábrahám M. Analyzing the genesis, intensity, and tracks of westernMediterranean cyclones. Theor Appl Climatol,2009,96:133-144
    15. Brovkin V, Raddatz T, Reick C K, et al. Global biogeophysical interactions between forest andclimate, Geophys Res Lett,2009,36: L07405, doi:10.1029/2009GL037543
    16. Charney J G. The dynamics of long waves in a baroclinic westerly current. J Meteor,1947,4:135-162
    17. Collatz J, Ribas-Carbo M, Berry J. Coupled photosynthesis-stomatal conductance model for leaves ofC4plants. Aust J Plant Physiol,1992,19:519-538
    18. Chang E K M. Downstream Development of Baroclinic Waves As Inferred from Regression Analysis.J Atmos Sci,1993,50:2038-2053
    19. Christoph M, Ulbrich U, Haak U. Faster determination of the intraseasonal variability of stormtracksusing Murakami’s recursive filter. Mon Wea Rev,1995,123:578–581
    20. Chen S J, Zhang P Z. Climatology of deep cyclones over Asia and the Northwest Pacific. Theor ApplClimatol,1996,54:139–146
    21. Carnell R E, Senior C A, Mitchell J F B. An assessment of measures of storminess: simulated changesin northern hemisphere winter due to increasing CO2. Clim Dyn,1996,12:467-476
    22. Christoph M, Ulbrich U, Speth P. Midwinter suppression of Northern Hemisphere storm track activityin the real atmosphere and in GCM experiments. J Atoms Sci,1997,54:1589-1599
    23. Carnell R E, Senior C A. Changes in mid-latitude variability due to increasing greenhouse gases andsulphate aerosols. Clim Dyn,1998,14:369–383
    24. Campin J M, Goosse H. Parameterization of density-driven downsloping flow for a coarse-resolutionocean model in z-coordinate. Tellus A,1999,51:412-430
    25. Chang E K M, Fu Y F. Interdecadal variations in Northern Hemisphere winter storm track intensity. JClimate,2002,15:642-658
    26. Chang E K M. The impact of wave packets propagating across Asia on Pacific cyclone development.Mon Wea Rev,2005b,133:1998–2015
    27. Collins W J, Bellouin N, Doutriaux-Boucher M, et al. Development and evaluation of anEarth-System model–HadGEM2. Geosci Model Dev,2011,4:1051–1075
    28. Ding Y H, Zhu T. A Dynamic Analysis and Numerical Simulation of Explosive Development of anExtratropical Cyclone Over Land. Sci China Ser B,1994,37(5):590-600
    29. Dunne J P, John J G, Adcroft A J, et al. GFDL's ESM2global coupled climate-carbon Earth SystemModels Part I: Physical formulation and baseline simulation characteristics. J Climate,2011,submitted
    30. Eady E T. Long waves and cyclone waves. Tellus,1949,1:33-52
    31. Eichler T, Higgins W. Climatology and ENSO-related variability of North American extratropicalcyclone activity. J Clim,2006,19:2076–2093
    32. Farquhar G D, Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2assimilation inleaves of C3species. Planta,1980,149:78-90
    33. Fyfe J C. Extratropical southern hemisphere cyclones: harbingers of climate change? J Clim,2003,16:2802–2805
    34. Favre A, Gershunov A. Extra-tropical cyclonic/anticyclonic activity in North-Eastern Pacific and airtemperature extremes in Western North America. Clim Dyn,2006,26:617-629
    35. Froude L S R, Bengtsson L, Hodges K I. The predictability of extratropical storm tracks and thesensitivity of their prediction to the observing system. Mon Wea Rev,(2007a)135:315–333
    36. Froude L S R, Bengtsson L, Hodges KI. The prediction of extratropical storm tracks by the ECMWFand NCEP ensemble prediction systems. Mon Wea Re,2007b,135:2545–2567
    37. Finnis J, Holland M M, Serreze M C, et al. Response of northern hemisphere extratropical cycloneactivity and associated precipitation to climate change, as represented by the community climatesystem model. J Geophys Res,2007,112. doi:10.1029/2006JG000286
    38. Green J S A. A problem in baroclinic stability. Q J R Meteorol Soc,1960,86:237–251
    39. Gent P R, McWilliams J C. Isopycnal mixing in ocean circulation models. J Phys Oceanogr,1990,20:150-155
    40. Gyakum J R, Zhang D L, Witte J, et al, CASP Ⅱ and the Canadian Cyclones during the1989-92Cold Seasons. Atmos-Ocean,1996,34:1-16.
    41. Gulev S K. Climate variability of the intensity of synoptic process in the North Atlantic midlatitudes.J Clim,1997,10:574-592
    42. Gulev S K, Zokina O, Reva Y. Synoptic and sub-synoptic variability in the North Atlantic as revealedby the Ocean Weather Station data. Tellus A,2000,52:232-329
    43. Gulev S K, Zolina O, Grigoriev S. Extratropical Cyclone Variability in the Northern HemisphereWinter from the NCEP/NCAR Reanalysis Data. Clim Dyn,2001,17:795-809
    44. Geng Q, Sugi M. Variability of the North Atlantic Cyclone Activity in Winter Analysed fromNCEP-NCAR Reanalysis Data. J Clim,2001,14:3863-3873
    45. Graham N E, Diaz H F. Evidence for Intensification of North Pacific Winter Cyclones since1948.Bull Amer Meteor Soc,2001,82:1869-1893
    46. Greatbatch R J, Lu Y, Cai Y. Relaxing the Boussinesq approximation in ocean circulation models. JAtmos Oceanic Technol,2001,18:1911–1923
    47. Greatbatch R J, Rong P P. Discrepancies between different northern hemisphere summeratmospheric data products. J. Climate,2006,19:1261-1273
    48. Geng Q, Sugi M. Possible change of extratropical cyclone activity due to enhanced greenhouse gasesand sulfate aerosols-study with a high-resolution AGCM. J Clim,2003,16:2262–2274
    49. Gaffney S J, Robertson A W, Smyth P, et al. Probabilistic clustering of extratropical cyclones usingregression mixture models. Clim Dyn,2007,29:423–440
    50. Greeves C Z, Pope V D, Stratton R A, et al. Representation of northern hemisphere winter stormtracks in climate models. Clim Dyn,2007,28:683–702
    51. Gaertner M A, Jacob D, Gil V, et al. Tropical cyclones over the Mediterranean Sea in climate changesimulations. Geophys Res Lett,200734: L14711. doi:10.1029/2007GL029977
    52. Hartigan J A. Clustering Algorithms. Wiley and Sons, New York,1975:84-112.
    53. Hoskins B J, Valdes P J. On the Existence of Storm-Tracks. J Atmos Sci,1990,47:1854-1864
    54. Hodges K I. A General Method for Tracking Analysis and its Application to Meteorological Data.Mon Wea Rev,1994,122:2573-2586
    55. Hodges K I. Feature tracking on the unit sphere. Mon Wea Rev,1995,123:3458–3465.
    56. Hodges K I. Spherical nonparametric estimators applied to the UGAMP model integration for AMIP.Mon Wea Rev,1996,124:2914–2932
    57. Haak U, Ulbrich U. Verification of an objective cyclone climatology for the North Atlantic. MeteorolZ N F,1996,5:24-30
    58. Hoskins B J, Hodges K I. New Perspectives on the Northern Hemisphere Winter Storm Tracks. JAtmos Sci,2002,59:1041-1061.
    59. Hanson C E, Palutikof J P, Davies T D. Objective cyclone climatologies of the North Atlantic-acomparison between the ECMWF and NCEP Reanalyses. Clim Dyn,2004,22:757–769
    60. Hurtt G C, Frolking S, Fearon M G, et al. The underpinnings of land-use history: three centuries ofglobal gridded land-use transitions, wood-harvest activity, and resulting secondary lands. GlobalChange Biology,2006,12:1208-1229
    61. Inoue T, Matsumoto J. A comparison of summer sea level pressure over East Eurasiabetween NECP/NCAR reanalysis and ERA-40for the period1960-99. J. Meteor. Soc.Japan,2004,82:951-958
    62. IPCC,2012: Managing the Risks of Extreme Events and Disasters to Advance Climate ChangeAdaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on ClimateChange [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J.Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press,Cambridge, UK, and New York, NY, USA,163-166
    63. Jia Y Q, Zhao S X. A Diagnostic Study of Explosive Development of Extratropical Cyclone over EastAsia and West Pacific Ocean. Adv Atmos Sci,1994,11(3):251-270
    64. Jung T, Hilmer M, Ruprecht E, et al. Characteristics of the recent eastward shift of interannual NAOvariability. J Clim,2003,16:3371–3382
    65. Jung T, Gulev SK, Rudeva I, et al. Sensitivity of extratropical cyclone characteristics to horizontalresolution in the ECMWF model. Q J R Meteorol Soc,2006,132:1839–1857
    66. Jiang J, Perrie W. The impacts of climate change on autumn North Atlantic midlatitude cyclones. JClim,2007,20:1174–1187
    67. K nig W, Sausen R, Sielmann F. Objective identification of cyclone in GCM simulation. J Clim,1993,6:2217-2231
    68. Knippertz P, Ulbrich U, Speth P. Changing cyclones and surface wind speeds over North Atlantic andEurope in a transient GHG experiment. Clim Res,2000,15:109–122
    69. Knorr W. Annual and interannual CO2exchanges of the terrestrial biosphere: process-basedsimulations and uncertainties. Global Ecology and Biogeography,2000,9:225–252
    70. Lindzen R S, Farrell B. A simple approximate result for the maximum growth rate of baroclinicinstabilities. J Atmos Sci,1980,37:1648-1654
    71. Lambert S J. A Cyclone Climatology of the Canadian Climate Centre General Circulation Model JClim,1988,1:109-115
    72. Large W G, McWilliams J C, Doney SC. Oceanic vertical mixing: a review and a model with anonlocal boundary layer parameterization. Rev Geophys,1994,32,363-403
    73. Lefevre R J, Nielsen-Gammon J W. An objective climatology of mobile troughs in the NorthernHemisphere. Tellus A,1995,47:638–655
    74. Lee S S, Lee J Y, Wang B, et al. Interdecadal changes in the storm track activity over the NorthPacific and North Atlantic. Clim Dyn,2001, DOI10.1007/s00382-011-1188-9
    75. Large W G, Danabasoglu G, McWilliams J. Equatorial circulation of a global ocean climate modelwith aniostropic horizontal viscosity, J Phys Oceanogr,2001,31,518–536
    76. Lambert S J, Sheng J, Boyle J. Winter cyclone frequencies in thirteen modelsparticipating in theAtmospheric Model Intercomparison Project (AMIP1). Clim Dyn,2002,19:1-16
    77. Lionello P, Dalan F, Elvini E. Cyclone in the Mediterranean Region: the present and the doubled CO2climate scenarios. Clim Res,2002,22:147-159
    78. Lim E P, Simmonds I. Explosive cyclone development in the southern hemisphere and a comparisonwith northern hemisphere events. Mon Wea Rev,2002,130:2188–2209
    79. Leckebusch G C, Ulbrich U. On the relationship between cyclones and extreme windstorms overEurope under climate change. Glob Planet Change,2004,44:181–193
    80. Leslie L M, Leplastrier M, Buckley B W. Climatology of meteorological “bombs” in the New Zealandregion. Meteorol Atmos Phys,2005,89:207–214
    81. Luksch U, Raible CC, Blender R, et al. Decadal cyclone variability in the North Atlantic. Meteorol Z,2005,14:747–753
    82. Li J, Barker H W. A radiation algorithm with correlated k-distribution. Part I: Local thermalequilibrium, J Atmos Sci,2005,62:286–309
    83. Lambert S J, Fyfe J C. Changes in winter cyclone frequencies and strengths simulated in enhancedgreenhouse warming experiments: results from the models participating in the IPCC diagnosticexercise. Clim Dyn,2006,26:713–728
    84. Leckebusch G C, Koffi B, Ulbrich U, et al. Analysis of frequency and intensity of winter storm eventsin Europe on synoptic and regional scales from a multimodel perspective. Clim Res,2006,31:59–74
    85. Leckebusch G C, Ulbrich U, Fr hlich E L, et al. Property loss potentials for European mid-latitudestorms in a changing climate. Geophys Res Lett,2007,34:L05703. doi:10.1029/2006GL027663
    86. Lim E P, Simmonds I. Southern hemisphere winter extratropical cyclone characteristics and verticalorganization observed with the ERA-40data in1979–2001. J Clim,2007,20:2675–2690
    87. L ptien U, Zolina O, Gulev S, et al. Cyclone life cycle characteristics over the Northern Hemispherein coupled GCMs. Clim Dyn,2008,31:507-532
    88. Lionello P, Boldrin U, Giorgi F. Future changes in cyclone climatology over Europe as inferred froma regional climate simulation. Clim Dyn,2008,30:657–671
    89. Murray R J, Simmonds I. A numerical scheme for tracking cyclone centres from digital data PartⅠ:development and operation of the scheme. Aust Met Mag,1991a,39:156-166
    90. Murray R J, Simmonds I. A numerical scheme for tracking cyclone centres from digital data PartⅡ:application to January and July general circulation model simulations. Aust Met Mag,1991b,39:167-180
    91. Mirkin B., Mathematical Classification and Clustering. Kluwer Academic, London,1996:132-139
    92. Maheras P, Flocas H A, Patridas I, et al. A40year objective climatology of surface cyclones: in theMediterranean region: spatial and temporal distribution. Int J Climatol,2001,21:109-130
    93. Mccabe G J, Clark M P, Serreze M C. Trends in Northern Hemisphere Surface Cyclone Frequencyand Intensity. J Clim,2001,14:2763-2768
    94. Marsland S J, Haak H, Jungclaus J H, et al. The Max-Planck-Institute global ocean/sea ice model withorthogonal curvilinear coordinates. Ocean Modelling,2003,5:91-127
    95. Musculus M, Jacob D. Tracking cyclones in regional model data: the future of Mediterranean storms.Adv Geosciences,2005,2:13–19
    96. Mailier P J, Stephenson D B, Ferro C A T, et al. Serial clustering of extratropical cyclones. Mon WeaRev,2006,134:2224–2240
    97. Mak M, Deng Y. Diagnostic and dynamical analysis of two outstanding aspects of storm tracks. DynAtm Ocean,2007,43:80–99
    98. Mendes D, Souza E P, Marengo J A, et al. Climatology of extratropical cyclones over the SouthAmerican-southern oceans sector. Theor Appl Climatol,2009, DOI10.1007/s00704-009-0161-6
    99. Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate changeresearch and assessment. Nature,2010,463:747-756
    100. Notaro M, Wang WC, Gong W. Model and observational analysis of the northeast US regionalclimate and its relationship to the PNA and NAO patterns during early winter. Mon Wea Rev,2006,134:3479–3505
    101. Nie J, Wang P, Yang W C, et al. Northern hemisphere storm tracks in strong AO anomaly winters.Atmos Sci Let,2008,9:153-159
    102. Orlanski I, Chang E K M. Ageostrophic Geopotential Fluxes in Downstream and UpstreamDevelopment of Baroclinic Waves. J Atmos Sci,1993,50:212-225
    103. Orlanski I. A new look at the Pacific storm track variability: sensitivity to tropical SSTs and upstreamseeding. J Atmos Sci,2005,62:1367–1390
    104. Pearson K. On lines and plans of closest fit to system of points in space philos. Magnetism,1902,6:559-572
    105. Petterssen S. Weather Analysis and Forecasting,2nd ed. Vol I, McGraw-Hill, New York,428
    106. Palmén E, Newton C W. Atmospheric Circulation Systems, Academic Press,603PP
    107. Paciorek J C, Risbey J S, Ventura V, et al. Multiple indices of northern hemisphere cyclonic activity,winters1949-99. J Clim,2002,15:1573–1590
    108. Pinto J G, Spangehl T, Ulbrich U, et al. Sensitivities of a cyclone detection and tracking algorithm:individual tracks and climatology. Meteorol Z,2005,14:823-838
    109. Pinto J G, Spangehl T, Ulbrich U, et al. Assessment of winter cyclone activity in a transientECHAM4-OPYC3GHG experiment. Meteorol Z,2006,15:279-291
    110. Pinto J G, Ulbrich U, Leckebusch G C, et al. Changes in storm track and cyclone activity in threeSRES ensemble experiments with the ECHAM5/MPI-OM1GCM. Clim Dyn,2007a,29:195-210
    111. Pinto J G, Ulbrich U, Leckebusch G C, et al. Changes in storm track and cyclone activity in threeSRES ensemble experiments with the ECHAM5/MPIOM1GCM. Clim Dyn,2007b,29:195–210
    112. Pinto J G, Zacharias S, Fink AH, et al. Environmental factors contributing to the development ofextreme cyclones and their relationship with NAO. Clim Dyn,2008, doi:10.1007/s00382-008-0396-4
    113. Pongratz J, Reick C H, Raddatz T, et al. Effects of anthropogenic land cover change on the carboncycle of the last millennium. Global Biogeochem Cycles,2009,23: GB4001,doi:10.1029/2009GB003488
    114. Reitan C H. Frequencies of cyclones and cyclogenesis for North America,1950-1970. Mon Wea Rev,1974,102:861-868
    115. Rice J. The Derivation of Computer-based Synoptic Climatology of Southern HemisphereExtratropical Cyclones. Honours Thesis. Department of Meteorology,1982, University of Melbourne
    116. Rahmostorf S. A fast and complete convection scheme for ocean models. Ocean Modelling,1993,101:9-11
    117. Raible C C, Blender R. North hemisphere midlatitude cyclone variability in GCM-simulations indifferent ocean representations. Clim Dyn,2004,22:239–248
    118. Roeckner E, Brokopf R, Esch M, et al. Sensitivity simulated climate to horizontal and verticalresolution in the ECHAM5atmosphere model. J Clim,2006,19:3771–3791
    119. Rudeva I, Gulev S K. Climatology of cyclone size characteristics and their changes during thecyclone life cycle. Mon Wea Rev,2007,135:2568–2587
    120. Raible C C. On the relation between extremes of midlatitude cyclones and the atmospheric circulationusing ERA40. Geophys Res Lett,2007,34: L07703. doi:10.1029/2006GL029084
    121. Raddatz T J, Reick C H, Knorr W, et al. Will the tropical land biosphere dominate the climate–carboncycle feedback during the twenty-first century? Clim Dyn,2007,29,565–574
    122. Raible C C, Della-Marta P, Schwierz C, et al. Northern hemisphere extratropical cyclones: acomparison of detection and tracking methods and different reanalyses. Mon Wea Rev,2008,136:880–897
    123. Sanders F, Gyakum J R. Synoptic-dynamic climatology of the “bomb”. Mon Wea Rev,1980,108:1589-1606
    124. Semtner A J. A Model for the Thermodynamic Growth of Sea Ice in Numerical Investigations ofClimate. J Phys Oceanogr,1976,6:379-389
    125. Serreze M C, Box J E, Barry R G, et al. Characteristics of Arctic synoptic activity,1952-1989.Meteorol Atmos Phys,1993,51:147-164
    126. Schinke H. On the occurrence of deep cyclones over Europe and the North Atlantic in the period1930-1991. Contrib Atmos Phys1993,66:223–237
    127. Simmonds I, Wu X. Cyclone behaviour response to changes in winter southern hemisphere sea-iceconcentration, Q J R Meteorol Soc,1993,119:1121-1143
    128. Sinclair M R. An objective cyclone climatology for the Southern Hemisphere[J]. Mon. Wea. Rev.,1994,122:2239–2256
    129. Sinclair M R. A climatology of cyclogenesis for the southern hemisphere. Mon Wea Rev,1995,123:1601–1619
    130. Serreze M C. Climatological aspects of cyclone development and decay in the Artic. Atmos-Ocean,1995,33:1-23
    131. Serreze M C, Carse F, Barry R G, et al. Icelandic Low Cyclonic Activity: Climatological Features,Linkages with the NAO, and Relationship with Recent Changes in Northern Hemisphere Circulation.J Clim,1997,10:453-464
    132. Sinclair M R. Objective Identification of Cyclones and Their Circulation Intensity and Climatology.Wea Forecasting,1997,12:595-612
    133. Schubert M, Perlwitz J, Blender R, et al. North Atlantic cyclones in CO2-induced warm climatesimulations: frequency, intensity and tracks. Clim Dyn,1998,14:827-837
    134. Simmonds I, Murray R J, Leighton R M. A refinement of cyclone tracking methods with data fromFROST. Aust Met Mag,1999, Special Edition:35-49
    135. Sick-m ller M, Blender R, Fraedrich K. Observed winter cyclone tracks in the northern hemisphere inre-analysed ECMWF data. Q J R Meteorol Soc,2000,126:591–620
    136. Simmonds I, Keay K. Variability of Southern Hemisphere Extratropical Cyclone Behaviour,1958-97.J Clim,2000,13:550–561
    137. Simmonds I, Keay K. Mean southern hemisphere extraopical cyclone behavior in the40-yearNCEP-NCAR reanalysis. J Clim,2001,13:873-885
    138. Simmonds I, Keay K. Surface fluxes of momentum and mechanical energy over the North Pacific andNorth Atlantic Oceans. Meteorol Atmos Phys,2002,80:1–18
    139. Scaife A A, Butchart N, Warner C D, et al. Impact of a Spectral Gravity Wave Parameterization on theStratosphere in the Met Office Unified Model. J Atmos Sci,2002,59:1473–1489
    140. Sweeney C, Gnanadesikan A, Griffies S M, et al. Impacts of shortwave penetration depth onlarge-scale ocean circulation and heat transport. J Phys Oceanogr,2005,35(6):1103-1119
    141. Simmons H L, Jayne S R, Laurent L C St, et al. Tidally driven mixing in a numerical model of theocean general circulation. Ocean Modelling,2004,6:245–263
    142. Six K D, Maier-Reimer E. What controls the oceanic dimethylsulfide (DMS) cycle? A modelingapproach. Global Biogeochem Cycles,2006,20: GB4011, doi:10.1029/2005GB002674
    143. Schneidereit A, Blender R, Fraedrich K, et al. Iceland climate and North Atlantic cyclones in ERA40reanalyses. Meteorol Z,2007,16:17–23
    144. Treut L, Kalnay H E. Comparison of observed and simulated cyclone frequency distribution asdetermined by an objective method. Atmdafem,1990,3:57-71.
    145. Trenberth K E. Storm tracks in the Southern Hemisphere. J Atoms Sci,1991,48:2159-2178
    146. Trigo I F, Davies T D. Objective Climatology of Cyclones in the Mediterranean Region. J Clim,1999,12:1685-1696
    147. Trigo I F. Climatology and interannual variability of stormtracks in the Euro-Atlantic sector: acomparison between ERA-40and NCEP/NCAR reanalyses. Clim Dyn,2006,26:127–143
    148. Ueno K. Inter-annual Variability of Surface Cyclone Tracks, Atmospheric Circulation Patterns andPrecipitation in Winter. J Climatol,1993,4:297-310
    149. Ulbrich U, Christoph M. A shift of the NAO and increasing storm track activity over Europe due toanthropogenic gas forcing. Clim Dyn,1999,15:551-559
    150. Ulbrich U, Brücher T, Fink A H, et al. The central European floods in August2002. Part II: synopticcauses and considerations with respect to climate change. Weather,2003,58:434–442
    151. Ulbrich U, Pinto J G, Kupfer H, et al. Northern Hemisphere storm tracks in an ensemble of IPCCclimate change simulations. J Clim,2008,21:1669–1679
    152. Ulbrich U, Leckebusch G C, Pinto J G. Extratropical cyclone features in present and future climate: Areview. Theor Appl Climatol,2009,96:117-131
    153. Von Salzen K, McFarlane N. Parameterization of the bulk effects of lateral and cloud-top entrainmentin transient shallow cumulus clouds, J Atmos Sci,2002,59:1405–1429
    154. Wallace J M, Gutzler D S. Teleconnections in the geopotential height field during the NorthernHemisphere winter. Mon Wea Rev1981,109:784–812
    155. Wallace J M, Lim G, Blackmon M L. Relationship between cyclone tracks, anticyclone tracks andbarocline wave guides. J Atmos Sci1988,45:439–462
    156. Winton M. A Reformulated Three-Layer Sea Ice Model. J. Atmos. Oceanic Technol,2000,17:525–531
    157. Wu Tongwen, Wang Zaizhi, Liu Yimin, et al. An Evalution of the Effects of Cloud Parameterizationin the R42L9GCM. Adv. in Atmos Sci,2004,21:153-162
    158. Walter K, Graf H-F. The North Atlantic variability structure, storm tracks, and precipitationdepending on the polar vortex strength. Atmos Chem Phys,2005,5:239–248
    159. Wernli H, Schwierz C. Surface cyclones in the ERA-40dataset, part I, novel identification methodand flobal climatology. J Atmos Sci,2006,63:2486–2507
    160. Wang X L L, Swail V R, Zwiers F W. Climatology and changes of extratropical cyclone activity:comparison of ERA40with NCEP-NCAR reanalysis for1958-2001. J Clim,2006a,19:3145–3166
    161. Wang X L L, Swail V R, Zwiers F W. Observed changes in cyclone activity in Canada and theirrelationships to major circulation regimes. J Clim,2006b,19:895–906
    162. Watterson I G. The intensity of precipitation during extratropical cyclones in global warmingsimulations: a link to cyclone intensity? Tellus A,2006,58:82–97
    163. Wang Xinmin, Zhai Panmao, Wang Cuicui. Variations in Extratropical Cyclone Activity in NorthernEast Asia. Adv Atmos Sci,2009,26(3):471-479
    164. Wu Tongwen, Rucong Yu, Fang Zhang, et al. The Beijing Climate Center atmospheric generalcirculation model: description and its performance for the present-day climate. Clim Dyn,2010,34:123-147
    165. Yang S, Lau K M, Kim K M. Variations of the East Asia Jet Stream andAsia-Pacific-American winter climate anomalies. J Climate,2002,15:306-325
    166. Yin J H. A Consistent Poleward Shift of the Storm Tracks in Simulations of21st Century Climate.Geophys Res Lett,2005,32: L18701, DOI10.1029/2005GL023684
    167. Zishka K M, Smith P J. The climateology of cyclones and anticyclones over North America andsurrounding ocean environs for January and July,1950-1977. Mon Wea Rev,1980,108:387-401
    168. Zolina O, Gulev S K. Improving the accuracy of mapping cyclone numbers and frequencies. MonWea Rev,2002,130:748–759
    169. Zhang X D, Walsh J E, Zhang J, et al. Climatology and interannual variability of arctic cycloneactivity1948-2002. J Clim,2004,17:2300–2317
    170. Zhang G J, Mu M Q. Effects of modifications to the Zhang-McFarlane convection parameterizationon the simulation of the tropical precipitation in the National Center for Atmospheric ResearchCommunity Climate Model, Version3. J Geophys Res,2005,110, D09109, doi:
    10.1029/2004JD005617
    171. Zhu X J, Sun J L K, Liu Z Y, et al. A synoptic analysis of the interannual variability of winter cycloneactivity in the Aleutian low region. J Clim,2007,20:1523–1538
    172. Zahariev K, Christian J, Denman K. Preindustrial, historical, and fertilization simulations using aglobal ocean carbon model with new parameterizations of iron limitation, calcification, and N2fixation. Prog Oceanogr,2008,77:56–82
    173. Zhang Yingxian, Ding Yihui, Li Qiaoping.2011. A Climatology of Extratropical Cyclones over EastAsia during the years of1958-2001. Accepted in Acta Meteor Sinica
    174.陈文玉,金德山,唐晓卫等.厄尔尼诺、东海气旋活动及南海季风爆发的相互关系.海洋预报.2001,18(3):34-38
    175.崔晓鹏,吴国雄,高守亭.西大西洋锋面气旋过程的数值模拟和等熵分析.气象学报.2002,60(4):385-399
    176.蔡丽娜,隋迎玖,刘大庆等.一次爆发性气旋引发的罕见暴风雪过程分析.北京大学学报(自然科学版).2009,45(4):693-700
    177.蔡秀华,陈辉,曹鸿兴等.影响靖宇地区温带气旋的统计分析.气象,2009,35(12):83-87
    178.陈敏鹏,林而达.代表性浓度路径情景下的全球温室气体和对中国的挑战.气候变化研究进展.2010,6(6):436-442
    179.丁治英,王劲松,翟兆峰.爆发性气旋的合成诊断及形成机制研究.应用气象学报.2001,12(1):30-40
    180.丁一汇.高等天气学.气象出版社.2005,150-193
    181.侯定臣.夏季江淮气旋的Ertel位涡诊断分析.气象学报.1991,49(2):141-150
    182.胡增臻,黄荣辉..冬季热带西太平洋对流活动异常的年际变化及其对北太平洋风暴轴的影响.大气科学.1997,21(5):513-522
    183.胡增臻,黄荣辉.冬季菲律宾周围对流活动与北太平洋风暴轴联系的数值模拟.大气科学.1998,22(1):46-56
    184.黄立文,仪清菊,秦曾灏等.西北太平洋温带气旋爆发性发展的热力一动力学分析.气象学报,1999,57(5):581-593
    185.黄立文,秦曾灏.海洋温带气旋爆发性发展数值试验.气象学报.1999,57(4):410-427
    186.黄嘉佑.气象统计分析与预报方法.北京:气象出版社,2004,130-134
    187.黄彬,钱传海,聂高臻等.干侵入在黄河气旋爆发性发展中的作用.气象,2011,37(12):1534-1543
    188.李莹,朱伟军,魏建苏.冬季北太平洋风暴轴指数的评估及其改进.大气科学.2010,34(5):1001-1010
    189.龙宝森.黄、东海及其临海的气旋与厄尔尼诺现象.黄渤海海洋.1985,3(3):30-36
    190.李一平,张培忠.东亚气旋数据库管理系统.内蒙古气象.1995,1:21-23
    191.林玉英,战淑芸.赤道东太平洋海温对东亚-西北太平洋温带气旋的影响.海洋预报.2000,17(2):16-17
    192.刘景涛,郑新江,康玲等.蒙古气旋爆发性发展导致的强沙尘暴个例研究.气候与环境研究.2003,8:218-229
    193.齐桂英.北太平洋温带气旋的气候特征.应用气象学报.1992,3(4):444-450
    194.秦曾灏,李永平,黄立文.中国近海和西太平洋温带气旋的气候学研究.海洋学报.2002,24(1):105-111
    195.屠妮妮,矫梅燕,赵琳娜等.引发强沙尘暴的蒙古气旋的动力特征分析.中国沙漠.2007,27(3):520-527
    196.吴伯雄,刘长盛.东亚气旋活动的统计研究.南京大学学报(自然科学).1958,1,1-21
    197.王荣华.东亚温带低气压路径.气象学报.1963,33(l):15-24
    198.王遂缠,李栋梁.北方气旋变化及其对西北地区天气气候的影响.冰川冻土,2003,25(5):526-53
    199.伍荣生.现代天气学原理.北京:1999,高等教育出版社,124-161
    200.王艳玲.近50a东亚-西太平洋温带气旋活动的气候特征及异常分析.2005.硕士论文
    201.王艳玲,郭品文.春季北方气旋活动的气候特征及与气温和降水的关系.南京气象学院学报.2005,228(3):391-397
    202.王新敏.东亚北方温带气旋的变化及其对中国北方沙尘暴的影响研究.2007.硕士论文
    203.王新敏,邹旭恺,翟盘茂.北半球温带气旋的变化.气候变化研究进展.2007,3(3):154-157
    204.颜宏.初始方程p-σ混合坐标系细网格嵌套模式的设计—(二)数值模式中次网格物理过程参数化.高原气象.1987,6:64-139
    205.仪清菊,丁一汇.海洋温带气旋发生发展研究.大气科学.1989,13(2):238-245
    206.仪清菊,丁一汇.东海地区温带气旋爆发性发展的动力学分析.气象学报.1992,50(2):152-166
    207.仪清菊,丁一汇.黄、渤海气旋暴发性发展的个例分析.应用气象学报.1996,7(4):483-490
    208.姚素香,张耀存,周天军.近50a春季东亚温带气旋活动频数的气候特征及其变化.南京气象学院学报.2003,26(3):317-323
    209.尹尽勇,曹越男,赵伟等.一次黄渤海入海气旋强烈发展的诊断分析.气象.2011,37(12):1526-1533
    210.张尚印.北方气旋的若干统计特征及其发展的天气学分析.高原气象.1984,3(3):83-89
    211.张尚印.春季我国北方气旋活动与降雨的关系.大气科学.1989,13(2):247-251
    212.战淑芸,林玉英.北大西洋海温场与东亚温带气旋的关系.海洋预报.1989,6(1):21-27
    213.张尚印.春季我国北方气旋活动与干旱的关系.北京气象.1991(1):14-16
    214.张培忠,陈受钧.亚洲及西太平洋地区温带气旋气候图集(1958-1989.北京,气象出版社,1992,2:38
    215.张培忠,陈受钧,白岐凤.东亚及西太平洋锋面气旋的统计研究.气象学报.1993,51(1):44-56
    216.战淑芸,杨淑瑞,林玉英等.东亚温带气旋及其长期预报(一)—气候特征及其影响因素.海洋预报.1993,13(4):17-22
    217.朱锁风,江敦春,邢谦.温带爆发性气旋的天气尺度诊断分析.海洋学报.1995,12(1):31-36
    218.战淑芸,李学坤,林新亮.1992年东亚-西太平洋温带气旋活动特征.海洋预报.1996,13(3):45-51
    219.战淑芸,杨淑瑞,林玉英.赤道东太平洋海温与黄海气旋.海洋预报.1997,14(3):46-51
    220.朱乾根,林锦瑞,寿绍文.天气学原理和方法.气象出版社.2000,133-143
    221.朱伟军,孙照渤,闵锦忠,等.2000.冬季赤道中东太平洋区域海表温度异常对北太平洋风暴轴年际变化的影响.热带气象学报,16(1):91-96
    222.朱伟军,孙照渤.2001.涡动非地转位势通量对风暴轴维持的影响.大气科学,25(1):71-78
    223.朱伟军,李莹.2010.冬季北太平洋风暴轴的年代际变化特征及其可能影响机制.气象学报,68(4):477-486
    224.张守保,丁治英.亚洲内陆及其沿海地区爆发性气旋的统计特征.气象.2002,(28)12:6-10
    225.赵丽娜,赵思雄.一次引发华北和北京沙尘暴天气的快速发展气旋的诊断研究.大气科学.2004a,28(5):722-735
    226.赵丽娜,赵思雄.引发北方沙尘暴天气快速发展气旋的数值模拟研究.气候与环境研究.2004b,9(1):116-126
    227.张志刚,赵琳娜,矫梅燕等.一次引发强沙尘天气的快速发展蒙古气旋的诊断分析.气象.2007,33(5):27-35
    228.张颖娴,丁一汇,李巧萍. ERA40再分析资料揭示的北半球和东亚地区温带气旋生成频率变化.气象.2012,录用待刊
    229.张颖娴,丁一汇,李巧萍.北半球温带气旋活动和风暴路径的年代际变化.大气科学.2012,录用待刊

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700