用户名: 密码: 验证码:
齿轮—转子—滑动轴承系统非线性动力学特性的理论和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮-转子系统是动力传输系统振动问题的最主要来源,齿轮系统工作时产生的强烈振动,对系统的安全性和隐蔽性造成了严重的影响。目前,工程实践中复杂齿轮-转子-轴承系统的振动机理尚未清楚,针对此问题,从齿轮动力学和转子动力学的角度出发,考虑系统的齿侧间隙、时变啮合刚度、静态传动误差、输入输出扭矩激励、弹性轴和轴承的影响,建立了齿轮-转子系统的非线性动力学模型。对动力学模型进行了数值仿真,研究了转速对动态啮合力和系统的振动特性的影响。在判断系统的振动是否为混沌的过程中,采用混沌时间序列分析理论计算了齿轮传动系统的高维非线性方程组的最大Lyapunov指数,数值积分的
     结果表明:动力学模型能合理地体现齿轮啮合的三种冲击状态;混沌时间序列分析理论能有效地计算出齿轮传动系统高维非线性方程组的最大Lyapunov指数。齿轮副扭转振动系统是最基础的齿轮系统,为了从近似解析解的角度研究齿侧间隙的大小对齿轮副扭转振动系统的幅频响应曲线的影响规律,将多项谐波平衡法与求解非线性方程组的最小二乘解的广义逆法相结合求解近似解析解,研究结果表明:齿侧间隙对系统幅频响应曲线的影响除了与齿侧间隙的大小密切相关之外,还与阻尼、时变啮合刚度谐波项幅值及预紧力紧密相关。当阻尼相对较小时,系统的幅频响应曲线受到齿侧间隙的影响比较明显,在不同的齿侧间隙下,主共振区和超谐共振区都会出现振幅跳跃现象;阻尼比增大到一定值后,随着齿侧间隙逐渐增大,主共振区始终出现振幅跳跃,但在振幅相对较小的超谐共振区振幅跳跃现象变得不明显;当阻尼比增大到较大值时,不同的齿侧间隙下,系统的幅频响应曲线都接近于线性系统的响应曲线。随着啮合刚度一次谐波项幅值的逐渐增大,齿侧间隙比相对较小时,幅频响应曲线在主共振区会体现出“硬化曲线”的特征;当齿轮间隙比增大到一定值时,不论啮合刚度一次谐波项幅值的大小为多少,系统的幅频响应曲线均体现出“软化曲线”的特征。在预紧力比较小的条件下,当齿侧间隙比相对较小时,幅频响应曲线只在局部转速范围内体现出“硬化曲线”;当齿侧间隙比相对较大时,幅频响应曲线体现为“软化曲线”。在预紧力比较大的条件下,齿侧间隙越小,“硬化曲线”的特征越明显;齿侧间隙需要增大到较大值才能使主共振区的幅频响应曲线变成“软化曲线”。
     由于齿轮副扭转振动系统的模型假设转轴和轴承是刚性不变形的,与实际的齿轮-转子系统存在一定的差别,为了研究不同齿侧间隙对齿轮-转子系统的动力学特性的影响,采用数值仿真研究了不同齿侧间隙对系统的分岔和混沌的影响,研究结果表明:齿侧间隙对系统的第一阶弯曲临界转速处的振动状态的影响比较大,齿侧间隙相对较小时,系统的第一阶弯曲临界转速处的振动状态相对较好。除了齿侧间隙之外,支承刚度对齿轮-转子系统的分岔和混沌也具有重要的影响,采用数值仿真研究了支承刚度对系统的分岔和混沌的影响,研究结果表明:随着支承刚度的逐渐增大,系统的弯扭耦合临界转速均相应地增大,系统的分岔和混沌区域也相应地发生改变。
     在考虑非线性啮合力的基础上,进一步考虑非线性油膜力的影响,建立了齿轮-转子-滑动轴承系统的动力学模型,采用数值仿真研究了系统的动态响应,研究结果表明:随着转速的逐渐升高,非线性啮合力和非线性油膜力分别在不同的转速范围内影响着齿轮-转子-滑动轴承系统的非线性振动特性,当转速相对较低时,系统的振动特性主要受到非线性啮合力的影响,随着转速的逐渐升高,非线性油膜力对系统振动特性的影响逐渐增大;当转速逐渐增大到接近系统的第一阶临界转速(可以是齿轮啮合引起的弯扭耦合临界转速而不一定是转子的纯弯曲临界转速)的二倍时,逐渐出现非线性油膜力引起的“半频涡动”;通过对比线性八参数油膜力和非线性油膜力对啮合力的影响,发现转速逐渐增大到接近系统的第一阶临界转速(可为弯扭耦合临界转速)的二倍时,非线性油膜力逐渐对非线性啮合力起作用,并使啮合力的频谱中出现“半频涡动”频率成份;随着转速的进一步增大,非线性油膜力对非线性啮合力的影响也越来越大,甚至超过不平衡质量对啮合力的影响;然而传统的线性油膜力对非线性啮合力则基本没有影响。
     为了验证数值仿真结果的正确性,设计了齿轮-转子-滚动轴承系统振动试验台;提出了一种可以调整齿侧间隙的装置;在试验台上研究了齿侧间隙的大小对齿轮-转子-轴承系统的振动特性的影响规律,试验结果表明:在非共振转速下,存在较差齿侧间隙范围使齿轮系统的振幅相对较大,并存在较好齿侧间隙范围使齿轮系统的振幅相对较小;当齿侧间隙增大到一定值后,系统通常将保持单边冲击状态,系统的振幅将维持在一定的范围内,继续增大齿侧间隙不会再对系统的振动产生大的影响。在齿轮-转子-滚动轴承系统振动试验台的基础上,将主动齿轮-转子的滚动轴承改造成滑动轴承,并测量了若干转速下滑动轴承座的振动,试验结果表明:转速低于一阶弯曲临界转速之前,系统的振动主要受到非线性啮合力的影响,试验的结果基本验证了数值仿真的结果。
Geared rotor system is the most primary origin of the vibration problem of power transmission system, the security and concealment of system are affected by the severe vibration significantly. At present, the vibration mechanism of geared rotor bearing system is still not clear. Aiming at this problem, on the basis of gear dynamic and rotor dynamic, the effect of clearance, time-varying mesh stiffness, static transmission error, flexible shaft, bearing, input and output torque excitation are considered, and the nonlinear dynamic model of geared rotor system is derived. Numerical integration method is used to study the dynamic model, the effects of speed on the dynamic mesh force and vibration characteristic of system are also studied. On the process of judge the vibration is chaos or not, the maximum Lyapunov exponent of high dimensional nonlinear equation is calculated by chaotic time series analysis theory. The results of numerical integration show that the dynamic model can reveal three kind of impact status of gear mesh in reason. The chaotic time series analysis theory can calculate the maximum Lyapunov exponent of high dimensional nonlinear equation effectively.
     The gear pair torsional vibration system is the most basical gear system, in order to study the effect of clearance’s size on the gear pair torsional vibration system’s amplitude-frequency response curve from approximate analytical solution method, the multi-term harmonic balance method is connected with the generalized inverse method which used to solve the minimum least-square solutions of nonlinear equation group. The results show that the effect of clearance on the amplitude-frequency response curve of gear pair torsional vibration system relates with the size of clearance, the damping, time-varying mesh stiffness and preload. When the damping is relatively small, the amplitude-frequency response curve of system affected by clearance obviously, the amplitude jump phenomena appear in primary resonance and super harmonic resonance under different clearance. When damping increases to certain value, with the increase of clearance, the amplitude jump phenomena always appear in primary resonance, but it is not obvious in the super harmonic resonance whose amplitude is relative small. When damping increases to large value, the amplitude-frequency response curves of system approach to the response curves of linear system under different clearance. Whit the increase of the first harmonic term of mesh stiffness’s value, when the clearance is relatively small, the amplitude-frequency response curve of system will reflect the character of hardening type curve. When clearance increase to certain value, no matter the first harmonic term of mesh stiffness’s value is small or large, the amplitude-frequency response curve of system just reflects the character of softening type curve. On the condition of preload is relatively small, when clearance is also relatively small, the amplitude-frequency response curve just reflect the character of hardening type curve in local speed range. When clearance is relatively large, the amplitude-frequency response curve reflects the character of softening type curve. On the condition of preload is relatively large, when the learance is small, with the preload becomes larger and larger, and then the character of hardening type curve also becomes more obvious, the clearance need to increase to larger value to make the amplitude-frequency response curve becomes softening type curve in the primary resonance.
     The model of gear pair torsional vibration system assumes rotor and bearing are rigid, it has certain difference comparing with practical geared rotor system, in order to study the effect of clearance on geared rotor system, numerical integration method is used to study the effect of clearance on the bifurcation and chaos of system, the results show that the first lateral critical speed of system is affected by clearance greatly, when the clearance is relatively small, the vibration state is relatively preferable. Bearing stiffness also has important effect on the bifurcation and chaos of system, except for clearance. The effect of bearing stiffness on the bifurcation and chaos of system is studied by numerical integration. The results show that the lateral-torsion critical speed will increase with the increase of bearing stiffness, and the region of bifurcation and chaos also change accordingly.
     On the basis of considering nonlinear dynamic force, the effect of nonlinear oil film force is considered further, dynamic model of geared rotor-oil journal bearing system is proposed. The nonlinear dynamic responses of system are investigated by numerical integration method. The results show that with the increase of rotational speed, the nonlinear vibration characteristic of system is affected by nonlinear mesh force and nonlinear oil film force respectively in different speed range. The vibration characteristic of system is mainly affected by nonlinear mesh force when speed is relatively low. With the increase of speed, the influence of nonlinear oil film force on the vibration also increases gradually, and the sub-synchronous forward precession phenomena appear when the speed approaches the twice of first order critical speed (it can be lateral-torsional critical speed caused by gear mesh, it is not need to be pure lateral critical speed of rotor). By comparing the effect of linear eight parameter oil film fore and nonlinear oil film fore on mesh force, the results show that when rotational speed increases to twice of the first order critical speed of system (it can be lateral-torsional critical speed), the nonlinear mesh force is affected by nonlinear oil film force gradually, the sub-synchronous forward precession frequency appears in spectrum plot of mesh force. With the increase of speed, the effect of nonlinear oil film fore on nonlinear mesh force also increase, it may exceed the effect of unbalance on mesh force. However, the conventional linear oil film force does not affect the mesh force.
     In order to validate the correctness of numerical integration’s results, a geared rotor bearing system vibration test-bed is designed, and a kind of equipment which is used to adjust clearance is innovated independently, the effect of clearance on the vibration characteristic of geared rotor bearing system is studied on the test-bed by this new equipment. The experimental data show that when the speed is not resonance speed, there is the undesirable range of clearance which causes the vibration of system relatively large, there is also the preferable range of clearance which cause the vibration of system relatively small. When clearance increase to certain value, the meshing state of system commonly retains the single side impact, the vibration amplitude of system will retain in certain range, continue to increase clearance will not affect the vibration of system greatly. The rolling bearing of driving geared rotor system is transformed to oil journal bearing on the basis of geared rotor rolling bearing system test-bed, the vibration of system is measured under several speed, the experimental data show that when the rotational speed is low and far from the first order lateral critical speed, the vibration of system is affected by nonlinear mesh force mainly, the results of numerical integration are validated by the experimental results basically.
引文
1丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术.北京:机械工业出版社, 2005.
    2李明,孙涛,胡海岩.齿轮传动转子-轴承系统动力学的研究进展.振动工程学报. 2002, 15(3): 249~256.
    3陈克兴,李川奇.设备状态监测与故障诊断技术.北京:科学技术文献出版社, 1991.
    4程广利,朱石坚,黄映云,等.齿轮箱振动测试与分析.海军工程大学学报, 2004, 16(6): 83~87.
    5 J. W. David, L. D. Mitchell. Linear Dynamic Coupling in Geared Rotor Systems. Journal of Vibration, Acoustics,Stress, and Reliability in Design. 1986, 108(1): 171~176.
    6王基,吴新跃,朱石坚.某型船用传动齿轮箱振动模态的试验与分析.海军工程大学学报. 2007, 19(2): 55~58.
    7邱宣怀,郭可谦,吴宗泽,等.机械设计.北京:高等教育出版社, 2002.
    8 H. N. Ozguven, D. R. Houser. Mathematical Models Used in Gear Dynamics—A Review. Journal of Sound and Vibration. 1988, 121: 383~411.
    9 G. W. Blankenship, R. Singh. A Comparative Study of Selected Gear Mesh Interface Dynamic Models. ASME International Power Transmission and Gearing Conference, 1992, DE 43~1.
    10 D. C. Johnson. Modes and Frequencies of Shafts Coupled by Straight Spur Gears. J.Mech.Eng.Sci. 1962, 4: 241~250.
    11 A. Seireg. Whirling of Shafts in Geared System. American Society of Mechanical Engineers Paper 66-WA/MD-6, 1966 .
    12 H. Fukuma, T. Furukawa, T. Aida. Fundamental Research on Gear Noise and Vibration. Bulletin of JSME. 1973, 16: 1094~1107.
    13王建军,李其汉,李润方.齿轮系统非线性振动研究进展.力学进展. 2005, 35(1): 37~51.
    14 Jianjun Wang, Runfang Li, Xianghe Peng. Survey of nonlinear vibration of gear transmission systems. Journal of Applied Mechanics. 2003,56(3):309-329.
    15 H. Viayak, R. Singh. Multi-body Dynamics and Modal Analysis of CompliantGear Bodies. Journal of Sound and Vibration. 1998, 210(2): 171~214.
    16 H. Viayak, R. Singh, C. Padmanabhan. Linear Dynamic Analysis of Multi-mesh Transmissions Containing External Rigid Gears. Journal of Sound and Vibration. 1995, 185(1): 1~32.
    17 M. Benton, A. Seireg. Simulation of Resonances and Instability Conditions in Pinion-geared Systems. Journal of Mechanical Design. 1978, 100: 26~32.
    18 M. Benton, A. Seireg. Factors Influencing Instability and Resonance in Geared Systems. Journal of Mechanical Design. 1981, 103: 372~378.
    19 K. L. Wang, H. S. Cheng. A Numerical Solution to the Dynamic Load, Flim Thichness, and Surface Temperatures in Spur Gears, Part I—Analysis. Journal of Mechanical Design. 1981, 103: 177~187.
    20 A. Kahraman, R. Singh. Interactions Between Time-varying Mesh Stiffness and Clearance Non-linearities in a Geared System. Journal of Sound and Vibration. 1991, 146(1): 135~156.
    21 Cai Y. Simulation on the Rotaional Vibration of Helical Gears in Consideration of the Tooth Separation Phenomenon(a New Stiffness Function of Helical Involute Tooth Pair). Journal of Mechanical Design. 1995, 117: 460~469.
    22 A. Kahraman, G. W. Blankenship. Interactions between Commensurate Parametric and Forcing Excitations in a System with Clearance. Journal of Sound and Vibration. 1996, 194(3): 317~336.
    23 S. Theodossiades, S. Natsiavas. Non-linear Dynamics of Gear-pair Systems with Periodic Stiffness and Backlash. Journal of Sound and Vibration. 2000, 229(2): 287~310.
    24郜志英,沈允文,董海军,等.齿轮系统倍周期分岔和混沌层次结构的研究.机械工程学报. 2005, 41(4): 44~48.
    25刘晓宁,沈允文,王三民,等.基于OGY方法的间隙非线性齿轮系统混沌控制.机械工程学报. 2005, 41(11): 26~31.
    26郜志英,沈允文,李素有,等.间隙非线性齿轮系统周期解结构及其稳定性研究.机械工程学报. 2004, 40(5): 17~22.
    27郜志英.强非线性齿轮系统周期解结构及其稳定性的研究.西北工业大学硕士学位学位论文. 2003.
    28刘梦军.单对齿轮系统间隙非线性动力学研究.西北工业大学硕士学位学位论文. 2002.
    29刘梦军,沈允文,董海军.齿轮系统参数对全局特性影响的研究.机械工程学报. 2004, 40(11): 58~63.
    30李华,沈允文,孙智民,等.基于A-算符方法的齿轮系统的分岔与混沌.机械工程学报. 2002, 38(6): 11~15.
    31董海军,沈允文,郜志英,等.转速激励下齿轮系统拍击振动的分岔特性.机械工程学报. 2006, 42(2): 168~172.
    32董海军,沈允文,刘梦军,等.齿轮系统的Ratting动力学行为研究.机械工程学报. 2004, 40(1): 136~141.
    33张锁怀,沈允文,董海军,等.用AOM研究强非线性齿轮系统动力学问题.机械工程学报. 2004, 40(12):20~24.
    34李瑰贤,于广滨,温建民,等.求解齿轮系统非线性动力学微分方程的多尺度方法.吉林大学学报(工学版). 2008, 38(1): 75~79.
    35王威,李瑰贤,宋玉玲.四轮激励含相位差的汽车高维非线性超混沌动力学特性研究.振动与冲击. 2009, 28(3): 102~115.
    36彭云峰,李瑰贤.微齿轮的基础研究中的几个关键问题分析.机械设计与研究. 2005, 21(1): 41~42.
    37李笑,李瑰贤,魏云新.相交轴变厚齿轮试验台系统扭振动力学分析.哈尔滨工业大学学报. 2004, 36(10): 1405~1407.
    38李瑰贤,马亮,林少芬.斜齿轮副静态传递误差的模糊计算方法.南京理工大学学报. 2001, 25(4): 378~382.
    39李瑰贤,孙瑜,李笑,等.圆柱正弦活齿传动受力分析研究.哈尔滨工业大学学报. 2003, 35(11): 1381~1383.
    40李瑰贤,马亮,陶建国,等.舰船用齿轮传动啮合刚度及动态性能研究.船舶工程. 2000, (5): 41~43.
    41 Yong-sheng L, Hua-min L, Gui-xian L. Theoretical Calculation and Experimental Study on the Load Distribution Coefficient(LDC) of Three-ring Gear Reducer. Journal of Harbin Institute of Technology(New Series). 2006, 13(6): 748~752.
    42 Gui-xian L, Yun-feng P, Xin Z. Similarity Theory Based Method for MEMS Dynamics Analysis. Journal of Harbin Institute of Technology(New Series). 2008, 15(3): 312~316.
    43李瑰贤,吴俊飞. RV30-AII型变厚齿轮减速器试验研究.机械传动. 2005, 29(4): 4~8.
    44 Gui-xian L, Yun-feng P, Xin Z. Analysis of Micro-forces Between Micro-parts and Their Influence Factors in MEMS. Journal of Harbin Institute of Technology(New Series). 2008, 15(2): 238~243.
    45马亮.大型船用齿轮传动系统动力学研究.哈尔滨工业大学博士学位论文. 2001.
    46石守红,韩玉强,张锁怀.齿轮耦合的转子-轴承系统的研究现状.机械科学与技术. 2002, 21(5): 703~706.
    47 An Sung Lee, Jin Woong Ha, Choi D. Coupled Lateral and Torsional Vibration Characteristics of a Speed Increasing Geared Rotor-bearing System. Journal of Sound and Vibration. 2003, (263): 725~742.
    48李润方,韩西,林腾蛟,等.齿轮系统耦合振动的理论分析与试验研究.机械工程学报. 2000, 36(6): 79~81.
    49宋雪萍,于涛,李国平,等.齿轮轴系弯扭耦合振动特性.东北大学学报(自然科学版). 2005, 26(10): 990~993.
    50李明,胡海岩.完整约束下齿轮啮合转子系统的弯扭耦合振动稳态响应.振动工程学报. 2003, 16(1): 75~79.
    51 Li M, Hu H Y. Dynamic Aanlysis of a Spiral Bevel-geared Rotor-bearing System. Journal of Sound and Vibration. 2003, 259(3): 605~624.
    52 T. YAMADA, J. MITSUI. A Study on Unstable Vibration Phenomena of a Reduction Gear System, Including the Lightly Loaded Journal Bearings, for a Marine Steam Turbine. Bulletin of JSME. 1979, 22(163): 98~105.
    53陈安华,罗善明,王文明,等.齿轮系统动态传递误差和振动稳定性的数值研究.机械工程学报. 2004, 40(4): 21~25.
    54伍良生,陈卫福.弯扭耦合齿轮传动系统固有频率与振型计算的传递矩阵法.北京工业大学学报. 1999, 25(1): 95~97.
    55苏武会,李育锡.斜齿轮转子系统弯扭耦合振动分析的整体传递矩阵法.机床与液压. 2007, 35(6): 38~40.
    56赵明,任平珍,杨海燕,等.多转子系统弯、扭耦合作用时临界转速的研究.机械科学与技术. 1996, 15(5): 729~734.
    57 J. S. Rao, T. N. Shiau, J. R. Chang. Theoretical Aanlysis of Lateral Response due to Torsional Excitation of Geared Rotors. Mech.Mach.Theory. 1998, 33(6): 761~783.
    58欧卫林,王三民,袁茹.齿轮耦合复杂转子系统弯扭耦合振动分析的轴单元法.航空动力学报. 2005, 20(3): 434~439.
    59庞辉,方宗德,欧卫林.多平行齿轮耦合系统的振动特性分析.振动与冲击. 2007, 26(6): 22~25.
    60方宗德,高平.直齿圆锥齿轮的振动分析.机械工程学报. 1994, 30(3): 65~70.
    61 P. Schwibinger, R. Nordmem. The Influence of Torsional-lateral-coupling in Geared Rotor Systems on Its Eigenvalues, Modes and Unbalance Vibration. Proc Meche.1988, 295(88): 275~287.
    62 P. Schwibinger, R. Nordmem. The Influence of Torsional-lateral coupling on the Stability Behavior of Geared Rotor Systems. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power.1988, 110(4): 563~571.
    63 Zuetbes. Stability Behavior of Geared Rotor Systems Regarding Torsional Lateral Coupling. Rotating Machinery Dynamics. 1989, 18:217~224.
    64夏伯乾.齿轮耦合多平行转子-轴承系统动力学及其应用研究.西安交通大学博士论文. 1998
    65夏伯乾,虞烈,谢友柏.齿轮-转子-轴承系统弯扭耦合模型研究.西安交通大学学报.1997, 12(31): 93~99.
    66夏伯乾,虞烈,谢友柏. DH型压缩机齿轮-轴承-转子系统动力学分析.振动工程学报. 2003, 16(2): 251~255.
    67 C. Chen, S. Natsiavas, H. D. Nelson. Coupled Lateral-Torsional Vibration of a Gear-pair System Supported by a Squeeze Film Damper. Journal of Vibration and Vibration. 1998, 120: 860~867.
    68韩玉强,石守红,张锁怀.齿轮耦合对转子-轴承系统固有特性的影响.机械科学与技术. 2003, 22(3): 66~70.
    69 H. N. Ozguven A Non-linear Mathematical Model for Dynamic Analysis of Spur Gears Including Shaft and Bearing Dynamics. Journal of Sound and Vibration. 1991, 145(2): 239~260.
    70 A. Kahraman, R. Singh. Non-linear Dynamics of a Spur Geared Pair. Journal of Sound and Vibration. 1990, 142(1): 49~75.
    71 R. C. Azra, F. R. E. Crossley. Digital Simulation of Impact Phenomenon in Spur Gear System. ASME J. Eng. Ind. 1977, 99: 792~798.
    72 A. Kahraman, R. Singh. Non-linear Dynamics of a Spur Gear Pair. Journal of Sound and Vibration. 1990, 142(1):49~75.
    73 A. Kahraman, R. Singh. Non-linear Dynamics of a Geared Rotor-bearing System with Multiple Clearances. Journal of Sound and Vibration. 1991, 144(3):469~506.
    74 A. Kahraman, R. Singh. Interactions between Time-varying Mesh Stiffness and Clearance Non-linearities in a Geared System. 1991, 146(1):135~156.
    75 G.W.Blankenship, A. Kahraman. Steady State Forced Response of a Mechanical Oscillator with Combined Parametric Excitation and Clearance Type Non-linearity. Journal of Sound and Vibration. 1995, 185(5): 743~765.
    76 R. G. Parker, S. M. Vijayakar, T. Imajo. Non-linear Dynamic Response of a Spur Gear Pair: Modeling and Experimental Comparisons. Journal of Sound and Vibration. 2000, 237: 435~455.
    77 M. Amabili, A. Fregolent. A Method to Identify Modal Parameters and Gear Errors by Vibrations of a Spur Gear Pair. Journal of Sound and Vibration. 1998, 214(2): 339~357.
    78 A. Raghothama, S. Narayana. Bifurcation and Chaos in Geared Rotor Bearing System by Incremental Harmonic Balance Method. Journal of Sound and Vibration. 1999, 226(3): 469~492.
    79 A. Al-shyyab, A. Kahraman. Non-linear Dynamic Analysis of a Multi-mesh Gear Train Using Multi-term Harmonic Balance Method: Sub-harmonic Motions. Journal of Sound and Vibration, 2005, 279:417~451.
    80 A.Al-shyyab, A.Kahraman. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: period-one motions. Journal of Sound and Vibration, 2005, 284:151~172.
    81王立华,李润方,林腾蛟,等.齿轮系统时变刚度和间隙非线性振动特性研究.中国机械工程. 2003, 14(13): 1143~1146.
    82王建平,王玉新.运用多尺度法对齿轮系统组合共振特性的分析.西安理工大学学报. 2005, 21(5): 5~10.
    83王三民,沈允文,董海军.含间隙和时变啮合刚度的弧齿锥齿轮传动系统非线性振动特性研究.机械工程学报. 2003, 39(2): 28~32.
    84张锁怀.齿轮耦合的转子-轴承系统的动力特性研究.西安交通大学博士学位论文. 2000.
    85张锁怀,李忆平,丘大谋.齿轮耦合的转子-轴承系统非线性动力学特性的研究.机械工程学报,2001,37(9) : 53-61.
    86张锁怀,沈允文,丘大谋.齿轮耦合的转子轴承系统的不平衡响应.机械工程学报.2002, 38(6): 51-55.
    87张锁怀,石守红,丘大谋.齿轮耦合的转子-轴承系统的非线性模型.机械科学与技术. 2001, 20(2): 1~913.
    88张锁怀,李忆平,丘大谋.用谐波平衡法分析齿轮耦合的转子-轴承系统的动力学特性.机械工程学报,2000, 36(7):18~22.
    89 N. G. ARAKERE, C. NATARAJ. Numerical Simulation of Nonlinear Spur Gear Dynamics. American Society of Mechanical Engineers, Design Engineering Technical Conferences, Las Vegas, Nevada. 1999.
    90 Chin-Shong Chen, S. Natsiavas, H. D. Nelson. Coupled Lateral-Torsional Vibration of a Gear-Pair System Supported by a Squeeze Film Damper. Journal of Vibration and Acoustics. 1998, 120: 860~867.
    91 Chin-Shong Chen, S.Natsiavas, H.D.Nelson. Stability Analysis and Complex Dynamics of a Gear Pair System Supported by a Squeeze Film Damper. Transaction of the A SM E, Journal of Vibration and Acoustics. 1997, 119(1): 85~88.
    92 C.W. Chang-Jian, C.K.Chen. Chaos and Bifurcation of a Flexible Rub-Impact Rotor Supported by Oil Film Bearings with Non-linear Suspension. Mechanism and Machine Theory, 2007, 42(3):312~333.
    93 C.W. Chang-Jian, C.K.Chen. Bifurcation and Chaos Analysis of a Flexible Rotor Supported by Turbulent Long Journal Bearings. Chaos Solitons Fractals, 2007, 34:1160~1179.
    94李立,郑铁生.齿轮-转子-滑动轴承系统时变非线性动力特性研究.应用力学学报. 1995, 12(1): 15~23.
    95张锁怀,谢振宇,丘大谋.轴承参数对平行转子-轴承系统动力特性的影响.机械工程学报.2000, 36(9):16~19.
    96张锁怀,石守红,丘大谋.齿轮耦合的转子-轴承系统的非线性模型.机械科学与技术. 2001, 20(2):191~193.
    97 S.THEODOSSIADEA, S.NATSIAVAS. On Geared Rotordynamic Systems with Oil Journal Bearings. Journal of Sound and Vibration. 2000, 243(4):721~745.
    98陈予恕.非线性振动.北京:高等教育出版社, 2002
    99倪振华.振动力学.西安:西安交通大学出版社, 1989
    100周纪卿,朱因远.非线性振动.西安:西安交通大学出版社, 1998
    101 S. V. Neriya, R. B. Bhat. Coupled Torsional-Flexural Vibration of a Geared Shaft System by Using Finite Element Analysis. Shock Vib.Bulletin. 1985, 55: 13~25.
    102 A. kahramn, H. N. Ozguven, D. R. Houser. Dynamic Analysis of Gearde Rotors by Finite Elements. Journal of Mechanical Design. 1992, 114: 507~514.
    103 A. kahraman. Dynamic Analysis of a Multi-Mesh Helical Gear Train. Journal of Mechanical Design. 1994, 116: 706~712.
    104 M. Kubur, A. Kahraman, D. M. Zini, et al. Dynamic Analysis of a Multi-Shaft Helical Gear Transmission by Fininte Elements: Model and Experiment. Journal of Vibration and Acoustics. 2004, 126: 398~406.
    105钟一谔,何衍宗,王正,等.转子动力学.北京:清华大学出版社, 1984.
    106王勖成.有限单元法.北京:清华大学出版社, 2006.
    107李润方,王建军.齿轮系统动力学.北京:科学出版社, 1996.
    108同济大学数学教研室.高等数学.北京:高等教育出版社, 1996.
    109机械设计手册编委会.机械设计手册-齿轮传动.北京:机械工业出版社, 2007.
    110 Y. Cai, T. Hayashi. The Linear Approximated Equation of Vibration of a Pair of Spur Gears(Theory and Experiment). Journal of Mechanical Design. 1994, 116: 558~564.
    111 M. S. Tavakoli, D. R. Houser. Optimum Profile Modifications for the Minimization of Static Transmission Errors of Spur Gears. Journal of Mechanisms, Transmissions and Automation in Design, Transactions of the American Society of Mechanical Engineers. 1986, 108: 86~95.
    112 M. Amabili, A. Rivola. Dynamic Analysis of Spur Gear Pairs: Steady-state Response and Stability of the Sdof Model with Time-varying Meshing Damping. Mechanical Systems and Singal Processing. 1997, 11(3): 375~390.
    113 Rafiq Maliha, Can U. Dogruer, H. Nevzat, et al. Nonlinear Dynamic Modeling of Gear-Shaft-Disk-Bearing Systems Using Finite Elements and Describing Functions. Journal of Mechanical Design. 2004, 126:534~541.
    114刘宗华.混沌动力学基础及其应用.北京:高等教育出版社, 2006.
    115吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社, 2002.
    116 A Wolf, J. B. Swift, H. L. Swinney, et al. Determining Lyapunov Exponents from a Time Series. Physica D, 1985, 16:285~317.
    117 G.Barana, I. Tsuda. A New Method for Computing Lyapunov Exponents. Phys. Lett. A, 1993, 175:421~427.
    118 M. T. Rosenstein, J. J. Collins, et al. A Practical Method for Calculating Largest Lyapunov Exponents from small data sets. Physica D, 1992, 56:185~187.
    119王海燕,卢山.非线性时间序列分析及其应用.北京:科学出版社,2006.
    120刘式达,梁福明,刘式适,等.自然科学中的混沌和分形.北京:北京大学出版社, 2003.
    121 F. Takens. Detecting Strange Attractors in Turbulence. Lecture Notes in Math. New York: Springer, 1981.
    122 R. Mane. On the Dimension of the Compact Invariant Sets of Certain Nonlinear Maps. Dynamical Systems and Turbulence. Warwick, 1980, Lecture Notes in Mathematics, Springer-Verlag, 1981.
    123 M. Z. Ding, C. Grebogi, E. Ott, et al. Estimating Correlation Dimension from a Chaotic Time Series: When does Plateau Occur? Physica D, 1993,69:404~424.
    124 P. Grassberger, I. Procaccia. Characterization of Strange Attactors. Physical Review Letters, 1983, 50(5):346~349.
    125 P. Grassberger, I. Procaccia. Measuring the Strangeness of Strange Attactors. Physica D, 1983, 9:189~208.
    126 P. Grassberger, I. Procaccia. Estimation of the Kolmogorov Entropy from a Chaotic Signal. Physical Review A, 1983, 28(4):2591~2593.
    127 H. S. Kim, R. Eykholt, J. D. Salas. Nonlinear Dynamics, Delay Times, and Embedding Windows. Physica D, 1999, 127:48~90.
    128 A. M. Albano, A. Passamante, M. E. Farrell. Using Higher-order Correlation to Define an Embedding Window. Phsical D, 1991, 54:85~97.
    129马军海.复杂非线性系统的重构技术.天津:天津大学出版社, 2005.
    130孙涛,沈允文,孙智民,等.行星齿轮传动非线性动力学方程求解与动态特性分析.机械工程学报. 2002, 38(3): 11~15.
    131孙涛,沈允文,孙智民,等.行星齿轮传动非线性动力学模型与方程.机械工程学报. 2002, 38(3): 6~9.
    132孙涛.行星齿轮系统非线性动力学研究.西北工业大学博士学位论文.2000.
    133孙智民,季林红,沈允文,等.齿侧间隙对星型齿轮传动扭振特性的影响研究.机械设计. 2003, 20(3): 3~6.
    134孙智民.功率分流齿轮系统非线性动力学研究.西北工业大学博士学位论文. 2001.
    135李素有,孙智民,沈允文.含间隙的斜齿轮副扭振分析与试验研究.机械传动. 2002, 26(2): 1~3.
    136刘国华,李亮玉.基于非线性理论的齿轮机构动力学模型的建立及实验.机械设计. 2006, 23(5): 15~17.
    137王晓笋,巫世晶,周旭辉,等.含侧隙非线性齿轮传动系统的分岔与混沌分析.振动与冲击. 2008, 27(1): 53~56.
    138徐士良. FORTRAN常用算法程序集.北京:清华大学出版社, 1997.
    139 Helio. Fiori. de. Castro, Katia. Lucchesi. Cavalca, Rainer. Nordmann. Whirl and Whip Instabilities in Rotor-bearing System Considering a Nonlinear Force Model. Journal of Sound and Vibration. 2008, 317:373~293.
    140 G.ADILETTA, A.R.GUIDO, C.ROSSI. Chaotic Motions of a Rigid Rotor in Short Journal Bearings. Nonlinear Dynamics. 1996, 10:251~269.
    141 V. Meruane, R. Pascual. Identification of Nonlinear Dynamic Coefficients in Plain Journal Bearings. Tribology International. 2008, 41:743~754.
    142 Cai-Wan, Chang-Jian, Chao-Kuang Chen. Chaotic Response and Bifurcation Analysis of a Flexible Rotor Supported by Porous and Non-porous Bearings with Nonlinear Suspension. Nonlinear Analysis: Real Applications. 2009, 10:1114~1138.
    143 C.W. Chang-Jian, C.K. Chen. Bifurcation and Chaos Analysis of a Flexible Rotor Supported by Turbulent Long Journal Bearings, Chaos Solitons Fractals. 2007, 34: 1160~1179.
    144 C.W. Chang-Jian, C.K. Chen. Nonlinear Dynamic Analysis of a Flexible Rotor Supported by Micropolar Fluid Film Journal Bearings, International Journal of Engineering Science. 2006, 44:1050~1070.
    145 C.W. Chang-Jian, C.K. Chen. Bifurcation and Chaos of a Flexible Rotor Supported by Turbulent Journal Bearings with Non-linear Suspension, Transactions IMechE Part J- J. Eng. Tribol. 2006, 220:549~561.
    146 C.W. Chang-Jian, C.K. Chen. Chaos and Bifurcation of a Flexible Rub-impactRotor Supported by Oil Film Bearings with Non-linear Suspension, Mechanism and Machine Theory. 2007, 42 (3):312~333.
    147 L. Vedmar, A. Anersson, A method to determine dynamic loads on spur gear teeth and on bearings. Journal of Sound and Vibration. 2003, 267: 1065~1084.
    148 Y.H. Guan, M.F. Li, T.C. Lim, et al. Comparative analysis of actuator concepts for active gear pair vibration control. Journal of Sound and Vibration. 2004, 269:273~294.
    149 G. Capone. Descrizione analitica del campo di forze fluidodinamico nei cuscinetti cilindrici lubrificati. L’Energia Elettrica. 1991, 3:105~110.
    150 A.Kahrman, G.W.Blankenship. Experiments on Nonlinear Dynamic Behavior of an Oscillator with Clearance and Periodically Time-Varying Parameters. Journal of Applied Mechanics. 1997, 64: 217-226.
    151张锁怀,沈允文,丘大谋.齿轮-转子-系统的动力特性实验研究.机械科学与技术,2002,21(6):983~985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700